
COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Beginningwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Migrating to

Swift from Web
Development

Liao
P

unak
M

igrating to Sw
ift from

 W
eb Developm

ent

SOURCE CODE ONLINE

Companion

eBook
Available

Make the leap from front-end web development
to iOS development with Swift

Sean Liao | Mark Punak

Migrating to Swift From Web Development gives you the ability
to create native iOS apps using the latest Swift programming

language. Starting with preparing your latest Xcode 6 Integrated
Development Environment and introducing just enough iOS
application framework fundamentals, you’ll learn how to
create a simple, but meaningful Hello Swift application for iOS 8
immediately.

After the short IDE setup guide, this book will show you how to
structure your iOS project. Every topic comes with a tutorial project
that you will create by yourself. You’ll plan and structure your
iOS apps using Xcode Storyboard, implementing use cases with
detailed screens, and learn about managing data and working with
remote services. Finally, you’ll experience a recap of the whole app
creating process by creating a iOS 8 from start to end.

When you finish reading Migrating to Swift from Web Development,
you’ll be an iOS developer as well as a front-end web developer,
having mastered the following:

• Swift language and Xcode 6 fundamentals
• Common mobile screen navigation patterns

• User Interface components and animations

• How to store data

• How to use remote services with your app

• How to create Hybrid apps

RE
LA

TE
D

TI
TL

ES

9 781484 209325

52999
ISBN 978-1-4842-0932-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a
Glance

About the Author �� ix

Acknowledgments �� xi

Introduction �� xiii

Part 1: Prepare Your Tools ■ �� 1

Chapter 1: Setting Up the Development Environment ■ �������������������� 3

Chapter 2: iOS Programming Basics ■ �� 11

Part 2: A Roadmap for Porting ■ �������������������������������������� 49

Chapter 3: Structure Your App ■ �� 51

Chapter 4: Implement Piece by Piece ■ ��� 119

Part 3: Finishing Touches ■ ��� 187

Chapter 5: Pulling It All Together ■ �� 189

Chapter 6: Bonus Chapter: Hybrid Apps ■ ������������������������������������� 225

Index �� 239

xiii

Introduction

In 2000, I created my first mobile app for an inventory-tracking project using
PalmOS handheld devices. The initial project was a full-staffed team effort
that consisted of mobile developers, SAP consultants, supply-chain
subject-matter experts, middleware developers, QA testers, architects,
business sponsors, and so forth. JavaME came up strong in 2002, followed
by Pocket PC/Windows Mobile. I did several mobile projects in which
I converted mobile apps to the Pocket PC platform by blindly translating
C++ to JavaME to C# .NETCF mobile code. These “translation” efforts
prolonged the whole product life cycle. The project achieved a higher return
on investment (ROI) by extending the product life because the extra cost of
translating mobile code was surprisingly low. Ever since then, I have been
translating front-end mobile apps among various mobile platforms. In recent
years, most of my work has involved porting mobile apps between Android
and iOS and mobilizing existing web sites. Porting apps between iOS and
Android is fairly straightforward. This is also true for porting mobile web
apps using a RESTful service. Even for traditional non-service-oriented web
apps, you still want to follow the same path: reusing existing business cases
and software artifacts and reaching a bigger audience to maximize the ROI.

One thing is for sure: there are a lot demands for mobilizing existing web
apps to reach mobile users. That’s why I decided to write this book.

The primary objective of this book is to help experienced web developers
leap into native iOS–Swift mobile development. It is easier than you think,
and this book will make it even easier with step-by-step guidelines. You can
immediately translate common mobile use cases to iOS.

Introductionxiv

Who Is This Book For?
This book was specifically written for web developers who want to make
iOS mobile apps. The book will show you the common iOS programming
subjects and frameworks by relating them to your familiar web programming
tasks when appropriate.

How This Book Is Organized
In part I, you will get the iOS Xcode integrated development environment
(IDE) up and running. You will be guided in creating tutorial projects that will
become your porting sample projects. I believe this is the best way for you
to get hands-on experience while learning programming topics.

Part II of this book shows you how to plan and structure your iOS apps
by creating a storyboard and breaking the app into model-view-controller
(MVC) classes. The common mobile topics are followed, including creating
a user interface, managing data, and enabling networking with remote
services. You will then be able to create simple but meaningful iOS apps
with rich UI components and be able to handle common create, read,
update, delete (CRUD) operations locally and remotely.

Last, part III walks you through a case study for a complete iOS app.
It recaps the topics in this book. You can also use the book’s table of
contents or index to help find the mobile topics you need.

A bonus chapter was added in the end reveals how to mix and match
web front development with iOS SDK, the so-called hybrid apps. You may
choose to bundle the web contents and HTML pages with Javascript code
just like you normally do for frontend web apps. You can interface with the
native iOS platform features and communicate between your JavaScript and
iOS code back and forth.

When you complete this journey, you will be able to use Xcode and Swift to
effectively implement simple and meaningful iOS apps.

Part 1
Prepare Your Tools

3

Chapter 1
Setting Up the
Development
Environment

It is more fun to see apps run than to read the source code, and you cannot
get hands-on programming experience by just reading books. Let’s get the
development environment up and running first so you can use it—and learn
Swift programming for iOS along the way.

There is no single integrated development environment (IDE) that can be
called the IDE for web development. Eclipse and Eclipse-based products
such as Aptana and Spket, and others such as NetBeans, IntelliJ Idea,
and Visual Studio, are all popular tools for building and deploying web
applications. In fact, some outstanding web developers use only a text
editor to create Hypertext Markup Language (HTML), Cascading Style
Sheets (CSS), or JavaScript files! In the iOS programming world, Apple
purposely requires a single development environment for creating iOS apps.
It makes for no jailbreakers, and all you need is the one tool: Xcode.

Note Rather than attempt to provide specific examples from every
web IDE, this book will instead reference analogous tasks from web
development where applicable.

CHAPTER 1: Setting Up the Development Environment4

Figure 1-1. Xcode in Mac App Store

Xcode and the iOS SDK
Xcode is a complete tool set for building iOS apps. In other words, it is an
IDE that helps you build, test, debug, and package your iOS apps. It is free,
but you must have an Intel-based Mac running Mac OS X Mavericks or
newer. You will use the latest Xcode, version 6, throughout this book.

Installing from the Mac App Store
Xcode is distributed via the Mac App Store, which takes care of the
download and install for you. With a single click to start the download and
installation of Xcode, you get the compilers, code editor, iOS software
development kit (SDK), debugger, device emulators, and everything you
need to create iOS apps. Figure 1-1 shows Xcode in the Mac App Store.

All you need to do is install the latest Xcode from the App Store. After
completing the installation, launch Xcode from the Applications folder. Keep
it in the Mac OS Dock so that you can launch it at any time.

The first time you launch Xcode, it immediately prompts you to install the
required components (see Figure 1-2). Click Install to complete the Xcode
installation.

CHAPTER 1: Setting Up the Development Environment

5

After the required components are installed, you should see the screen in
Figure 1-3. Your iOS IDE, Xcode, is ready!

Figure 1-2. Install the required components

Figure 1-3. Welcome to Xcode screen

Creating an iOS Project Using the Template

WEB ANALOGY

You can create a New Web Application project in Visual Studio, create a new project in
Sencha Architect (and select a framework), use the web app project templates in Eclipse
web projects, and so on.

You’ve got the right tool; now, wouldn’t you like to see some real action—
like creating an iOS app and seeing it run? I’d like that, too! You want to do
this to ensure your IDE is working properly as well.

CHAPTER 1: Setting Up the Development Environment6

Out of the box, Xcode offers the project creation templates that immediately
give you a starting point that contains the minimal software artifacts for the
given project types. The objective of this section is to show you how to create
an iOS app as quickly as possible. Hold any programming questions so you
can finish the project as fast as you can. For now, complete the following steps:

1. Launch Xcode if you haven’t launched it yet.

2. Click “Create a new Xcode project” on the Welcome
to Xcode screen (shown earlier in Figure 1-3).
Figure 1-4 shows the prompt that asks you to
choose a template for your project.

a. In the left panel of Figure 1-4, select iOS ➤
Application.

b. In the right panel of Figure 1-4, you may choose
any of the templates. Just for fun, choose Game.

Figure 1-4. Choose a template

3. Click the Next button.

4. Figure 1-5 depicts the basic project information that
requires you to fill in the following:

a. Product Name: This is the app name. Name your
project LessonOne.

b. Organization Name: This is optional; for example,
you can use your organization’s name or any
name you choose.

CHAPTER 1: Setting Up the Development Environment

7

c. Organization Identifier: Together with the product
name, the organization identifier should uniquely
identify your app. A reverse domain name is
recommended (for example, com.yourdomain.xxx).

d. Language, Game Technology, and Devices:
You don’t need to change these settings.

Figure 1-5. iOS project options

5. Click the Next button when done.

6. Select a folder in which to save your LessonOne
project.

That is it! You just created an iOS project, the LessonOne project, that you
can see the in Xcode as shown in Figure 1-6.

CHAPTER 1: Setting Up the Development Environment8

The LessonOne project can be seen on the left panel, as shown in Figure 1-6;
this is the Project Navigator in the navigation area. The Xcode project template
creates the project folder, the application source code, and all the resources
for building the LessonOne apps.

Building the Project

WEB ANALOGY

This is the process that bundles, minifies, and packages your app and all the referenced
code that will be deployed with it.

To build and compile the Xcode project, use the Build action, which
is located in the Product ➤ Build menu in Xcode (or press +B). You
will get used to using the +B keyboard shortcut a lot because Xcode
doesn’t automatically build your code (unlike Eclipse ADT, which builds it
automatically by default).

Launching the App
The LessonOne project should have no errors. You can launch the app and
see it run on an iOS emulator. The emulator is an important piece of any
IDE, probably even more important for mobile apps. All the iOS devices

Figure 1-6. LessonOne project in Xcode Project Navigator (left panel)

CHAPTER 1: Setting Up the Development Environment

9

emulators are right there in Xcode, and you can launch the LessonOne
project on the selected device, including the iOS emulator, by clicking the
triangle button in the upper-left corner, as shown earlier in Figure 1-6.

Alternatively, you can use the +R Xcode keyboard shortcut key for the Run
action to launch the app. You should see your LessonOne app running on
the iPhone emulator, as shown in Figure 1-7.

Figure 1-7. LessonOne app in the emulator

Play with the app and then select other emulators from the device drop-
down selector (see the pointer in Figure 1-6). A mouse-click event on an
emulator is equivalent to a touch event, and three-finger movement on the
trackpad is equivalent to a touch-drag on a physical iOS screen. If you don’t
have a particular device yet, definitely play with the emulator to get familiar
with the emulated iOS devices.

Tip To change to landscape or portrait orientation, press +left arrow
or +right arrow to rotate the emulator.

The iOS emulators are robust and responsive, and they behave almost
exactly like real devices. For learning Swift programming for iOS, the
emulator actually is better. In this book, you are not required to run apps
on a physical iOS device; for that you would need to be a registered iOS
developer. You can save the $99 iOS developer membership fee until you
are ready to submit your first app to the App Store or for when your app
requires certain features not available in the emulator (for example, the
camera or certain sensors). For your convenience, I have provided how

CHAPTER 1: Setting Up the Development Environment10

to build and sign an app for on-device debugging in the appendix of this
book. For now, if your app is launched and running on an iOS emulator, your
mission is completed!

Summary
By installing Xcode 6, you immediately have a fully functional IDE ready to
create iOS apps without hassle. This chapter walked you through the basic
project creation tasks in Xcode 6, using an iOS project template to start
your first iOS project. This chapter also showed you how to build and run
your iOS app in iOS emulators. You haven’t written any code yet, but your
Xcode tool is working and verified. You will learn more and gain hands-
on programming experience from the guided exercises in the following
chapters.

11

Chapter 2
iOS Programming Basics

Creating mobile apps for both iOS and web deployment is fun and
rewarding. With Xcode in place, you are ready to write code, build, and run
iOS apps now. Objective-C had been the primary programming language for
iOS apps until Swift was officially announced at the 2014 Apple Worldwide
Developers Conference. If you’re just starting to learn iOS programming, you
should go with Swift because there is no reason to choose the old way and
miss the latest and greatest features. Your next steps should be learning the
fundamentals of the following:

The Swift programming language	

The anatomy of the iOS project and the Xcode 	
storyboard editor

The purpose of this chapter is to get you comfortable with reading the Swift
code in this book. To achieve this goal, you will be creating a HelloSwift
project while learning about Swift programming language highlights.

You will create another Xcode iOS project in the second part of the chapter.
All iOS apps have a user interface (UI). You normally start by creating the
UI using the most important Xcode tool, the storyboard editor, which draws
the UI widgets and components and connects them to your code. You also
will see the typical iOS project structures and components while creating
this iOS app. You may not need to understand everything about the iOS
framework in the beginning, but the first storyboard lesson should be “just
enough” for you to get a feel for the different programming paradigm. Later,
the materials in Chapters 3 and 4 continue with step-by-step instructions for
common programming tasks and framework topics. Follow these mapping
instructions, and the ideas will more easily stick with you as you get a
broader picture of the whole app.

CHAPTER 2: iOS Programming Basics12

The Swift Language in a Nutshell
Swift is the newest programming language for creating iOS apps. I am
confident that learning the Swift language won’t be the highest hurdle for
you; JavaScript and C# developers will pick up Swift code naturally because
they are syntactically similar and follow the conventions of typical object-
oriented (OO) programming languages. Just to give you a quick preview,
Table 2-1 briefly compares JavaScript to Swift.

Table 2-1. Java-to-Swift Language Syntax Comparison in a Nutshell

JavaScript Swift

<script type="text/javascript"
src="scripts/packagename/Xyz.js">
</script>

import framework

Xyz.prototype = new SomeClass(); class Xyz : SomeClass

var mProperty; var mProperty : Int

Xyz.prototype.constructor=Xyz
// constructor

init()

var obj = new Xyz(); var obj : Xyz = Xyz()

Xyz.prototype.doWork(arg) func doWork (arg: String) -> Void

obj.doWork(arg); obj.doWork(arg)

The Table 2-1 cross-reference refers to how native JavaScript prototype-
based inheritance might be used to implement classical inheritance used
by Swift, Java, and C#. For those familiar with Prototype and Sencha, the
extension libraries and methods for inheritance should make the transition
even more straightforward. If you come from a basic JQuery programming
background, the syntax of Swift will seem familiar, but the structure of your
code will move from a flat list of functions to encapsulated objects and
object instances with a hierarchal source structure. In this section, I will not
discuss the in-depth OO theory or techniques. However, I do want to point
out certain important ideas for pure-JavaScript developers.

HelloSwift with Xcode
Instead of my describing the uses and syntax rules in a formal way, you
are going to create a HelloSwift Xcode project and write the code listing
from Table 2-1 yourself. You will also perform the following common Xcode
programming tasks: creating a class, building and running a project, and
using the debugger.

CHAPTER 2: iOS Programming Basics

13

Creating a Swift Command-Line Project
Let’s create a command-line Swift program because it is really simple and you
can focus on the Swift language without being sidetracked by other questions.

Follow these instructions to proceed:

1. Launch Xcode 6 if it is not running. You should see
the Welcome to Xcode screen. Click “Create a new
Xcode project.” Alternatively, you can select File ➤
Project from the Xcode menu bar.

2. Choose OS X and then Application in the left column
and then select the Command Line Tool template
in the “Choose a template for your new project”
window (see Figure 2-1).

Figure 2-1. Choosing an Xcode template

3. To finish creating the new project with the template,
follow the same onscreen instructions that you used
to create the LessonOne project in Chapter 1:

a. Product Name: Enter HelloSwift.

b. Organization Name: You can use anything here,
such as PdaChoice.

c. Organization Identifier: You can use anything
here, such as com.liaollc.

d. Language: Select Swift.

CHAPTER 2: iOS Programming Basics14

4. Click the Next button when done.

5. Select a folder in which to save your HelloSwift
project.

6. The HelloSwift project appears in the Project
Navigator (see Figure 2-2).

Figure 2-2. Creating the HelloSwift project

The command-line template creates the main.swift file for you. This is the
entry point of the OS X command line tool program. You will be writing code
in main.swift to demonstrate common object-oriented code.

Figure 2-2 shows that the typical Xcode workspace contains three areas
from left to right and a top toolbar. Inside each area, there are subviews that
you may switch to using the selector bars.

The Project Navigator area is on the left. Similar to 	
many IDE, this is where you can see the whole project
structure and select the file you want to edit. There are
other views in this area; for example, you can enable
Search view by selecting the Search icon in the
selector bar.

The Editor area in the middle shows the selected file in its 	
editor, in which you can edit the file, write your code, or
modify project settings depending on the file selected. The
Console and Variable views are inside the Debug area.
Most likely you will want to show them during debugging
sessions. You can hide or show them by clicking the
toggle buttons on the top and bottom toolbars.

CHAPTER 2: iOS Programming Basics

15

The Utility area on the right contains several inspector views 	
that allow you to edit attributes of the whole file or the item
selected in the Editor area. Depending on the type of files
you select, different types of inspectors will be available
in the top selector bar. For example, you will have more
inspectors showing in the selector bar if you are editing a
screen or UI widgets. The bottom of the area is called the
Libraries area. Use the selector bar to select one of the
library views. You can drag and drop items from Libraries to
the appropriate editor to visually modify file content. You will
use the Object Library a lot to compose UIs visually.

Click any of the icons on the selector bars, or hover your mouse over
the pointer in Figure 2-2, to see the hover text tips in the workspace to
get yourself familiar with Xcode workspace. The subviews appear more
condensed than those in most of the IDE I ever experienced, but essentially
it is a tool for the same purpose: editing project files and compiling,
building, debugging, and running the executables. You will use it repeatedly
throughout the book.

Creating a Swift Class
A class is the fundamental building block of any classic OO programming
language. A class is a software template that defines what the objects know
(state) and how the objects behave (methods). JavaScript uses functions
and their prototypes to accomplish the same goal.

While JavaScript web applications often make use of objects by creating and
manipulating DOM elements, it is entirely possible to create a JavaScript web
application without creating a single new reusable object structure. Using
anonymous objects and scripts running in the global scope, referencing function
libraries like JQuery, is quite common. Swift, however, requires developers to
structure their code into named class types before the objects can be created.

To create a new Swift class, you can create it in the existing main.swift file,
or you can follow the Java convention to create it in its own file as shown in
the following steps:

1. Expand the newly created HelloSwift project, right-
click the HelloSwift folder to bring up the folder
context menu (see Figure 2-3), and select New File.

a. Select iOS and then Source from the left panel
and then select the Swift File template in the
“Choose a template for your new file” screen.

b. Save the file and name it MobileDeveloper.swift.
The file should appear in your project.

CHAPTER 2: iOS Programming Basics16

2. Enter the code in Listing 2-1 in the MobileDeveloper.
swift file to create the MobileDeveloper Swift class.

Figure 2-3. Create a Swift class from the folder context menu

Note Unlike Java, a Swift class doesn’t implicitly inherit from any class.
It can be the base class on its own.

Listing 2-1. Declare MobileDeveloper Class

class MobileDeveloper {

}

3. Create a property called name by declaring a variable
inside the class (see Listing 2-2). This is called a
stored property in Swift, where the variable type is
inferred by the assigned value (known as type
inference in Swift).

Listing 2-2. Stored Property in Swift

class MobileDeveloper {
 var name = "" // var type, String, is inferred by the value
}

CHAPTER 2: iOS Programming Basics

17

Note The semicolon (;) is optional for terminating a statement in the
same line.

Creating a Swift Protocol

WEB ANALOGY

Though JavaScript has no native comparable for a Swift protocol, web developers using C#
or PHP for their server-side code will find comparable examples in the use of interfaces.

In object-oriented programming (OOP), an interface or protocol is essentially
a predefined set of behaviors, methods, or properties. The protocol provides
no implementation of the methods themselves but rather defines the method
names, parameters, and return types. Consumers of the protocol can count
on objects they are consuming to properly implement the items defined in
the protocol. Protocols allow objects of different types and class inheritance
to provide a common, strongly typed interface, thus implementing the
concept of polymorphism, one of the fundamental concepts of OOP. You
may also provide multiple implementation classes for the same contract and
programmatically supply the appropriate instances in the runtime.

In simpler terms, this is a great way to explicitly break dependencies
between callers and callees because callers and callees can be
implemented independently with clearly defined programming contracts,
called protocols in Swift.

Create a Swift protocol called Programmer by doing the following:

1. Right-click the HelloSwift folder to create the
Programmer.swift file.

2. In the Editor area, create the Programmer protocol
with the method writeCode(...), as shown in
Listing 2-3.

Listing 2-3. Declare the Programmer Protocol

protocol Programmer {
 func writeCode(arg: String) -> Void
}

CHAPTER 2: iOS Programming Basics18

Implementing the Protocol
To conform to the expected behavior defined in a Swift protocol, the tagged
class must implement the methods defined in the protocol. To make the
MobileDeveloper class implement the Programmer protocol, do the following:

1. Modify MobileDeveloper.swift and declare the
MobileDeveloper class to implement the Programmer
protocol, as shown in Listing 2-4.

Listing 2-4. Conform to MobileDeveloper Protocol

class MobileDeveloper : Programmer {
 ...
}

Note If the Swift class already has a superclass, list the superclass
name before any protocols it adopts, followed by a comma (,)—for
example:

class MobileDeveloper : Person, Programmer

2. Provide the writeCode(...) method implementation
body, as shown in Listing 2-5.

Listing 2-5. Method Body

class MobileDeveloper: Programmer {
 ...
 func writeCode(arg: String) -> Void {
 println("\(self.name) wrote: Hello, \(arg)")
 }
}

Note \(self.name) is evaluated first inside the quoted String literal.

CHAPTER 2: iOS Programming Basics

19

Using the Swift Instance

WEB ANALOGY

var you = new MobileDeveloper();

you.setName("You");

you.writeCode("Javascript");

You have created a Swift MobileDeveloper class and implemented the
Programmer obligations in pretty much the same way you would in Java with
some minor syntax differences. To use the class, it is the same as Java in
principle, calling a method defined in the receiver from the sender. Modify
HelloSwift/main.swift as shown in Listing 2-6.

Listing 2-6. Swift Entry main.swift

var you = MobileDeveloper()
you.name = "You"
you.writeCode("Java")

Implementing Access Control

WEB ANALOGY

While JavaScript doesn’t have access control keywords, many JavaScript developers use
closures and constructor variables to create methods and variables with private access from
the object.

Here’s an example:

function MyObject() {

 var private;

 this.getPrivate = function (arg) {

 return private;

 }

CHAPTER 2: iOS Programming Basics20

 this.setPrivate = function (val) {

 private=val;

 }

}

var test =new MyObject();

test.setVal("My private value");

console.log("Private value is "+test.getVal());

Encapsulation is one of the fundamental principles of OOP; in a
nutshell, certain internal states or methods are meant only for internal
implementations but not to be used directly by the callers. Swift provides
access controllers to prevent access to the members or methods that
developers decide to hide. This is achieved with access modifiers for files
and with module access controls using the following keywords as the access
modifiers: private, public, and internal. The internal access modifier is
the default access control that is public to the whole module but not visible
when the modules are imported. If you are building a reusable module
that can be imported by other program, use the public access modifier to
expose the API to another module. The private access modifier makes your
custom classes or type or members visible only within the file scope.

To demonstrate the private access control, modify MobileDeveloper.swift
as shown in Listing 2-7.

Listing 2-7. The private Access Modifier in MobileDeveloper

private class MobileDeveloper {
 var name = "" // var type is infered by the value

 func writeCode(arg: String) -> Void {
 // some dummy implementation
 println("\(self.name) wrote: Hello, \(arg)")
 }

 private func doPrivateWork() {
 println(">> doPrivateWork")
 }
}

// another class in the same source file
class TestDriver {
 func testDoPrivateWork() -> Void {
 var developer = MobileDeveloper()
 developer.doPrivateWork()
 }
}

CHAPTER 2: iOS Programming Basics

21

Since TestDriver is implemented in the same source file, the code in
TestDriver still can access the private class and its private method.
However, the MobileDeveloper class in Listing 2-6 becomes not visible
anymore from the main.swift file.

Using the Xcode Debugger
Knowing how to use the debugger when creating software can make a
big difference in your productivity. Do the following to see the common
debugging tasks in the Xcode debugger:

1. To set a breakpoint, click the line number in the
Xcode code editor. Figure 2-4 depicts a breakpoint
that was set in the main.swift file.

Figure 2-4. Breakpoint

Note To turn on line numbers in Xcode editors, go to the Xcode top
menu bar and select Xcode ➤ Preferences ➤ Text Editing ➤ Show Line
Numbers. There are other handy settings there that you may want to look
at (for example, shortcut keys are defined under Key Binding).

 2. To run the HelloSwift project, click the triangle-
shaped Run button in the upper-left corner or press
+R (see Figure 2-5).

