Beginning

A comprehensive beginner to expert
guide for learning WS02 ESB 5.0

First Edition

Kasun Indrasiri

ApreSS®

Beginning WS02
ESB

Kasun Indrasiri

Apress®

Beginning WSO2 ESB

Kasun Indrasiri
San Jose, California, USA

ISBN-13 (pbk): 978-1-4842-2342-0 ISBN-13 (electronic): 978-1-4842-2343-7
DOI10.1007/978-1-4842-2343-7

Library of Congress Control Number: 2016961319
Copyright © 2016 by Kasun Indrasiri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Pramila Balan

Technical Reviewer: Isuru Udana

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,
Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents at a Glance

About the Authorcccsvsmmismmm s ————— xi
About the Technical ReVIEWErcccssssesmssssmssssssmsmsssmsasssssnsassnsass Xiii
Acknowledgments.........cccunussssmsnnnnmmmmmssssssssssssnnnessssssssssssnnnnsnsssssnns XV
Chapter 1: Introduction to WS02 ESB...........osssmmmmmmmmmnsssssssssssssnnnnnas 1
Chapter 2: Getting Started with WS02 ESBc.ccccenrisssnnnnnnssnnns 17
Chapter 3: Fundamentals of WS02 ESB..........cccccmmmmnnnssssssssnnnnnnnns 29
Chapter 4: Processing Messages with WS02 ESB...........cosemennnnne 59
Chapter 5: Integrating SOAP and RESTful Web Servicesu... 105
Chapter 6: Enterprise Messaging with JMS, AMQP,
MQTT, and Kafkaoooeeermmmmmmmmsnnnmmsssnmmmmmmmssssssssssssssssssssssssssnnnns 133
Chapter 7: File-Based Integration..........cccusemmsssenmsssesmsssasssssansnsns 161
Chapter 8: Integrating Applications, Cloud Services,
and Datacccvvemmmmmmnsemsnnnsses s ————————— 179
Chapter 9: Security in WS02 ESBccoscccnmmmmsseanmmsssssasnmsssssssnnss 221
Chapter 10: Development and Deployment Methodology........... 239
Chapter 11: Administrating and Extending WS02 ESB............... 267
L1 - 281

iii

Contents

Abhout the AULROFccoveeeiiirremrirrees s nm e rnmmnanans xi
Ahout the Technical ReVIEWETccueeeerrrrmsmsssssssssssmmsssssssssnnssssnsnnnnns Xiii

Acknowledgments..........cccunnmssnmmmnmmmmmssssssssssssnnnnssssssssssssssssssnsssssssss XV

Chapter 1: Introduction to WS02 ESB...........osssmmmmmmmmmnsssssssssssssnnnnnas 1
What is @an ESB? ... 1
Core Functionalities of an ESB ... 4
WhY WS02 ESBY.......coueereeerererinc e se s sss s s sss e sse s snssnnens 4
Interoperability and EIP Support: Connecting Anything to Anything............cccccccueueee. 5
Performance and Stability: The Fastest Open Source ESB.........ccccoovvvevrnnccccrnnnns 5
The Platform Advantage: Part of the WS02 Middleware Platform............ccccceurnnee. 6
How does WS02 ESB WOrK?.........cccoverennimnnnsnesesessss s ssssesnas 7
Functional COMPONENTS........ccoicceericcrirr e 8
11T 11] 11PN 15
Chapter 2: Getting Started with WS02 ESBccvvnsnnneenennnnnas 17
Designing a Simple Integration Scenario with WS02 ESB..................... 17
Building the Integration Scenario...........cccevvereeriernsniesnscse e 18
Creating a HTTP Service/APl in WSO2 ESB..........cccvrmnncrnnniencrnese e sesessnns 19
Creating the Request Sent to the Backend Service...........cocuvererrenssescrennnseserennnns 20
Sending the Request to the Backend Servicecovvvnniernnnnesescrenssesesennnns 22
Transforming and Sending the Response Back to the Client...........cccecceeivieecnns 23
TEY I QUL . e e e e p s e e 26
1111] 11PN 27

vi

CONTENTS

Chapter 3: Fundamentals of WS02 ESB........c..ccousemmmssnnnssssnsssssanas 29
Message Entry Points........cccooeeececece e 30
USING PrOXY SEIVICEScoviuecerereeeiresis e ese s se s enns 31
USiNG APIS/HTTP SEIVICES......ccouieeirerreerisese e s 35
Using Inbound ENdpoints ...t 38
Message Processing Unit: Sequence and Mediators..........ccccevvennirnnnnnncnenenns 43
Message Exit Points: Outbound Endpoints........cccccevvvrvrvrcrcenrensenenne, 47
ENAPOINE TYPES...cv et rtre et rae s e s e s sae e sae e e e e e s e sae e sae e sae e saenes 48
Understanding Endpoint States and Endpoint Attributes........ccccccovvrrrreesrcererene, 51
SCheduled TaSKS.........ccorerererereerereese e sas e sennes 55
1111] 112 SRS 57
Chapter 4: Processing Messages with WS02 ESB............cccurnisnnns 59
Pass-Through MesSagingcceevverierreriensnssessssses e ssesssessessaessessaees 61
Message Filtering and SWitchingcccocvvvrvrrrvrcrrr e 64
MESSAQE FIltEriNGcceeeerererererererreree st re st re s res e ras e rae e e e s e e s e sas e sas e saeenaenes 67
MeSSage SWItCHINGcoeeereeeerererrerer vt re s s ra s e sa e e sae e sae e s s 67
Message Transformationscccceeveernsesssssssssses s 70
Using PayloadFactory Mediatorc.ccccuvecnrennscnnsenssnsess s ssesessenns 72
Using PayloadFactory and For-Each Mediatorcccccoeeenvernscnnsenssesssenesenenns 74
Data Mapper Mediator...........cccceeeeercrcessr s 78
USING XSLT MeIATON ..ot 78
Using the Header Mediatorccoveeeneneneicsenenr e 81
Message ENriChing.......cccvvrvrnrnnnessesses s 82
Message Validationccccceeereeennsesse s 84
Service Orchestration.........c.cccccvecrennicnnnsn s 87
Service CRAINING........o vt 87
Split and Aggregate Pattern.............occccoerrccnnnnsescsese e 91
Clone and Aggregate Pattern............cccovvvninnsncsnic s sesnens 9

CONTENTS

Changing the Message Protocol and Formatccceevvvervrrencernnne, 96
Protocol CONVEISIONScccuiuieniisssrisissssss s sssssses 96
Message Format CONVEISIONScovererererrereesereesersesersersssessesessssessssessessssessenens 98

Using Properties in the Message FIow..........cccoeeeeeeeeeeseesessessensennnns 100
Set/Retrieve Variables in the Message FIOWccoevvnncncnnnnsesenssssesesennnns 100
Use Predefined Properties to Control Message FIOW...........cccocvveverrnesencnnnnnnnnes 102

SUMMANY ... sn s s n s sn e n e n e n e n e n s 102

Chapter 5: Integrating SOAP and RESTful Web Servicesc.... 105

Understanding SOAP and RESTful Web Servicesccceevverrerienrannns 105

Integrating SOAP WED SEIVICES.......ccevrerrererrrrreereereereesesssssessassessessensens 109
Exposing a SOAP Web Service Interface from WSO2 ESB...........ccccocevvvereerereenennes 109

Integrating RESTful Web ServiCes.........covmvrnnriennscsesenesensessesenaens 118
Exposing RESTful Services/APls with WS02 ESB...........ccccevvrnnvcrrnnnsesenensnnns 118
Invoking RESTful Services from WS02 ESB.........cccecevrrnrnnnnnneneresee s 126

1T 131

Chapter 6: Enterprise Messaging with JMS, AMQP,

MQTT, and Kafkaocccemmmmmmmmssssssnsssnnnmmmmmsssssssssssssnssssssssssnsssnssnnss 133

Integration with JMS-Based MOM...........ccccocvrererernressesneeses s seesenens 135
ESB @S @ JMS CONSUMETcccviirrriiniissssnsissees 135
ESB @S @ JMS ProtUCENccouurimrmnininsnisissssssissens 140
TWO-WAY JMS ...ttt v s e e e s e e s e e sae e sae e saesae e saesesaenesaenanaens 142
USiNg JMS TranSactions.........cccceuerereerereereruerersererersssessesessesessesessesessessesessssesasenaes 145
Store and Forward with Message Stores and Message Processorscoe..... 147

Integrating with AMQP, MQTT and Kafka..........ccocvrrierrnicrernsenennnienens 151
Using AMQP with RabbitMAQ.........ccooenm s 151
Integrating with MQTT ..o s 155
Integrating with Kafka.........cccoccerinicreccecresnc e 157

111 1] 1P SRS 159

vii

CONTENTS

Chapter 7: File-Based Integration...........ccccrnssemmmsssnsmsssnsssssnssssnns 161
Reading Files........cccoeeieeeereccsie s 161
Reading a File from the Local File System ... 161
Reading Files from an FTP 0r FTP/S ..o 163
Reading Files from @n SFTP...........cccouiiinrrecerersee e 165
FTP or SFTP Through @ Proxy SErVerccceernnencnenensneesesesesese s sesesesnenas 165
WHEING FIlES ..ot 165
Writing Files with VFS Transport ..o vee e sesessevessesassenaens 166
Transferring FileSccccvvrcrcrrrr e 168
Message Transformation with File Integrationccccoevvrcerenncnen. 170
(] (3 0] g T (0] 172
Protocol Transformation from File t0 JMS ... 175
SUMMANY ...t 177
Chapter 8: Integrating Applications, Cloud Services,
and Dataccccmnemmmmnmnnnnannsa s —————— 179
Integrating Proprietary Systemscccocvvvvrvrrrrrsnsnsn e 179
SAP INEQIationcccceeerereriererrerr s v s e e s re s rae e rae e sae e s e e s sas e sae e sae e s e s 180
o I 1 (=T L0 189
WEDSOCKELS SUPPOITeoeeereeereerererer s s rae e sae e s e res e sas e sae e saesessessssesasnenanns 198
In-JVM Calls with Local TranSPOILcceeeerererererserenreressersssersesessesessesessessssenes 209
Integrating Cloud SErviCesc.ccvmmrrerniesnsesessess s sssesnens 210
What is @an ESB CONNECIOr?cccoceererereeresereeseseseseeeeseseseseseseseeeseneessnssesenes 210
Structure of an ESB CONNECIONcoveveverrrrsreseresesesesesese e sesesesesesesesssesenens 211
Using an ESB CONNECTON........cccouveverierererenerseserseseseressesessessssessssesssssssessssesssnenaes 211
Integrating Salesforce and SAPcccccvvvrrrrerrrerrrere s enees 216
Data INtegration ... ——————— 218
SUMMANY ... 220

viii

CONTENTS

Chapter 9: Security in WS02 ESBccciunnssmmmnnmssssnnsssssssssnnnns 221
Transport Level SECUNLYccovciernircrre e 221
One-Way SSL (Server Authentication)ccccevnnievrnnnencnnnesesess s 222
Two-Way SSL (Mutual/Client Authentication)cceecvvevrverrrernreresereserenenens 222
Using TLS/SSL with WS02 ESB..........cccorererererereeeneeseneseseseseseseseseseseesesesesesesenens 223
Application Level SECUNLYccvvererererrreeresres s sesssssssssssessessesenns 230
SECUNNG REST APIS ...ttt rae e s e saesasaesas e ae e sae e sae e saesassenassenes 230
SECUING ProXy SEIVICES.......ccciuiuieirirrrirsresisisssi s snsnsssnsnns 231
INVOKING SECUIEU SEIVICE.......covieeeererreeerirese e 233
SUMMAIY ...t se s sns s 237
Chapter 10: Development and Deployment Methodology........... 239
Development Methodologycccecveercerrercercncr e 239
Using the WS02 ESB Development TOOIccccoccvrveennenenenesenesensessssessssessesennes 239
DL ez T o] o] OSSR 249
Mediation DEDUGUENcoceeererereeereeese e 253
Deploying Artifacts Across Multiple Environments.........ccccocvevvveververesrcreesereenenees 259
Deployment Methodology ... 261
1141 1P 7 266
Chapter 11: Administrating and Extending WS02 ESB................ 267
WS02 ESB ANAIYEICScocevererirersersersesses s ses e e ssssessas s s sssssssasnnns 267
MONITOKING ...coceireecir e ne s 274
Extending WSO2 ESB ... ses e sseesnens 276
LT LT T (0] 276

ST 101 1[0 T (0 277
CUSTOM CONNECTLONovrccrrriisssr s 277
Other EXIENSIONScccevreiecrerireescris e s 278
Error Handlingcoccvvevvrvnirsrrerserer st ses e e 278
1111 1P 279
INA@X.uueeiissannssssnnssssnnssssnnssssnnssssnnssssanssssnnssssannsssannsssannssssnnssssnnnsssnnss 281

About the Author

Kasun Indrasiri is the Director of Integration
Technologies at WSO2, a company that produces open
source middleware solutions in enterprise integration,
API management, security, and IoT domains. He
currently provides the Architectural Leadership for the
WSO02 integration platform.

Kasun has worked as a Software Architect and a
Product Lead of WSO2 ESB with over seven years of
experience with WSO2 ESB. He is an elected member
of the Apache Software Foundation and a Project
Management Committee member and a committer for
the Apache Synapse open source ESB project. Kasun
has provided Architectural and Technology Consulting
for numerous customers in the United States, Europe, and Australia.

He researched high-performance message processing systems and contributed
to an ACM publication called “Improved Server Architecture for Highly Efficient
Message Mediation.” Kasun holds an M.Sc. degree in Software Architecture and a
B.Sc. Engineering degree in Computer Science and Engineering from the University of
Moratuwa, Sri Lanka.

xi

About the Technical

Reviewer

Isuru Udana is a Technical Lead at WSO2 who mainly
focuses on enterprise integration. He has more than

five years of experience with the WSO2 enterprise
service bus product as a Core Developer. Isuru is one of
the Product Leads of the WSO2 ESB, and he provides
Technical Leadership to the project. He is a committer
and a PMC member for the Apache Synapse open source
ESB project. Isuru graduated from the Department

of Computer Science and Engineering, University of
Moratuwa, Sri Lanka. As his final year project, he worked
on Siddhi, a high performance complex event processing
engine, which now ships with WSO2 CEP server. Isuru is
an open source enthusiastic who has participated in the
“Google Summer of Code” program as a student as well
as a mentor in the last five years.

xiii

Acknowledgments

I'would like to thank Apress for giving me the opportunity to write this book and,
in particular, I must thank Pramila Balan, Acquisitions Editor and Prachi Mehta,
Coordinating Editor, who have been constantly guiding and helping me from the very
beginning of the writing process. Also I would like to thank Isuru Udana, the Technical
Reviewer of this book. His expertise, knowledge, and feedback were quite useful to
improve the technical content of this book.

I'must thank Dr. Sanjiva Weerawarana who is the Founder, CEO, and Chief Architect
of WSO2, for all the guidance he provided throughout all these years at WSO2. Also, I'm
grateful to Prabath Siriwardana, who gave me the initial idea for writing a book, and for
encouraging me with all his experiences on writing a book.

I'm grateful to my beloved wife Imesha, my parents, and my sister, who are the main
driving forces behind all my success.

Last but not least, thank you to everyone who supported me in many different ways.

XV

CHAPTER 1

Introduction to WS0O2 ESB /

Nowadays successful enterprises rely heavily on the underlying software applications
they use. To fulfill diverse business needs, the enterprises have to pick and choose
different software application and services, which are built with disparate technologies,
use varying standards, and are built by different vendors. When building IT solutions for
business scenarios, the enterprises have to make these disparate software applications
and services work together to produce unified business functionality.

The task of plumbing different software applications, services, and systems, and
forming new software solutions out of that is known as enterprise integration. The
software application that is designed to enable that task is known as the Enterprise
Service Bus (ESB). An ESB enables diverse applications, services, and systems to talk
to each other, interact, and transact. It acts as the main messaging backbone in any
Service Oriented Architecture (SOA); it’s lightweight, built on top of open standards
such as web services standards, and supports commonly used patterns in enterprise
integration known as Enterprise Integration Patterns (EIP—for more information, see
www.eaipatterns.com).

What is an ESB?

Let’s suppose an organization is running a financial business and has web services, which
expose underlying business functionalities such as providing to its customers information
on stock quotes (the price of a stock as quoted on a stock exchange) for a given company.
They want to expand the business by enabling mobile users to use the online store by
making these business functions accessible on mobile devices.

But the mobile devices are inherently based on message formats such as JSON
while the backend web service only supports the SOAP message format. The financial
organization has to integrate these two systems, which are using disparate message
formats, to work together to achieve its business objectives.

To solve this enterprise integration problem, someone could possibly modify either
the mobile device application or the backend service to convert one message format to
the message format that’s understood by the other party. But this approach has several
drawbacks. By modifying either the backend web service or the mobile application per
the requirements of the other party, the two systems are tightly coupled to the same
message format. If the backend service or the mobile application changes its message
format, the company is forced to change the code of the other system. Also, if we have to

© Kasun Indrasiri 2016 1
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_1

http://www.eaipatterns.com/

CHAPTER 1 " INTRODUCTION TO WS02 ESB

further extend the business use case to include another backend service, then we need to
wire all three systems with point-to-point links so that each system is connected to every
other system. A change in one of these systems could break the entire business use case.

Therefore, you need a better way to integrate these systems with no modifications
at the backend or the client, as well as use a configuration-based approach to integrate
these systems without writing any code.

The ESB can be used as the intermediary integration layer between two or more
disparate systems and services. Therefore, as illustrated in Figure 1-1, the ESB can
be placed between the JSON-based mobile application and the SOAP-based web
service. Without writing any code, you can configure the ESB to do the message format
conversion. If the business use case needs to be extended further to include another
service, you can integrate that service to the ESB, and rather than having point-to-point
links, all three systems can be connected through the unified ESB integration layer.

|2 ¢
JSON _ , SOAP ke
« Enterprise Service Bus [% i :
Mobile App SON € SOAF Web Service

Figure 1-1. An ESB can be configured to convert messages between the formats recognized
by the mobile app (JSON) and the web service (SOAP) it wants to talk to. This is a simple
example of enterprise integration.

Now you have a clear understanding of a concrete enterprise integration use case.
Let’s explore the enterprise integration space further and see how the ESB is used as the
integration backbone.

Modern enterprises need to integrate all the heterogeneous systems (systems using
disparate protocols, message formats, and so on) to form various business solutions.
The integration between on-premise systems such as web services, file repositories
(FTP), proprietary systems such as Enterprise Resource Planning systems (for example,
SAP), legacy systems, and data residing in databases and cloud-based solutions such as
Software as a Service (SaaS), is the key responsibility of an ESB.

The absence of an integration platform leads the enterprise to require links from a
given system to all other systems in the enterprise IT solution. This is known as
point-to-point integration or spaghetti integration.

As depicted in Figure 1-2, the point-to-point integration approach has inherent
complexity because the number of systems that participate in the integration scenario
increases. If you have to modify or remove one of the systems then that affects the
interaction between most of the other systems in your enterprise integration scenario.
Therefore, the point-to-point integration approach is extremely difficult to maintain,
troubleshoot, and scale.

CHAPTER 1 © INTRODUCTION TO WS02 ESB

Web -
Mobile Apps Services REST Data @t\mllo m
N slesfnce

Google pocs

KJIRA

System Broker

Figure 1-2. When an enterprise does not use ESB, each system must know how to talk
directly to every other system it needs to interact with. This is known as point-to-point
integration.

As depicted in Figure 1-3, ESB can be used as the bus that all the other systems
can connect to. An ESB-based approach connects disparate systems using the ESB
messaging backbone, and it connects on-premise as well as cloud services. As illustrated
in Figure 1-3, ESB eliminates point-to-point integration and integrates all the disparate
systems using the bus architecture.

Web -p=
iiobile Apps Services REST Data @twlllo = .

Google bocs

[5§
Legacy Message
System Broker

Figure 1-3. When an enterprise uses ESB, only the ESB needs to know how to talk to each
application. The applications themselves do not need to be modified. This is far more
efficient than point-to-point integration.

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Based on the previously described integration use case, you can come up with a
generic description for ESB. ESB is an architecture pattern that enables the disparate
systems and services to interact through a common communication bus, using lightweight
and standard messaging protocols.

In the next section, you'll discover the core functionalities that are common to any ESB.

Core Functionalities of an ESB

In general, ESB has to offer a wide range of integration capabilities from simple message
routing to integrated proprietary systems using complicated integration adaptors. These
are the generic functionalities that are common to most ESB products:

e Message mediation: Manipulate the message content, direction,
destination, and protocols with message flow configurations.

e Service virtualization: Wrap existing systems or services with new
service interfaces.

e Protocol conversion: Bridge different protocols. For example, J]MS
to HTTP.

e Support for Enterprise Integration Patterns (EIP): EIP is the
de facto standard for Enterprise Integration (http://www.
eaipatterns.com/).

e Quality of service: Apply security, throttling, and caching.

e Connecting to legacy and proprietary systems: Business adapters,
including SAP, FIX, and HL7.

e Connectors to cloud services and APIs: Salesforce, Twitter, PayPal,
and many more.

e Configuration driven: Most functionalities are driven by
configuration but not code.

e Extensibility: There are extension points that can be used to
integrate with any custom protocol or proprietary system.

For the most part in the ESB architecture, the ESB is considered a lightweight, stateless
integration bus. The architecture itself is mostly based on SOA, but that doesn’t mean that
you can’t integrate non-SOA systems, such as proprietary systems, by using ESB.

The ESB landscape is vast, where there are numerous ESB solutions ranging from
open source to proprietary integration solutions. In the following section, you’ll discover
the key differentiators of WSO2 ESB.

Why WS02 ESB?

In the ESB vendor space, most of the vendors have rebranded the monolithic and
heavyweight enterprise integration solutions as an ESB. But WSO2 ESB is designed and
developed from the ground up as the highest performance, lowest footprint, and most
interoperable integration middleware. While WSO2 ESB has to improve its graphical

4

http://www.eaipatterns.com/
http://www.eaipatterns.com/

CHAPTER 1 © INTRODUCTION TO WS02 ESB

tooling support for designing message flows and graphical data mapping, it offers a broad
range of integration capabilities and high-performance message routing support by using
an enhanced and optimized message mediation engine, which was inspired by Apache
Synapse. In this section, you'll discover key differentiators between WSO2 ESB and other
ESB vendors.

Interoperability and EIP Support: Connecting Anything
to Anything

WSO2 ESB offers a broad range of integration capabilities from simple message routing to
smooth integration of complex proprietary systems. The de facto enterprise integration
standards for Enterprise Integration Patterns (EIP) are fully supported in WSO2 ESB.

It not only comes with 100% coverage of EIPs, but also with use cases and samples for
implementing each and every EIP.

While supporting all the key ESB integration features discussed in the last section,
WSO2 ESB offers various integration adapters to proprietary and legacy systems such as
SAP. Also, it empowers the on-premise and cloud-based integration scenarios (hybrid
integration) with numerous connectors that allow you to smoothly integrate to popular
cloud services such as Salesforce, PayPal, and Twitter (see the Connector Store at
https://store.wso2.com/store/).

WSO2 ESB offers all these integration capabilities that you can use by configuring
the ESB without a single line of code, and in case of any custom requirement, such as
supporting proprietary message formats, you can use the numerous extension points to
plug in your custom code.

Performance and Stability: The Fastest Open Source ESB

The performance and latency of any ESB solution is a vital factor when it comes to
handling large volumes of messages. Based on the regular performance comparisons
done by WSO2 on the message routing performance of popular open source ESBs, WSO2
outperforms all the ESB vendors. (The latest ESB performance comparison is available at
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/

The ESB performance comparison given in Figure 1-4 is based on the most recent
performance test comparison against WSO2 ESB and other popular ESB vendors. For
almost all the integration scenarios, WSO2 ESB outperforms all other ESB competitors.

https://store.wso2.com/store/
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Performance Comparison - Open Source ESBs

DireatP ey CEASOAPH st Prany RELTPravy
RSy CUAT rangp s s ey SecurPimy

Integration Scenaria

Figure 1-4. ESB performances comparison between open source ESB vendors for
commonly used message routing scenarios

Stability is also another aspect that goes hand-in-hand with performance.
Thousands of production deployments of WSO2 ESB show its stability and its maturity
as an ESB solution. eBay uses WSO2 ESB for handling more than several billions of
transactions per day in its live traffic (an eBay case study is available at http://wso2.
com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-
billion-transactions-per-day/).

The Platform Advantage: Part of the WSO2 Middleware
Platform

WSO2 ESB is part of the comprehensive WSO2 middleware platform. When you're
building real-world enterprise integration solutions, you require the integration
capabilities offered by WSO2 ESB, as well as other middleware capabilities such as API
management, identity management, data services, analytics, complex even processing,
and so on, which are beyond the scope of an ESB. Few ESB vendors who aren’t based on
a platform concept have tried to have all these features in a monolithic ESB product, but
have failed because such solutions cannot address the modern enterprise IT requirements.
A'WSO2 middleware platform is built from the ground up with the holistic vision of
facilitating all enterprise middleware requirements. The high-level objective of a WSO2
middleware platform is to enable a connected business.

e Allthe WSO2 products are built from the ground up and on top of
a common foundation: WSO2 Carbon, a modular, reconfigurable,
elastic, OSGi-based architecture, whereas most of the other
middleware platforms are primarily built with acquisitions of
heterogeneous middleware solutions.

e Lean and optimized for maximum performance: Every product in the
WSO2 platform is lightweight and designed for achieving the highest
performance. For instance, WSO2 ESB is the fastest open source ESB.

http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/
http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/
http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/

CHAPTER 1 © INTRODUCTION TO WS02 ESB

e Largest middleware platform built on a single code base: All the
WSO2 products share the same code base built around a single
kernel—WSO2 Carbon. Unlike middleware platforms built with
the combination of heterogeneous middleware solutions, WSO2
offers frictionless cross-product integration.

e 100% free and open source under Apache License 2.0 with
comprehensive commercial support: WSO2 has no notion
of commercial versus community editions. What you freely
download from the http://wso2.comweb site is the same version
used for all the production deployments. The same architects
and developers who contributed to the WSO2 platform drive the
commercial support for the WSO2 products.

e Cloud native: Every WSO2 product inherently supports on-
premise, cloud, or hybrid deployments.

At this point you've learned about the key differentiators of WSO2 ESB. In the next
section, you'll learn the fundamental concept that’s required to start integrating with
WSO2 ESB.

How does WS02 ESB Work?

In this section, you'll learn about the core functional components of WSO2 ESB and
the complete end-to-end message flow. Let's design the same financial organization’s
integration scenario with WSO2 ESB and use that to understand the message flow of
WSO2 ESB.

As illustrated in Figure 1-5, the main integration challenges that you have here are to
integrate a backend service, which is a SOAP-based web service, with a mobile application
that uses JSON. Therefore, the ESB primarily takes care of message format conversion
(Message Translator EIP) and exposes a new JSON interface on behalf of the backend web
service. The JSON request from the mobile app to the ESB is shown in Listing 1-1.

Message translation

JSON-> SOAP
JSON — . . . SOAP S
E .‘:)D Enterprise Servce Bus Sl a—_ g _
Mobile App ISON €SOAP Web Service

Message translation

Send the converted
SOAP message to
web service

Accepts JSON request through a
HTTP interface

Figure 1-5. Using WSO2 ESB to integrate a SOAP-based web service and a JSON-based
mobile client

http://wso2.com/

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Listing 1-1. JSON Request from Mobile App to ESB

{
"getFinancialQuote": { "company": "WS02" }

}

The backend web service accepts a SOAP message that’s shown in Listing 1-2.
Therefore, the message processing logic of the ESB needs to convert the request to the
SOAP format and convert the SOAP response to back to JSON.

Listing 1-2. Request that Needs to be Sent to the Backend Web Service

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://services.samples">
<soapenv:Header/>
<soapenv:Body>
<ser:getSimpleQuote>
<ser:symbol>WS02</ser:symbol>
</ser:getSimpleQuote>
</soapenv:Body>
</soapenv:Envelope>

The key steps related to the implementation of this integration scenario can be listed
as follows:

e Build a virtual HTTP interface/service that can accept the JSON
request from the mobile client and respond with the JSON response.

e Intherequest-handling path of the virtual HTTP interface/service,
it should convert the incoming JSON message to a SOAP message
and then send it to the SOAP-based web service backend.

e Inthe response path, the virtual HTTP interface/service needs
to convert the incoming SOAP response to a JSON message and
send it back to the client.

Now you'll discover how these steps can be implemented with WSO2 ESB by using
its core functional components.

Functional Components
The high-level message flow of WSO2 ESB comprises three main logical components:
e Message entry points: Receive client requests.

e Message processing units: Contain the mediation logics to process
client requests, request that ESB sends to the server, the server
response processing logic, and the response that ESB sends back
to the client.

e Message exit points: Integration points to backend services.

CHAPTER 1 © INTRODUCTION TO WS02 ESB

As depicted in Figure 1-6, the mobile clients send a request to the WSO2 ESB via
one of its message entry points, then the ESB processes the request messages in the
request message processing units, and the message is sent to the backend web service
via message exit points. Once the response is received from the backend service, the
message goes again through the response message processing units and finally sends the
processed response to the client.

Mobile App

WSO2 ESB
JSON JSON

Message
Processing Unit

B — SOAP Message exit
e Reguest () point] ‘\;-

| o

! — < SOAP N G

i Response .

‘ Web Service

Figure 1-6. High-level message flow of the integration between mobile app and backend
web service

The task of processing requests or responses in an ESB is known as message
mediation. As shown in Figure 1-6, the message processing units are doing the required
request and response message mediation work.

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Message Entry Points: Proxy Service, APIs, and Inbound
Endpoints

WSO2 ESB has three main message entry points:

e Proxy service: This is a web service interface exposed from the
ESB.

e REST APIs/HTTP: An HTTP interface anchored at a specific URL
context.

e Inbound endpoints: A message source with listening or polling
capability.

The message entry points are the main components responsible for handling the
message transferring from external systems to the ESB. The messages that come through
any of these entry points are routed to the message-processing unit, which is responsible
for the processing of the message context and message attributes. In the previous
example, the messages sent from the mobile app via the HTTP protocol hit the message
entry point API and route the message to the respective processing unit (sequence).

Message Processing Unit: Sequences and Mediators

The processing of the message takes place in components known as sequences. A given
sequence can contain a sequence of components that can process a given message. These
components are known as mediators. In our example, the logic to translate the message
from JSON to SOAP and send out the message takes place in the message-processing unit.

Message Exit Points: Outbound Endpoints

The outbound endpoint (or endpoint) is the message exit point in the WSO2 ESB, which
logically represents an external backend service endpoint. In our example, the service
address of the backend web service is configured as an outbound endpoint and the
message is routed to the outbound endpoint via a call or send mediator.

Figure 1-7 shows how the message flow is configured to implement the financial
organization’s integration scenario. The key points related to understanding the message
flow in Figure 1-7 are as follows:

e Expose an HTTP interface to the mobile client: You should
implement an HTTP interface that has to be exposed to the
mobile client. That’s where we need to configure the message
entry points in the WSO2 ESB. Because we have to integrate a
mobile client, we can go for the API/HTTP Service message entry
point and configure that in the ESB.

e Anchor an API/HTTP service: An API/HTTP service is anchored
at a URL context, which is designed by the ESB developer and is
capable of receiving any request coming on HTTP protocol for
that particular context.

10

CHAPTER 1 © INTRODUCTION TO WS02 ESB

Configure a mediation sequence: When you create the API, you
need to configure the sequence that will be used to process the
request. The sequence contains a set of mediators to process the
request.

The first mediator is a payload factory mediator, which is used to
convert the incoming JSON message format to the arbitrary SOAP
message format and extract whatever values are needed from the
original JSON request.

You need to set a SOAP action as a header prior to sending the
message out from the ESB, because it’s required to send an action
along with a SOAP 1.1 message. Therefore, a header mediator is
used to set the SOAP action.

Then you need a “call” mediator that can send the message out
from the ESB.

Configure an outbound endpoint: When you send out the
message, you can configure the destination address of the
message or the URL of the backend service using endpoint or
outbound endpoint. In addition to specifying the address, you can
add various conversion formats when configuring an endpoint,
such as SOAP 1.1 and POX (Plain Old XML). Since you want to
convert the message to SOAP format, you can use soapl1 as the
“format” attribute of the endpoint.

Configure the response mediation sequence: Because you need to
send a JSON response back to the client, the Property mediator is
used as a flag to change the response message format to the JSON
message format.

Set up a fault mediation sequence: Any failure scenario can be
handled using the fault sequence.

11

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Maobile App

WSO02 ESB
JSON JSON
Message Entry Points

Proxy API/HTTP | Inbound ‘

Service Service Endpoint

Message

Sequence

Mediators
payload fac Outbound

i

l header ;‘:"ip_t Endpoint

: [eques - \

! call 5 . » ‘:.

i ™ SOAP Message s @G

E m Response exitpoint b .

i | respond Web Service

s

Fault Sequence

Figure 1-7. WSO2 ESB message flow for integrating a SOAP-based backend service with a
JSON based mobile client

This completes the end-to-end message flow of our integration scenario. Also, you
have an alternative approach to implement the same scenario with a two-sequence
model.

As depicted in Figure 1-8, the API/HTTP service can use its built-in, in-sequence,
and out-sequence to implement the same integration scenario that was illustrated in
Figure 1-8. The only difference here is that the request message always goes to the in-
sequence. Hence, the request message processing takes place there. Unlike in earlier
approaches, a send mediator is used instead of call mediator. The main difference is that
once you use the send mediator at a given sequence to send out the request, the message
flow stops at that point. When you get the response from the backend service, the
response flow starts from the out-sequence. Therefore, the out-sequence is the place that
you can do the response processing.

12

CHAPTER 1 © INTRODUCTION TO WS02 ESB

d

Mobile App
WSO02 ESB
Message Entry Points
Proxy API/HTTP
Service Service
i Mediators
T l In-Sequence
Out-Sequence o PR
R —— - 1 |Payload Fac| |
| send L header Outbound
i g Endpoint
| Property L send
— A I — N —_—
i RS
< ’ s @
Fault Sequence
Web Service

Figure 1-8. WSO2 ESB message flow for integrating a SOAP-based backend service with a
JSON based mobile client using “In” and “Out” sequences

You can use both of the previously described approaches, but in cases when you're
implementing complex service orchestration/chaining scenarios, the call mediator-based
approach is less complicated.

WS02 ESB Configuration Language

The entire message flow that you learned during the financial organization’s use case is
implemented using the XML-based configuration language of WSO2 ESB. Because the
WSO2 ESB integration scenario development procedure is completely configuration
driven, all the message entry points, message processing units, and message exit points
are configured using an XML-based configuration language.

Graphical message-flow editors are available for WSO2 ESB. They're built on top of
its configuration language, but throughout this book you'll find all the samples and use
cases implemented in raw configuration language.

The following sample configuration represents the implementation of the financial
organization’s integration scenario that we discussed previously. Here I used an API/
HTTP service as the message entry point to the WSO2 ESB and used the single sequence
approach with call and respond mediators. With the following configuration, you can
create a new API named ShoppingInfo that can be accessed through the HTTP protocol.
The complete steps for implementing, deploying, and testing the integration scenarios
are covered in detail in Chapter 2.

13

http://dx.doi.org/10.1007/978-1-4842-2343-7_2

CHAPTER 1 " INTRODUCTION TO WS02 ESB

Listing 1-3. JSON Request from Mobile App to ESB

<api xmlns="http://ws.apache.org/ns/synapse"
name="ShoppingInfo" <I--[1] -->
context="/ShoppingInfo">
<resource methods="POST">
<inSequence> <I--[2] -->
<payloadFactory media-type="xml">
<format>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:ser="http://services.samples">
<soapenv:Header></soapenv:Header>
<soapenv:Body>
<ser:getSimpleQuote>
<ser:symbol>$1</ser:symbol>
</ser:getSimpleQuote>
</soapenv:Body>
</soapenv:Envelope>
</format>
<args>
<arg evaluator="json" expression="$.getFinancialQuote.
company"></arg>

</args>
</payloadFactory>
<header name="Action" value="urn:getSimpleQuote"></header>
<call>

<endpoint> <!-- [3] -->

<address uri="http://localhost:9000/services/
SimpleStockQuoteService" format="soap11">
</address>
</endpoint>
</call>
<property name="messageType" value="application/json"
<!-- [4] -->scope="axis2" type="STRING">
</property>
<respond/> <!-- [5] -->

</inSequence>
</resource>
</api>

1. Anchoring an HTTP service/API on the context /
ShoppingInfo as a message entry point.

2. Request message processing (JSON to SOAP conversion and
sending messages out).

3. Configuring backend web service as the message exit point.

14

CHAPTER 1 © INTRODUCTION TO WS02 ESB

4. Response message processing; change the response format to
JSON.

5. Sending the response back to the client.

As shown in Listing 1-3, a top-level configuration element known as api is the
message entry point configuration, followed by the inSequence, which is the message
processing component. The inSequence has the mediators, which are the message
processing units. To send out the message, you have a call mediator with an endpoint.
The response processing happens in the mediators that are placed after the call mediator
(property and respond).

You've discovered about all the building blocks required to design a real-world
enterprise integration scenario with WSO2 ESB. You'll learn more about how you can
implement and try out the same scenario in WSO2 ESB in Chapter 2.

How to Try the Use Cases in this Book

You can try most of the sample use cases that are discussed throughout this book.

e All the source code related to these use cases can be found at
https://github.com/kasun04/maestro/.

e The configurations for all the use cases of a given chapter are
located at: https://github.com/kasun04/maestro/tree/
master/src/main/resources.

e All the instructions to run each example are specified under
the README file of each chapter. For example if you want to
run samples from Chapter 2, the instructions can be found at
https://github.com/kasun04/maestro/blob/master/src/main/
resources/ch_02/uc_01/README.txt

Also, note that the latest configuration is always kept and updated at the GitHub. So,
in rare cases, there can be slight mismatches between the code snippet that you find in
the book and the sample configuration you'll find in the GitHub repository.

Summary

In this chapter, you learned the fundamentals that are required to build integration
solutions with WSO2 ESB. Let’s summarize them as follows:

e An Enterprise Service Bus (ESB) enables diverse applications,
services, and systems to talk to each other through a common
communication bus, using lightweight and standard messaging
protocols such as SOAP and JSON. It acts as the main messaging
backbone in any Service Oriented Architecture (SOA).

15

http://dx.doi.org/10.1007/978-1-4842-2343-7_2
https://github.com/kasun04/maestro/
https://github.com/kasun04/maestro/tree/master/src/main/resources
https://github.com/kasun04/maestro/tree/master/src/main/resources
http://dx.doi.org/10.1007/978-1-4842-2343-7_2
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/uc_01/README.txt
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/uc_01/README.txt

CHAPTER 1

16

INTRODUCTION TO WS02 ESB

WSO02 ESB was built on top of a common foundation, called
WSO02 Carbon. It’s a modular, reconfigurable, elastic, OSGi-based
architecture on which all WSO2 products are based. It’s the fastest
ESB implementation currently available, 100% free, open source
under the Apache License 2.0, and supports on-premise, cloud,
and hybrid deployments.

An ESB has three main logical components. Message entry points
receive client requests, message processing units contain the logic
to process client requests and server responses, and message exit
points provide a way to send client requests onto the server and
receive their response.

To configure a message flow through WSO2 ESB between a client
and a server, you should configure a message entry point for the
client to talk to the ESB, configure a mediation sequence that can
process the client request into a message the server understands
and sends it out to the server, configure the outbound endpoint
for the message to the server, configure another mediation
sequence to process and send on the server’s response for the
client, and set up a fault sequence to deal with failures.

CHAPTER 2

Getting Started with
WS02 ESB

In this chapter, you'll get started with building integration scenarios with WSO2 ESB. The
first example provides the foundation for the rest of the chapters, by ensuring your ESB
server is set up correctly. We'll also start with the most basic example of system integration
by implementing the message transformation use case discussed in Chapter 1.

Designing a Simple Integration Scenario with
WS02 ESB

The best way to get started with WSO2 ESB is to build a simple but real-world integration
scenario. The main objective of this use case is to transform messages between two
common data formats: JSON and XML.

For our use case, assume that a financial company with the domain example.
com exists, that hosts SOAP-based web services to expose its business functionalities
as services. The StockQuoteService financial service is one of the key business
functionalities offered from example.com, which gives you the stock quote details for
a given organization. But the example.com financial organization wants to enable this
business functionality to its mobile users (who use a JSON as the message format)
without modifying the existing backend service and the mobile client.

Suppose that the JSON request format is as follows and the response accepted by
the mobile client is the one-to-one transformation of the SOAP response from a backend
service to JSON.

{
"getFinancialQuote": { "company": "WS02" }
}
© Kasun Indrasiri 2016 17

K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_2

http://dx.doi.org/10.1007/978-1-4842-2343-7_1

CHAPTER 2 © GETTING STARTED WITH WS02 ESB

The key design steps of the integration scenario illustrated in Figure 2-1 can be
identified as follows:

e Creating an HTTP interface at the ESB layer on behalf of the
existing StockQuote web service.

e Transforming the incoming JSON request to the appropriate
SOAP request that needs to be sent to the SimpleStockQuote
service of the example.org financial service and then invoking the
service.

¢ Handling the SOAP response message from the
SimpleStockQuote service and transforming it back to JSON
before sending back the request.

Message translation example.com
JSON-> SOAP
SOAP [
12 s
J % T
Mobile App JSON€SOAP Stockquote

Message translation Financial Service

Send the converted

Accepts JSON reguest through a i
SOAP message to

HTTP interface .
web service
Figure 2-1. Integrating SOAP-based SimpleStockQuote financial service and a mobile
client with WSO2 ESB

Now let’s proceed to the realization of the previous design steps using WSO2 ESB.

Building the Integration Scenario

Since now you're familiar with the sample integration scenario that we are planning to
build with WSO2 ESB, in this section I'll walk you through all the steps that are required to
build that integration scenario using WSO2 ESB. For our example to be minimally viable,
however, we need to do preliminary work to set up the StockQuote service.

As illustrated in Figure 2-2, the implementation of this integration scenario requires
you to configure a message entry point in WSO2 ESB, configure message-processing
components, and finally configure a response-sending logic. The key design steps
discussed in the previous section can be mapped into the main implementation steps
that you can follow in WSO2 ESB.

1. Creating an HTTP service/API in WSO2 ESB.

2. Creating the request that needs to be sent to the backend
service.

18

