
 i

More iPhone Cool
Projects

Cool Developers Reveal the Details of Their
Cooler Apps and Discuss Their iPad

Development Experiences

■ ■ ■

Danton Chin Ben Britten Smith
Claus Höfele Chuck Smith
Ben Kazez David Smith
Saul Mora Arne de Vries
Leon Palm Joost van de Wijgerd
Scott Penberthy

ii

More iPhone Cool Projects: Cool Developers Reveal the Details of Their Cooler Apps and
Discuss Their iPad Development Experiences

Copyright © 2010 by Danton Chin, Claus Höfele, Ben Kazez, Saul Mora, Leon Palm, Scott
Penberthy, Ben Britten Smith, Chuck Smith, David Smith, Arne de Vries, and Joost van de Wijgerd

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2922-3

ISBN-13 (electronic): 978-1-4302-2923-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Publisher and President: Paul Manning
Lead Editor: Clay Andres
Development Editors: Douglas Pundick, Matthew Moodie, and Brian MacDonald
Technical Reviewer: Ben Britten Smith
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Candace English and Debra Kelly
Copy Editor: Katie Stence
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

 iii

My gratitude and thanks to Mom and Dad (they would have liked this), to my wife Carol for
everything over the years, and to our wonderful and artistically, musically talented son Tim. Also,

thanks to Robert and Elizabeth Bergenheim, Elise Falkinburg and Errol Frankel, and their
wonderfully intelligent sons, John and James Frankel.

—Danton Chin

Thanks to my wife and daughters, who inspire me daily to help make the world a better place. And
for letting me buy that awesome new MacBook Pro (you know which one).

—Saul Mora

To my mother, who taught me to pursue excellence, and to my father, who always inspired
creativity in me. Also to Andrea Zemenides, for being cute and little.

—Leon Palm

To the beautiful women in my family: Lisa, Julia, and Taylor. Taylor insists I mention our dog,
Jack, and Snickers too.

—Scott Penberthy

To my lovely wife Leonie.

—Ben Britten Smith

To my parents, who were always there for me and gave me the joy of reading. Also to my
professor, Dr. Gene Chase, who always brought an incredible amount of enthusiasm to everything

he taught, and made computer science inspiring.

—Chuck Smith

To my wife and best friend, Lauren.

—David Smith

iv

Contents at a Glance

■Contents at a Glance ...iv
■Contents...v
■Preface...x
■Acknowledgments ..xi
■ Introduction ...xii
Danton Chin.. 1�

■Chapter 1: Using Concurrency to Improve the Responsiveness
 of iPhone and iPad Applications ... 3�

Claus Höfele ... 57�

■Chapter 2: Your Own Content Pipeline: Importing 3D Art Assets
 into Your iPhone Game.. 59�

Ben Kazez .. 89�

■Chapter 3: How FlightTrack Uses External Data Providers to
 Power This Best-Selling Travel App.. 91�

Saul Mora, Jr. .. 107�

■Chapter 4: Write Better Code and Save Time with Unit Testing.............................. 109�

Leon Palm .. 135�

■Chapter 5: Fun with Computer Vision: Face Recognition with
 OpenCV on the iPhone ... 137�

Scott Penberthy ... 161�

■Chapter 6: How to Use OpenGL Fonts without Losing Your Mind............................ 163�

Ben Britten Smith... 189�

■Chapter 7: Game Development with Unity .. 191�

Chuck Smith... 249�

■Chapter 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 251�

David Smith.. 287�

■Chapter 9: Creating an Audio-Centric App for the iPhone
 with AVAudioPlayer .. 289�

Joost van de Wijgerd and Arne de Vries .. 309�

■Chapter 10: Implementing Push Notifications at eBuddy 311�

■ Index ... 577

 v

Contents

■Contents at a Glance... iv�

■Contents .. v�

■Preface .. x�

■Acknowledgments.. xi�
■Introduction... xii�

Danton Chin .. 1�

■Chapter 1: Using Concurrency to Improve the Responsiveness
 of iPhone and iPad Applications.. 3�

Prepare for Concurrency...3�

Non-Responsive User Interfaces...6�

Building the Interestingness User Interface...7�

Adding A JSON Parsing Framework to the Interestingness App..10�

Composing a RESTful Request for a List of Interestingness Images ...10�

Using the RESTful Request and the JSON Parser to Parse the Response ...12�

Implementing the UITableViewDataSource Protocol Methods to Display the Results14�

Concurrency Landscape ...16�

Considerations When Using Concurrent Solutions..17�

Concurrency with NSThread and NSObject ..19�

Concurrency with Operation Objects ..24�

NSOperationQueue...25�

NSOperation and NSInvocationOperation ..26�

Concurrency with Operation Objects and Blocks..45�

Blocks ..46�

Summary ..53�

Resources ...54�

Apple and Apple-related News ..54�

Apple Documentation...54�

■ CONTENTS

vi

Blocks and Grand Central Dispatch ...55�

General...56�

JSON ..56�

POSIX Threads ...56�

Claus Höfele .. 57�

■Chapter 2: Your Own Content Pipeline: Importing 3D Art
 Assets into Your iPhone Game... 59�

Starting an iPhone Game ..59�

Why Write Your Own Tools?..60�

Creating a Flexible Content Pipeline ...61�

The Tools Problem ...61�

Data Exchange vs. In-Game File Formats ..63�

Outline of the Example Code...64�

Exporting 3D Models...65�

Reading FBX files...66�

Traversing the Scene Contents...69�

Distinguishing between Different Types of Scene Nodes ...70�

OpenGL Triangle Data ..71�

Converting FBX Models into Triangle Data ..73�

Converting Triangle Data into an In-Game Format ..76�

Handling Textures...79�

Image Compression vs. Texture Compression...79�

Imagination’s PVRTC Format ...80�

Reading PNG Images ...82�

Converting Images into the PVRTC Format ..84�

Rendering the Converted Data on the iPhone ...86�

Running the Converter Tool ...86�

Creating the iPhone Project ...86�

Summary ..87�

Ben Kazez ... 89�

■Chapter 3: How FlightTrack Uses External Data Providers
 to Power This Best-Selling Travel App .. 91�

Choosing a Data Source..92�

API Design..93�

Data Coverage and Accuracy...94�

Economics ...95�

Trials ..96�

Source-Driven User Interface Design..96�

Challenges ...97�

Techniques from FlightTrack ...98�

Design Patterns for Data Source Consumption...99�

Direct-Client Consumption...99�

Server-Intermediary Consumption...100�

Data-Driven Cocoa App Architecture ..101�

Data Model Design...101�

Connecting Data to UI ..102�

■ CONTENTS

 vii

Choosing an Approach ...104�

Release! ..105�

FlightTrack Today ...105�

Saul Mora, Jr. ... 107�

■Chapter 4: Write Better Code and Save Time with Unit Testing 109�

Mock Objects ...120�

Testing Your Core Data Models..127�

Summary ..134�

Leon Palm... 135�

■Chapter 5: Fun with Computer Vision: Face Recognition
 with OpenCV on the iPhone.. 137�

What Is Computer Vision?...140�

Why do Computer Vision on an iPhone? ...141�

Your Project: Creating a Face Detector...142�

Setting Up OpenCV...142�

Setting Up XCode ...145�

Adding Image Conversion Functions..147�

Creating a Simple GUI ..149�

Loading Images from the Photo Library...151�

Loading the Haar Cascades ...152�

Performing Face Detection ..154�

Bonus...156�

Performance Tweaking...157�

Going Further ..159�

Summary ..160�

Scott Penberthy .. 161�

■Chapter 6: How to Use OpenGL Fonts without Losing Your Mind 163�

History...164�

Terminology ..165�

Pragmatic Fontery...167�

fCookie..167�

Creating a Font’s Texture Atlas...168�

Texture Mapping..171�

Opening Your App ..173�

The Fontery Classes..173�

APGlyph..174�

APChar ...175�

APText..177�

Putting It All Together ...179�

Setting Up the Display...181�

Creating Your Fortune...182�

Displaying the Fortune..184�

Summary ..187�

■ CONTENTS

viii

Ben Britten Smith ... 189�

■Chapter 7: Game Development with Unity ... 191�

What Is Unity? ...192�

Why Use Unity? ...193�

Exploring the Unity Interface...195�

The Scene View ...196�

The Game View ..197�

The Project View ..198�

The Hierarchy View..198�

The Inspector View ..198�

How the Pipeline Flows..198�

The Transform: Everybody Has One...199�

Meshes, Renderers, and Materials ..200�

Importing Assets ..204�

Custom Scripting ...205�

Playing Your Game...208�

Coroutines Not Updates ...209�

The Game View ..210�

Adding Lights ...213�

Using the iPhone as a Game Pad ...214�

Your Game ..215�

Adding a Base to Work From ...216�

The Main Character..218�

Inputs and Colliders ...224�

Your First Design Iteration ...228�

Adding More Touchable Objects ..230�

Prefabs...231�

Animations ...232�

Animation Import Settings ...233�

Interacting with Something Besides the Floor...237�

User Interface ..240�

Multiple Cameras...241�

3D Objects As GUI Items ..243�

Building for Your Device ..247�

Summary ..248�

Chuck Smith ... 249�

■Chapter 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 251�

Origins of Cocos2d..251�

Why Use Cocos2d? ...252�

Getting Started with Cocos2d ...252�

Installing Cocos2d..254�

Configuring Sample Code ..254�

Installing the XCode Project Templates ...255�

Starting a New Project ...256�

Introduction to Video Poker...257�

Making a Scene ..258�

Creating a Game Menu ..260�

■ CONTENTS

 ix

Game Logic ...261�

Card ...262�

Deck...264�

SimpleHand..266�

I Like the Sprites in You ...270�

Putting It All together ...272�

Events: Making It Interactive ...275�

Adding Sound..280�

Supporting the iPad ..281�

Further Exploring cocos2d ..286�

David Smith .. 287�

■Chapter 9: Creating an Audio-Centric App for the
 iPhone with AVAudioPlayer ... 289�

Design...290�

Designing for Your Target User..290�

Our Design Process..291�

Implementation...295�

Example Project ..296�

Getting Started...296�

Setting Up the UI ..298�

Coding the Audio Player...302�

Summary ..307�

Joost van de Wijgerd and Arne de Vries... 309�

■Chapter 10: Implementing Push Notifications at eBuddy............................ 311�

Introduction to eBuddy..311�

The eBuddy Messenger ...312�

The eBuddy iPhone Application ...312�

Apple Push Notification Service..313�

The Communication Flow ..314�

The Client Implementation...314�

The eBuddy Push Implementation ..317�

Client / Server Protocol ..317�

Server to APNS...318�

Fitting the Parts Together ..322�

Changes along the Way ..323�

Introducing eBuddy Pro ...323�

Extending the Beta Program ..324�

Summary ..325�

■Index.. 577

■ INTRODUCTION

x

Preface

Dear Reader,

This is the fifth in the Apress series of iPhone Projects books and the first to have the word iPad
mentioned. To say that we’re all hyperaware of the iPad and all that it promises is something of
an understatement; will eBooks and Apple’s new iBooks store be the killer app for iPad, is this
really as “magical” as Steve Jobs says it is, and who are all of these people buying every iPad Apple
can manufacture? And yet, More iPhone Cool Projects is was written about smaller-screen apps
for iPhone and iPod touch. Fear not!

When we started putting this book together, it was still 2009 and the iPad had not been
announced. As we were finishing the editorial process, each of the ten chapters was reviewed and
updated as appropriate to make mention of iPad considerations. At the same time, we discovered
an inherent truth about iPhone and iPad development: all of your iPhone knowledge is invaluable
for writing iPad apps, as well. We know this, because each of the 11 contributors (one chapter has
coauthors) is moving right into iPad app development.

We urge you think of the lessons learned and code shared in this book as applying to any app you
might choose to create using Apple’s iPhone OS! In fact, the tools remain the same: Objective-C
(with a few exceptions), Cocoa Touch, and XTools. Because of this core of Apple technologies, the
best practices also carry across all of the various iPhone OS–running mobile platforms. This is a
key theme running through all of the Apress Projects books. Somehow, we had an idea that Apple
had more things up its corporate sleeve.

As always, I’d like to mention Dave Mark, our tireless series editor and author of several
bestselling Apress titles, including Beginning iPhone 3 Development, More iPhone 3 Development,
and, very soon, Beginning iPad Development. In many ways, Dave embodies the positive energy
and inspirational spirit that makes the iPhone and iPad developer community such an exciting
place to be a part of.

It’s in this spirit of collegiality that we have done everything we can to ensure that all of the books
in this series are truly useful and enjoyable. We’ve tried to include something for every style of
development, or at least to cover a range of tastes. Please let us know what you think, and we’d be
happy to hear about new ideas you may have.

Clay Andres
Apress Acquisitions Editor, iPhone and Mac OS X

clayandres@apress.com

Dave Mark
Series Editor, Bestselling Author, and Freelance Apple Pundit

■ INTRODUCTION

 xi

Acknowlegments

What can I say? A book like this cannot exist without the efforts and passion of a great many
people. I have read this book. A few times now. It is amazing and I learn new things every time I
go through it. It is the product of thousands of combined hours of effort, and I want to give some
credit and thanks to the people who made it all possible.

First off, I want to thank all of the authors who took great pains to distill their years of knowledge
and experience into words and code for us to learn from, and who patiently took all of our
comments, critiques, and requests for yet more code samples but always came back with
increasingly better and better material to work with.

I would like to give a shout-out to Clay Andres, the lead editor who originally approached me
about this book and basically did all the legwork to gather the authors together and get the
project rolling.

I want to give huge thanks to Debra Kelly and Candace English for keeping all of us authors and
reviewers herded in the right direction, working on the right things at the right times and keeping
the maze of files and revisions and documents in order.

Huge admiration goes out to the development editors Douglas Pundick and Brian MacDonald
and our copy editor Katie Stence. They let us authors focus on getting our thoughts onto paper,
and they came through and made sure it sounded good and looked professional.

Thanks!

—Ben Britten Smith

■ INTRODUCTION

xii

Introduction

This is a wonderful book.

I am a working iPhone developer. I spend each and every day of the work week (and most
weekends) writing code that is destined to run on someone's iPhone, iPad, or iPod Touch. I have
been doing this for a long time now, and yet there is still so much more to learn!

During the course of this book project, I had the task of going through every single chapter, every
single line of code, and building every single sample project (often more than once). I don't recall
a single chapter that did not provide me with some insight to a problem that I had worked on
recently, was currently working on, or am planning to implement in future projects. Some of the
stuff I learned I was able to apply immediately to my running projects. I can pretty much
guarantee there is something in here for most every developer out there.

Who This Book Is For
This book presupposes that you have some familiarity with iPhone development. Most of the
projects presume that you are able to build and deploy apps written in XCode onto your device
for testing. If you started with a book like Beginning iPhone Development by Dave Mark and Jeff
LaMarche (Apress, 2009), then you will be well set to tackle the projects in the following pages.

There are a few chapters that go into some Mac based tools, so it will also be helpful to be familiar
with Objective-C and C development with XCode on the desktop. However, if you have used
XCode to compile and deploy an iPhone app, then the desktop stuff should be fairly easy to pick
up. If you want to learn more, have a look at some books like Learn C on the Mac by Dave Mark
(Apress, 2009) and Learn Objective-C for the Mac by Mark Dalrymple and Scott Knaster (Apress,
2009).

There is even a light dusting of C# in the chapter on Unity3D. What?! C# in an iPhone book? I told
you there is something for everyone here. The C# is very simple and mastery is not required to
understand the chapter, but if you are interested, check out Beginning C# 2008 by Christian Gross
(Apress, 2007).

Astute iPad developers may notice that all of the sample code and projects in this book are
generally built for the iPhone and iPod Touch devices. This is to make sure that we could cover as
many devices as possible. All of the concepts and ideas covered here apply equally to the iPad, of
course, and all the code runs perfectly well on that device.

■ INTRODUCTION

 xiii

What’s in the Book
In Chapter 1, Danton Chin delves into concurrency on the iPhone to help speed up your
interfaces and make your apps snappier. If you have some performance bottlenecks in your app,
this chapter will be very useful.

Chapter 2 brings Claus Höfele showing you how to use some desktop tools to streamline your
game content pipelines. He shows you a specific example from his own extensive game developer
experience, but the concepts he elucidates are applicable to many type of apps.

In Chapter 3, Ben Kazez recounts some of the lessons learned and design choices made in
developing the very popular Flight Track app. He sheds some light on the process of finding and
utilizing external data providers. With so much data available to your applications these days, the
concepts shown here will be very helpful.

Saul Mora reminds that testing is important in Chapter 4. He shows how to use unit testing to
greatly improve your code stability and help speed up your iPhone development processes.

If you were curious how computers can recognize human faces, then Chapter 5 where Leon
Palm's takes on computer vision will quench that thirst. Leon introduces you to the exciting
world of computer vision and shows you how to integrate the very powerful OpenCV libraries
into your applications. If you are thinking of doing some Augmented Reality in your apps, this
chapter will be invaluable.

If you have ever tried to render fonts in OpenGL then you know it is a complex beast. Scott
Penberthy breaks it down in Chapter 6. Scott provides some tools and direction that make
custom font rendering so easy that you won’t go back to boring system fonts ever again.

In Chapter 7, Ben Britten Smith dips his toes into the Unity3D game engine and shows you how
to leverage that middleware to build some very complex 3D games very quickly.

If 3D isn't your thing, head to Chapter 8 where Chuck Smith gives you a great introduction to 2D
game development with the very popular framework: Cocos2d. Chuck shows you everything you
need to know to get started slinging sprites around like the pros.

In Chapter 9, David Smith gives some insight into his popular Audiobooks app, and shows you
how to handle lengthy audio content in his sample code. Properly dealing with large audio files is
a complicated task, but David makes it so easy.

In the final chapter, Chapter 10, Arne de Vries and Joost van de Wijgerd team up to tell you about
their experiences integrating push notifications into their popular eBuddy application.

iPhone and iPad development have come a long way in the short years since the SDK became
available. Even working on iPhone projects every day, I still have a hard time keeping up with all
of the new features and APIs available to us as iPhone developers. This book is such a great
resource you will want to keep it close at hand when you embark on your next iPhone project.

Ben Britten Smith

1

Danton Chin
Company: iPhone Developer Journal
(http://iphonedeveloperjournal.com/)

Location: Pelham, NY

Former Life as a Developer: I have programmed with both procedural and object-
oriented languages on hardware ranging from mini-computers, workstations,
personal computer systems, and mobile devices. I started to program in BASIC
and C. In 1993, I was looking for a better way of designing and developing
systems and came across NeXTStep. The night I was ready to place my order for
my own NeXT workstation, NeXT announced that they were out of the hardware
business. Four NeXTStep conferences and two years later it was over. Later that
year, the alpha version of Java was released and over the following years I was
able to watch and use a new computer language as it was born, evolved, and
grew. Along the way, I got my first experience with mobile application
development using J2ME (now Java ME) for Palm PDA devices. I have also
developed with Actionscript and MXML, and worked with relational databases
and application servers. I have worked in the financial services sector for banks
and brokerage firms as well as energy, radio station, and newspaper companies.

Life as an iPhone Developer: Doing iPhone development has led me to speak
 at the 360iDev iPhone Developer Conferences (http://www.360iDev.com/) in
San Jose (http://www.360idev.com/about/san-jose-2009) and Denver
(http://www.360idev.com/about/denver-2009), and at meetings of the NY iPhone
Software Developers Meetup Group (http://www.meetup.com/newyork-iphone-
developers/calendar/11630710/). I also started the iPhone Developer Journal blog
and continue to do freelance iPhone development. I am currently working on an
application for a newspaper company that should be in the App Store by the time
this book is in print.

App on the App Store:

� PBN (Providence Business News)

 2

What's in This Chapter: This chapter looks at concurrency solutions that are
available on iPhone and iPad devices. A real-world poorly performing application
is developed. Then possible approaches to a concurrent solution are discussed.
A working solution using operation queues and operation objects is developed.
Finally, a solution is developed using operation queues, operation objects, and
blocks. The main thesis is that using a concurrent solution that makes use of
operation queues, operation objects, and blocks is an optimal way of writing your
application today to reduce the complexity of developing a solution with
concurrency and to take advantage of changes in the iPhone OS and underlying
hardware tomorrow.

Key Technologies:

� Concurrency

� NSOperationQueue

� NSOperation

� NSInvocationOperation

� Blocks

3

3

 Chapter

Using Concurrency to
Improve the
Responsiveness of iPhone
and iPad Applications
You do not have to have a lot of experience developing iPhone applications before you

begin to realize that you may need to fetch data from a server on the Internet or that you

have a CPU intensive calculation that freezes your application and prevents your user

from interacting with the user interface of your application. On any platform with any

computer language, the standard way of dealing with such issues is to perform these

tasks in the background allowing your application’s user interface to remain responsive

to a user’s interaction with your application. Fortunately, iPhone OS, like its much bigger

sibling Mac OS X, provides a rich array of concurrency solutions for developers needing

to use them. However, as you will see the concurrency solutions vary quite a bit in terms

of their degree of complexity, level of abstraction, and scalability. This chapter is a brief

survey of the concurrency solutions available and you will develop solutions with some

of them. There is a definite point of view that I’ve developed by working with the iPhone

SDK and trying to divine the path that Apple might take in the future that hopefully will

come across. After all, whether the application is for an iPod Touch, iPhone, or an iPad it

isn’t cool if the application is sluggish!

Prepare for Concurrency
It had been quite a while since I had attended a conference where Steve Jobs would

normally be expected to appear and attendees would go home with their cube-shaped

box of books and software for the latest version of the NeXTStep operating system.

When NeXT faded away many hopes were dashed, but what is happening with Mac

1

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 4

desktop, laptop, iPhone, iPod Touch, and iPad devices is far, far sweeter! Therefore, it

was almost but not quite déjà vu as I sat in the audience at Apple’s World Wide

Developers Conference in 2009. As I listened, a point of view started to develop. Bertran

Serlet and Bud Tribble were starting off the conference after the keynote with an

overview of all the sessions (Session 700 WWDC Sessions Kickoff). Two new

technologies being introduced in Snow Leopard—Grand Central Dispatch (GCD) and

OpenCL (Open Computing Language)—stuck out. Grand Central Dispatch is a

technology that has several facets: changes to the Mac OS X kernel; a language

extension to Objective-C, C, and C++ called Blocks; and new APIs to take advantage of

GCD using blocks, queues, and operation objects. OpenCL specifies OpenCL C, which

is used to rewrite the calculation intensive portions of an application into C-like functions

called OpenCL kernels. The OpenCL kernels are compiled at run-time for the target

GPUs for execution. It was hard not to think that this was pretty amazing.

It was the “Seeker” demo (13:46 minutes into the presentation) that drove it home.

Seeker is an interactive, 3D solar system simulator developed by Software Bisque

(http://www.bisque.com/) for exploring our solar system. In the demo given by Richard

S. Wright (co-author of the OpenGL SuperBible) the Seeker program calculates the

position of satellites in orbit around the Earth using hundreds of calculations per frame

per satellite and is able to perform the display at about 23 fps. Adding the display of

space junk objects to the display of satellites brought the total number of objects in orbit

around the Earth to over 12,000 maxing out the CPU and bringing the display rate down

to 5 fps. Turning GCD on distributed the computations over all the cores and brought

the framerate up to 30 fps! Then, GCD and OpenCL were used to display the position of

over 400,000 asteroids in addition to the satellites and junk objects achieving a

framerate of 30 fps. It was some demo!

At WWDC and in the months afterwards, I speculated and talked about whether GCD or

some of its components, such as blocks and OpenCL, would someday become an

integral part of iPhone OS in my presentations at conferences. As a follower of Apple

and Apple-related news (see Table 1–1), I was aware of Apple’s acquisition of P.A. Semi,

a semiconductor design firm, in April 2008 and Imagination Technologies’ desire to hire

OpenCL engineers in December 2008 as reported by the media.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 5

Table 1–1. Apple and Apple-related News Items that May Impact Concurrency

Date News Item

2008

 April Acquisition of P. A. Semi by Apple.

 December Imagination Technologies job openings for OpenCL engineers.

2009

 June ■ WWDC Apple announces GCD and OpenCL for Snow Leopard.

■ iPhone 3GS released.

 July Plausible Labs releases PLBlocks for Mac OS X 10.5+ and iPhone OS 2.2+.

 September ■ Snow Leopard released.

■ ARM announces availability of dual core Cortex-9 ARM reference

 implementation.

2010

 January ■ Imagination Technologies announces the availability of the PowerVR SGX545

 mobile GPU which provides full support for OpenGL 3.2 and OpenCL 1.0.

■ Apple announces the iPad powered by a 1 GHz Apple A4 SOC.

 February Plausible Labs PLBlocks 1.1 Beta with support for Mac OS X 10.5+ and iPhone

OS 2.2+ including 3.2.

 April iPhone OS 3.2 and iPad released.

The availability of a third-party implementation of blocks for iPhone OS led me to

wonder not whether, but when an official implementation from Apple would be available.

In addition, the availability of reference implementations of dual core ARM chips,

OpenCL implementations in the latest version of Imagination Technologies’ PowerVR

mobile GPU chips, the availability of the iPad and iPhone SDK 3.2 by April 3 all continue

to point the way to the possibility that a multicore iPhone could be available around the

WWDC 2010 timeframe. If there is a multicore iPhone device then we’ll need

enhancements to the operating system and the Cocoa Touch classes to harness the

power of those cores using GCD and blocks. With rumors of multitasking coming to the

next version of the iPhone operating system there may be sweeping changes ahead.

We’ll all know for sure once the successor to iPhone OS 3.2 is released under an NDA.

All this was speculation then and it still is. What then is an appropriate strategy for

concurrency that will take advantage of multiple cores if and when they arrive? What I

realized at WWDC was that using operation objects would be that strategy as long as it

met the needs of my application. And, if multicore iPhones never arrive have we lost

anything by using operation objects? No, especially if it helps to reduce complexity in

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 6

your application. I think it would be really sweet and exciting to have Apple’s

implementation of GCD, blocks, and OpenCL on the iPhone at some point in the

future—possibly in the next version of the iPhone and iPhone OS at WWDC 2010! But

concurrent solutions exist already so let’s look at a possible use case without using

concurrency and see how various concurrent solutions can increase user satisfaction

and perhaps ease development efforts.

Non-Responsive User Interfaces
Almost any long-running operation can make the user interface sluggish and

unresponsive. Some examples of operations that can impact the responsiveness of your

user interface are loading images or data over the Internet to be displayed in your

application; manipulating images or data; parsing XML or RSS; performing a complex

mathematical calculation such as finding n prime numbers, calculating pi to m decimal

places, or calculating Euler’s constant e to p decimal places. In addition, there are

situations where a concurrent solution is typically used such as sorting a socket server

as well as countless other situations. As a point of discussion for looking at concurrent

solutions, you will develop a simplistic application to view the images that have made it

into Flickr’s top 500 interestingness list for the most recent day. Schematically, your

Interestingness app will make RESTful HTTP requests to Flickr servers and receive a

response in JavaScript Object Notation (JSON) a lightweight data format for transferring

data in name—value pairs (see Figure 1–1). The images will be displayed using a

UITableView managed by a UITableViewController. Interestingness is a ranking assigned

to each photo using a secret algorithm patented by Flickr based on a number of factors

including the number of users who added the photo to a list of favorites, origin of the

clickthroughs, user assigned tags, comments, relationship between the uploader of the

image and those who comment on the image, and other secret factors. Flickr’s

flickr.interestingness.getList API is used to retrieve this list and does not require

user authentication—only an API key. The roadmap that you will follow to build the first

version of the Interestingness app will be:

� Build the user interface.

� Add a JSON parsing framework to the application.

� Compose a RESTful request to fetch a list of interestingness images.

� Use the RESTful request and the JSON framework to parse the

response.

� Implement the UITableViewDataSource Protocol Methods to display

the results.

Let’s get started!

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 7

Figure 1–1. Request/Response data flow between the Interestingness app and Flicker servers

NOTE: The projects were all built using both iPhone OS 3.1.3 and Xcode 3.2.1 and iPhone OS 3.2
and Xcode 3.2.2 on Snow Leopard.

Building the Interestingness User Interface
The application as you’ll build it does not check if the network is available nor does it

provide any user feedback on the progress of fetching data over a network connection.

Of course, a shipping application should do both. The Reachability APIs that are a part

of the SystemConfiguration.framework will allow you to check for network availability

while progress indicators are a part of the standard user interface components. These

aspects have been left out to focus on concurrency. So start up Xcode and create a new

project using the Window-based Application template. Name the application

Interestingness to create the header and implementation files for the

InterestingnessAppDelegate and the main window nib file. You do not need the main

nib file in this simple application and it could even be deleted but you will just leave it.

TIP: For more details on creating iPhone applications, see the highly regarded book Beginning
iPhone 3 Development: Exploring the iPhone SDK, by Jeff Lamarche and David Mark (Apress,
2009).

Next CTRL-Click on the Classes folder to add a new file, click on Cocoa Touch class

templates, and choose the UIViewController subclass template making sure that the

Options checkbox for UITableViewController is checked. Click the Next button and

name the subclass InterestingnessTableViewController. Make sure that the checkbox

to create the header file is checked then click the Finish button (see Figure 1–2).

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 8

Figure 1–2. Subclassing UITableViewController

In the application delegate header file, you forward declare

InterestingnessTableViewController and declare the variable for an instance of this

subclass and name it tableViewController so that the declaration of the application

delegate class appears as in Listing 1–1.

Listing 1–1. InterestingnessAppDelegate Header fFle

#import <UIKit/UIKit.h>

@class InterestingnessTableViewController;

@interface InterestingnessAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 InterestingnessTableViewController *tableViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

On the implementation side of the application delegate import the header file for the

InterestingnessTableViewController and in the applicationDidFinishLaunching

method, allocate and initialize an instance of our table view controller, set the frame for

the view controller, add the table view controller’s view as a subview of the window, and

for good memory management practice release the tableViewController in the dealloc

method as in Listing 1–2.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 9

Listing 1–2. InterestingnessAppDelegate Implementation File

#import "InterestingnessAppDelegate.h"
#import "InterestingnessTableViewController.h"

@implementation InterestingnessAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 tableViewController = [[InterestingnessTableViewController alloc]
 initWithStyle:UITableViewStylePlain];

 [[tableViewController view] setFrame:[[UIScreen mainScreen] applicationFrame]];

 [window addSubview:[tableViewController view]];

 [window makeKeyAndVisible];
}

- (void)dealloc {
 [tableViewController release];
 [window release];
 [super dealloc];
}

@end

Note that you are programmatically creating your table view controller and that you are

not using a nib file in which a table view is defined with a data source and a delegate. In

this case, the UITableViewController by default sets the data source and the delegate

to self. Out of the box, the subclass provides stubs for two of the required methods of

the UITableViewDataSource Protocol—tableView:cellForRowAtIndexPath: and

tableView:numberOfRowsInSection:—and one of the optional methods

numberOfSectionsInTableView:. In addition, the subclass provides a stub implemention

of only one of the optional methods— tableView:didSelectRowAtIndexPath:—of the

UITableViewDelegate Protocol which you do not need to implement in this case since

the Interestingness app will not be providing a detail view for the selected row. Since

you are creating the table view controller programmatically uncomment the

initWithStyle: method. At this point, that is the only change in the implementation of

InterestingnessTableViewController. So go ahead and build and run this in the

Simulator to make sure that everything works. You currently have a responsive but

empty table view!

NOTE: The Interestingness project up to this point is in the folder Interestingness-Version1.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 10

Adding A JSON Parsing Framework to the Interestingness
App
As was mentioned earlier the Interestingness app will receive a response to an HTTP

request in JSON format (see Figure 1–1). In order to use the data, the reponse will be

parsed using a JSON parser. JSON has become increasingly popular as a data

exchange format and parsers are available for just about every computer language. The

next step then is to download and add a JSON parsing framework to your project. The

framework used in this project is the json-framework which can be downloaded from

Google’s Code repository at http://code.google.com/p/json-framework/ (see the

“Resources” section). Download and expand the disk image. Drag the JSON folder to

the Interestingness project and drop it on the project or into your favorite folder (such

as Classes). Be sure to check the checkbox to copy the items to the destination folder

(Figure 1–3). You can also CTRL-Click to add an existing folder and its contents to the

project making sure to select the option to copy the items to the destination folder. Now

importing JSON.h will provide access to the methods that make up the json-framework.

Figure 1–3. Adding the JSON classes to the Interestingness project

Composing a RESTful Request for a List of Interestingness
Images
To fetch the images from the Flickr interestingness API make a RESTful request to

Flickr for a list of these images. The information needed to build a URL for the individual

images is extracted from the list to build a URL for an individual image. A Flickr API

request consists of four components—a service endpoint, a method name, an API key,

and a list of required and optional parameters for the method:

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 11

� Service Endpoint: Flickr accommodates requests and provides

responses via three formats: REST, XML-RPC, and SOAP. Flickr also

provides responses using JSON and PHP. You will be making RESTful

requests using HTTP GET for which the service endpoint is

http://api.flickr.com/services/rest/.

� Method name: Flickr provides authenticated and nonauthenticated

access to the photos and the extended data attributes around the

photos that are uploaded to their site. Most of the APIs require

authentication in addition to an API key. You will use a

nonauthenticated, “public” API named

flickr.interestingness.getList to get a list of the most interesting

photos.

� Flickr API key: If you have a Flickr API key you will need it in order to

download images for your project. If you do not have a Flickr API key,

head over to Flickr (http://www.flickr.com/services/apps/create
/apply/) to create an API key for which you will need a Yahoo

account.

� Method parameters: As parameters you will need to provide:

� per_page (optional): The number of photos to return per page.

� format (optional): Specify that the response be in JSON format.

Additionally, you just want the raw JSON output without the

enclosing function wrapper so that as part of the request one of

the parameters of the request will be nojasoncallback=1.

Your Flickr request will appear as follows:

http://api.flickr.com/services/rest/?method=flickr.interestingness�
.getList&api_key=%@&tags=&per_page=%d&format=json&nojasoncallback=1

with two values to be filled in, the API key and the number of photos per page, which will

be done when you create the NSString.

Now to make the changes to the Interestingness application so it fetches and displays

the images change InterestingnessTableViewController.h as follows:

#import <UIKit/UIKit.h>

@interface InterestingnessTableViewController : UITableViewController {

 NSMutableArray *imageTitles;
 NSMutableArray *imageURLs;
}
-(void)loadInterestingnessList;

@end

This declares two mutable arrays to store the image names and URLs and a method to

load the list of interestingness images from Flickr.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 12

Next, you will need to change the implementation. Begin by importing JSON.h, defining

your Flickr API key, modifying the initWithStyle: method to initialize the two mutable

arrays, and uncomment the viewWillAppear: method so that you can add the call to

self to load the list of images:

#import "InterestingnessTableViewController.h"

#import "JSON.h"

#define API_KEY @"INSERT YOUR FLICKR API KEY HERE"

@implementation InterestingnessTableViewController

- (id)initWithStyle:(UITableViewStyle)style {
 if (self = [super initWithStyle:style]) {
 imageTitles = [[NSMutableArray alloc] init];
 imageURLs = [[NSMutableArray alloc] init];
}
 return self;
}

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self loadInterestingnessList];
}

Now is as good a time as any to remember to release the mutable arrays in the dealloc

method so that you don’t leak memory.

- (void)dealloc {
 [imageTitles release];
 [imageURLs release];
 [super dealloc];
}

Using the RESTful Request and the JSON Parser to Parse
the Response
Now implement the loadInterestingnessList method:

-(void)loadInterestingnessList
{

 NSString *urlString = [NSString stringWithFormat:@"http://api.flickr.com/services�
/rest/?method=flickr.interestingness.getList&api_key=%@&extras=description&tags=�
&per_page=%d&format=json&nojsoncallback=1", API_KEY, 500];

 NSURL *url = [NSURL URLWithString:urlString];

 NSError *error = nil;

 NSString *jsonResultString = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding
 error:&error];

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 13

 NSDictionary *results = [jsonResultString JSONValue];

 NSArray *imagesArray = [[results objectForKey:@"photos"] objectForKey:@"photo"];

 for (NSDictionary *image in imagesArray) {

 // build the url to the image

 if ([image objectForKey:@"id"] != [NSNull null]) {
 NSString *imageURLString = [NSString
 stringWithFormat:@"http://farm%@.static.flickr.com/%@/%@_%@_s.jpg",
 [image objectForKey:@"farm"],
 [image objectForKey:@"server"],
 [image objectForKey:@"id"],
 [image objectForKey:@"secret"]];

 [imageURLs addObject:[NSURL URLWithString:imageURLString]];

 // get the image title

 NSString *imageTitle = [image objectForKey:@"title"];

 [imageTitles addObject:([imageTitle length] > 0 ? imageTitle �
: @"Untitled")];

 }

 }
}

Here you build the URL string using NSString’s class method stringWithFormat: to

provide the API key and the number of images you want to retrieve per page. Then you

retrieve the URL with NSString’s convenience method

stringWithContentsOfURL:encoding:error and store the result in jsonResultString. You

then use the json-framework to return the NSDictionary represented by the string and

retrieve the array of dictionary objects representing the images using the key “photo”.

Next, iterate through the array of dictionary objects (the info for each image) using the

keys farm, server, id, and secret to retrieve the corresponding value in order to build a

URL for the image and add the URL to your mutable array of URLs in the instance

variable imageURLs. Your final steps in this method are to retrieve the title for the image

and store either the title if the length is greater than zero or “Untitled” in your mutable

array of titles imageTitles.

NOTE: More details on how to build a URL for an individual photo can be found at
http://www.flickr.com/services/api/misc.urls.html.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 14

Implementing the UITableViewDataSource Protocol
Methods to Display the Results
Next, you need to modify the UITableViewDataSource methods

numberOfSectionsInTableView:, tableView:numberOfRowsInSection:, and

tableView:cellForRowAtIndexPath: to fetch and display the images in our table. Since

your user interface is very basic there will only be one section in the table view and the

numberOfSectionsInTableView: method returns the following:

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

Next change the tableView:numberOfRowsInSection: method to return the number of

elements in the imageURLs array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection�
:(NSInteger)section {
 return [imageURLs count];
}

Finally, change the tableView:cellForRowAtIndexPath: method to set the text of the

label to the title of the image, fetch the image using NSData’s class method

dataWithContentsOfURL, and finally set the cell’s imageView to the image that was just

downloaded:

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath�
:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier�
:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault�
 reuseIdentifier:CellIdentifier] autorelease];
 }

 // set the title

 [[cell textLabel] setText:[imageTitles objectAtIndex:[indexPath row]]];

 // fetch the image

 NSData *data = [NSData dataWithContentsOfURL:[imageURLs objectAtIndex�
:[indexPath row]]];

 // set the cell's image

 [[cell imageView] setImage:[UIImage imageWithData:data]];

 return cell;
}

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 15

NOTE: The project up to this point is in the folder Interestingness-Version2.

Now it is time to test the Interestingness application on a device. Select the

Interestingness target, CTRL-Click, select Info, and then select the Properties tab and

set the Identifier to one that matches your provisioning profile that has been set up with

your iPhone Developer Certificate. Then set the Active SDK to Device – 3.1.3 | Debug

and build and run. The application can be installed and tested in the Simulator but

performance of the application in the Simulator does not resemble the performance of

the application on a real device. The Interestingness application should look like Figure

1–4 although the images and text will not be the same.

CAUTION: A splash screen will load immediately but it may take the application several seconds
before the interestingness images appear.

TIP: If the application compiles but no images appear you may have forgotten to enter a valid
Flickr API key so be sure to check that. Also, you must be a paid member of the iPhone
Developer Program in order to install and test on an iPhone, iPod, or iPad device. See
http://developer.apple.com/programs/iphone/develop.html.

Figure 1–4. A screen shot of the Interestingness application

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 16

Concurrency Landscape
Why is the application slow? Both Cocoa and iPhone Applications start life with one

thread and a run loop. Basically, a run loop listens for events and passes them on to an

appropriate handler. Once the handler finishes processing, the event control returns to

the run loop which either processes the next event or puts the main thread to sleep until

there is something to do. Your application is doing all of its work on the main thread

preventing it from responding to any user interface events or any other event until your

task has finished.

Figure 1–5. The Interestingness app makes a RESTful request for the master list of images and then one RESTful
request for each image for each exposed table view cell , all on the main thread in Version 2 of the app.

Interestingness fetches data over the Internet at two points—once to fetch the list of

Interestingness images and then one fetch for each image in each cell of the table view

(see Figure 1–5). It does so synchronously, and until the data has been returned, no

updates of the user interface can occur. Our application needs to perform such time

consuming tasks in a background thread and not on the main thread. There are a lot of

concurrent options available as you can see from Table 1–2. The concurrency solutions

range from a high level of abstraction and a lower level of complexity to a low level of

abstraction and a higher level of complexity. Depending upon the needs of your

application one solution may be better than another. It may be almost obvious but it

does not hurt to state that the best concurrency solution is the concurrency solution that

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 17

has the highest level of abstraction that is consistent with your application needs. There

are multiple benefits from doing so and in this case it applies particularly to the use of

operation objects—it reduces complexity in your application (KISS), it may insulate your

application from lower level changes, it may lay the groundwork for future changes in

the operating system, and it may allow your application to take advantage of underlying

hardware changes. Using the highest level of abstraction is consistent with the history

and development of computers, programming languages, and programming

methodologies.

Table 1–2. Available Concurrency Solutions As of April 2010

Level of

Abstraction

Technology Description iPhone OS Mac OS X Complexity

Operation objects NSOperation

NSOperationQueue

Yes 10.5+

Grand Central

Dispatch

Dispatch queues and

blocks, etc.

No 10.6+

Cocoa Threads NSThread

NSObject

Yes Yes

Asynchronous

methods

Some classes have both

synchronous and

asynchronous methods,

NSURLConnection, for

example

Yes Yes

High

Low

POSIX Threads

(pthreads)

C-based APIs and libraries

for creating and managing

threads

Yes Yes

Low

High

Considerations When Using Concurrent Solutions
There are some general considerations to be aware of when implementing any

concurrent solution. A primary consideration is that generally UIKit classes are not

thread safe unless the Apple documentation specifically states that it is. All updates to

the user interface should occur on the main thread and not from a background thread.

Another major concern that must be taken into account once an application has two or

more threads is synchronizing access to shared data, especially mutable data. Altering

shared data structures from more than one thread can lead to race conditions and

deadlocks.

