
Practical Hadoop 
Migration

How to Integrate Your RDBMS with the 
Hadoop Ecosystem and Re-Architect 
Relational Applications to NoSQL
—
Bhushan Lakhe
Foreword by Milind Bhandarkar



     Practical Hadoop 
Migration 

 How to Integrate Your RDBMS with 
the Hadoop Ecosystem and 

Re-Architect Relational 
Applications to NoSQL 

   Bhushan Lakhe



  Practical Hadoop Migration: How to Integrate Your RDBMS with the Hadoop Ecosystem and 
Re-Architect Relational Applications to NoSQL 

Bhushan Lakhe
Darien, Illinois
USA

ISBN-13 (pbk): 978-1-4842-1288-2  ISBN-13 (electronic): 978-1-4842-1287-5
DOI 10.1007/978-1-4842-1287-5

Library of Congress Control Number: 2016948866 

Copyright © 2016 by Bhushan Lakhe

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are 
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for 
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser 
of the work. Duplication of this publication or parts thereof is permitted only under the provisions 
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must 
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the 
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and 
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of 
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility 
for any errors or omissions that may be made. The publisher makes no warranty, express or implied, 
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor:  Robert Hutchinson
Development Editor: Matthew Moodie
Technical Reviewer: Robert L. Geiger
Editorial Board: Steve Anglin, Aaron Black, Pramila Balan, Laura Berendson, Louise Corrigan, 

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James 
Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Designed by FreePik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
   orders-ny@springer-sbm.com    , or visit   www.springer.com    . Apress Media, LLC is a California LLC and 
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM 
Finance Inc is a Delaware corporation. 

For information on translations, please e-mail   rights@apress.com    , or visit   www.apress.com    . 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional 
use. eBook versions and licenses are also available for most titles. For more information, reference 
our Special Bulk Sales–eBook Licensing web page at   www.apress.com/bulk-sales    .

Any source code or other supplementary materials referenced by the author in this text is available to 
readers at   www.apress.com    . For detailed information about how to locate your book’s source code, go 
to   www.apress.com/source-code/    .

   Printed on acid-free paper 

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/


  To my mother….  



   



v

Contents at a Glance

Foreword ......................................................................................... xv

About the Author ........................................................................... xvii

About the Technical Reviewer ........................................................ xix

Acknowledgments .......................................................................... xxi

Introduction .................................................................................. xxiii

 ■ Chapter 1: RDBMS Meets Hadoop: Integrating, Re-Architecting, 
and Transitioning ............................................................................ 1

 ■ Part I: Relational Database Management Systems: 
A Review of Design Principles, Models and 
Best Practices .............................................................. 25

 ■Chapter 2: Understanding RDBMS Design Principles ................... 27

 ■Chapter 3: Using SSADM for Relational Design ............................ 53

 ■Chapter 4: RDBMS Design and Implementation Tools .................. 89

 ■ Part II: Hadoop: A Review of the Hadoop Ecosystem, 
NoSQL Design Principles and Best Practices ............. 101

 ■Chapter 5: The Hadoop Ecosystem ............................................. 103

 ■ Chapter 6: Re-Architecting for NoSQL: Design Principles, 
Models and Best Practices ......................................................... 117



■ CONTENTS AT A GLANCE

vi

 ■ Part III: Integrating Relational Database Management 
Systems with the Hadoop Distributed File System ..... 149

 ■Chapter 7: Data Lake Integration Design Principles ................... 151

 ■ Chapter 8: Implementing SQOOP and Flume-based Data 
Transfers ..................................................................................... 189

 ■ Part IV: Transitioning from Relational to NoSQL 
Design Models ............................................................ 207

 ■ Chapter 9: Lambda Architecture for Real-time Hadoop 
Applications ................................................................................ 209

 ■Chapter 10: Implementing and Optimizing the Transition .......... 253

 ■ Part V: Case Study for Designing and Implementing 
a Hadoop-based Solution ........................................... 277

 ■Chapter 11: Case Study: Implementing Lambda Architecture .... 279

Index .............................................................................................. 303



vii

Contents

Foreword ......................................................................................... xv

About the Author ........................................................................... xvii

About the Technical Reviewer ........................................................ xix

Acknowledgments .......................................................................... xxi

Introduction .................................................................................. xxiii

 ■ Chapter 1: RDBMS Meets Hadoop: Integrating, Re-Architecting, 
and Transitioning ............................................................................ 1

Conceptual Differences Between Relational and 
HDFS NoSQL Databases .......................................................................... 2

Relational Design and Hadoop in Conjunction: 
Advantages and Challenges .................................................................... 6

Type of Data .............................................................................................................. 9

Data Volume .............................................................................................................. 9

Business Need ........................................................................................................ 10

Deciding to Integrate, Re-Architect, or Transition .................................. 10

Type of Data ............................................................................................................ 10

Type of Application ................................................................................................. 11

Business Objectives................................................................................................ 12

How to Integrate, Re-Architect, or Transition ......................................... 13

Integration .............................................................................................................. 13

Re-Architecting Using Lambda Architecture ........................................................... 16

Transition to Hadoop/NoSQL ................................................................................... 21

Summary ............................................................................................... 23



■ CONTENTS

viii

 ■ Part I: Relational Database Management Systems: 
A Review of Design Principles, Models and 
Best Practices .............................................................. 25

 ■Chapter 2: Understanding RDBMS Design Principles ................... 27

Overview of Design Methodologies ....................................................... 28

Top-down ................................................................................................................ 28

Bottom-up ............................................................................................................... 29

SSADM .................................................................................................................... 29

Exploring Design Methodologies ........................................................... 30

Top-down ................................................................................................................ 30

Bottom-up ............................................................................................................... 34

SSADM .................................................................................................................... 36

Components of Database Design .......................................................... 40

Normal Forms ......................................................................................................... 41

Keys in Relational Design ....................................................................................... 45

Optionality and Cardinality...................................................................................... 46

Supertypes and Subtypes ....................................................................................... 48

Summary ............................................................................................... 51

 ■Chapter 3: Using SSADM for Relational Design ............................ 53

Feasibility Study .................................................................................... 54

Project Initiation Plan.............................................................................................. 55

Requirements and User Catalogue ......................................................................... 58

Current Environment Description ........................................................................... 61

Proposed Environment Description ........................................................................ 63

Problem Defi nition .................................................................................................. 65

Feasibility Study Report .......................................................................................... 66



■ CONTENTS

ix

Requirements Analysis .......................................................................... 68

Investigation of Current Environment ..................................................................... 68

Business System Options ....................................................................................... 74

Requirements Specifi cation .................................................................. 75

Data Flow Model ..................................................................................................... 75

Logical Data Model ................................................................................................. 77

Function Defi nitions ................................................................................................ 78

Effect Correspondence Diagrams (ECDs)................................................................ 79

Entity Life Histories (ELHs)...................................................................................... 81

Logical System Specifi cation ................................................................ 83

Technical Systems Options ..................................................................................... 83

Logical Design ........................................................................................................ 84

Physical Design ..................................................................................... 86

Logical to Physical Transformation ......................................................................... 86

Space Estimation Growth Provisioning ................................................................... 87

Optimizing Physical Design .................................................................................... 87

Summary ............................................................................................... 88

 ■Chapter 4: RDBMS Design and Implementation Tools .................. 89

Database Design Tools .......................................................................... 90

CASE tools .............................................................................................................. 90

Diagramming Tools ................................................................................................. 95

Administration and Monitoring Applications ......................................... 96

Database Administration or Management Applications .......................................... 97

Monitoring Applications .......................................................................................... 98

Summary ............................................................................................... 99



■ CONTENTS

x

 ■ Part II: Hadoop: A Review of the Hadoop Ecosystem, 
NoSQL Design Principles and Best Practices ............. 101

 ■Chapter 5: The Hadoop Ecosystem ............................................. 103

Query Tools .......................................................................................... 104

Spark SQL ............................................................................................................. 104

Presto ................................................................................................................... 107

Analytic Tools ...................................................................................... 108

Apache Kylin ......................................................................................................... 109

In-Memory Processing Tools ............................................................... 112

Flink ...................................................................................................................... 113

Search and Messaging Tools ............................................................... 115

Summary ............................................................................................. 116

 ■ Chapter 6: Re-Architecting for NoSQL: Design Principles, 
Models and Best Practices ......................................................... 117

Design Principles for Re-Architecting Relational Applications to 
NoSQL Environments ........................................................................... 118

Selecting an Appropriate NoSQL Database ........................................................... 118

Concurrency and Security for NoSQL ................................................................... 130

Designing the Transition Model ........................................................... 132

Denormalization of Relational (OLTP) Data ........................................................... 132

Denormalization of Relational (OLAP) Data ........................................................... 136

Implementing the Final Model ............................................................. 138

Columnar Database as a NoSQL Target ................................................................ 139

Document Database as a NoSQL Target ............................................................... 143

Best Practices for NoSQL Re-Architecture .......................................... 146

Summary ............................................................................................. 148



■ CONTENTS

xi

 ■ Part III: Integrating Relational Database Management 
Systems with the Hadoop Distributed File System ..... 149

 ■Chapter 7: Data Lake Integration Design Principles ................... 151

Data Lake vs. Data Warehouse ............................................................ 152

Data Warehouse .................................................................................................... 152

Data Lake .............................................................................................................. 156

Concept of a Data Lake ....................................................................... 157

Data Reservoirs .................................................................................................... 158

Exploratory Lakes ................................................................................................. 167

Analytical Lakes .................................................................................................... 181

Factors for a Successful Implementation ............................................ 187

Summary ............................................................................................. 188

 ■ Chapter 8: Implementing SQOOP and Flume-based 
Data Transfers ............................................................................ 189

Deciding on an ETL Tool ...................................................................... 190

Sqoop vs. Flume ................................................................................................... 190

Processing Streaming Data .................................................................................. 191

Using SQOOP for Data Transfer ........................................................... 195

Using Flume for Data Transfer ............................................................. 198

Flume Architecture ............................................................................................... 199

Understanding and Using Flume Components...................................................... 200

Implementing Log Consolidation Using Flume ..................................................... 202

Summary ............................................................................................. 204



■ CONTENTS

xii

 ■ Part IV: Transitioning from Relational to NoSQL 
Design Models ............................................................ 207

 ■ Chapter 9: Lambda Architecture for Real-time Hadoop 
Applications ................................................................................ 209

Defi ning and Using the Lambda Layers ............................................... 210

Batch Layer ........................................................................................................... 211

Serving Layer ........................................................................................................ 224

Speed Layer .......................................................................................................... 229

Pros and Cons of Using Lambda ......................................................... 234

Benefi ts of Lambda............................................................................................... 234

Issues with Lambda .............................................................................................. 235

The Kappa Architecture ........................................................................................ 236

Future Architectures1 ..................................................................................................................................... 238

A Bit of History ...................................................................................................... 238

Butterfl y Architecture............................................................................................ 240

Summary ............................................................................................. 250

 ■Chapter 10: Implementing and Optimizing the Transition .......... 253

Hardware Confi guration ...................................................................... 254

Cluster Confi guration ............................................................................................ 254

Operating System Confi guration ......................................................... 255

Hadoop Confi guration .......................................................................... 257

HDFS Confi guration .............................................................................................. 258

Choosing an Optimal File Format ......................................................................... 266

Indexing Considerations for Performance ............................................................ 274

Choosing a NoSQL Solution and Optimizing Your Data Model ............. 275

Summary ............................................................................................. 276



■ CONTENTS

xiii

 ■ Part V: Case Study for Designing and Implementing a  
Hadoop-based Solution .............................................. 277

 ■Chapter 11: Case Study: Implementing Lambda Architecture .... 279

The Business Problem and Solution .................................................... 280

Solution Design ................................................................................... 280

Hardware .............................................................................................................. 280

Software ............................................................................................................... 282

Database Design ................................................................................................... 282

Implementing Batch Layer .................................................................................... 286

Implementing the Serving Layer........................................................................... 289

Implementing the Speed Layer ............................................................................. 292

Storage Structures (for Master Data and Views) .................................................. 296

Other Performance Considerations....................................................................... 297

Reference Architectures ....................................................................................... 298

Changes to Implementation for Latest Architectures ........................................... 299

Summary ............................................................................................. 301

Index .............................................................................................. 303



   



xv

            Foreword   

 We are in the midst of one of the biggest transformations of Information Technology 
(IT). Rapidly evolving business requirements have demanded agility in all aspects of IT. 
As more and more paper-based business processes are getting digital, rapid application 
development, staging, and deployment have become the norm. In addition, the data 
exhaust from these digital applications has become enormous and needs to be analyzed 
in real time. Growing volumes of historical data is considered valuable for improving 
business efficiency and identifying future trends and disruptions. Ubiquitous end-user 
connectivity, cost-efficient software and hardware sensors, and democratization of 
content production have led to the deluge of data generated in enterprises. As a result, 
the traditional data infrastructure has to be revamped. Of course, this cannot be done 
overnight. To prepare your IT to meet the new requirements of the business, one has to 
carefully plan re-architecting the data infrastructure so that existing business processes 
remain available during this transition. 

 Hadoop and NoSQL platforms have emerged in the last decade to address the 
business requirements of large web-scale companies. Capabilities of these platforms 
are evolving rapidly, and, as a result, have created a lot of hype in the industry. However, 
none of these platforms is a panacea for all the needs of a modern business. One needs 
to carefully consider various business use cases and determine which platform is most 
suitable for each specific use case. Introducing immature platforms for use cases that 
are not suited for them is the leading cause of failure of data infrastructure projects. Data 
architects of today need to understand a variety of data platforms, their design goals, their 
current and future data protection capabilities, access methods, and performance sweet 
spots, and how they compare in features against traditional data platforms. As a result, 
traditional database administrators and business analysts are overwhelmed by the sheer 
number of new technologies and the rapidly changing data landscape. 

 This book is written with those readers in mind. It cuts through the hype and gives 
a practical way to transition to the modern data architectures. Although it may feel like 
new technologies are emerging every day, the key to evaluating these technologies is to 
align your current and future business use cases and requirements to the design-center 
of these new technologies. This book helps readers understand various aspects of the 
modern data platforms and helps navigate the emerging data architecture. I am confident 
that it will help you avoid the complexity of implementing modern data architecture and 
allow seamless transition for your business.

  —Milind Bhandarkar, PhD 
 Founder and CEO, Ampool, Inc.   



■ FOREWORD

xvi

  Milind Bhandarkar was the founding member of the team at Yahoo! that took Apache 
Hadoop from 20-node prototype to datacenter-scale production system, and has been 
contributing and working with Hadoop since version 0.1.0. He started the Yahoo! Grid 
solutions team focused on training, consulting, and supporting hundreds of new migrants 
to Hadoop. Parallel programming languages and paradigms has been his area of focus 
for over 20 years. He has worked at the Center for Development of Advanced Computing 
(C-DAC), National Center for Supercomputing Applications (NCSA), Center for Simulation 
of Advanced Rockets, Siebel Systems, Pathscale Inc. (acquired by QLogic), Yahoo!, and 
Linkedin. Until 2013, Milind was chief architect at Greenplum Labs, a division of EMC. 
Most recently, he was chief scientist at Pivotal Software. Milind holds his PhD degree in 
computer science from the University of Illinois at Urbana-Champaign.    

           



xvii

   About the Author 

     Bhushan   Lakhe       is a Big Data professional, technology 
evangelist, author, and avid blogger who resides in the 
windy city of Chicago. After graduating in 1988 from 
one of India’s leading universities (Birla Institute of 
Technology and Science, Pilani), he started his career 
with India’s biggest software house, Tata Consultancy 
Services. Thereafter, he joined ICL, a British computer 
company, and worked with prestigious British clients. 
Moving to Chicago in 1995, he worked as a consultant 
with Fortune 50 companies like Leo Burnett, Blue Cross, 
Motorola, JPMorgan Chase, and British Petroleum, 
often in a critical and pioneering role. 

 After a seven-year stint executing successful Big 
Data (as well as data warehouse) projects for IBM’s 
clients (and receiving the company’s prestigious 
Gerstner Award in 2012), Mr. Lakhe spent two years 
helping Unisys Corporation’s clients with Big Data 

implementations, and thereafter two years as senior vice president (information and data 
architecture) at Ipsos (the world’s third-largest market research corporation), helping 
design global data architecture and Big Data strategy. 

 Currently, Mr. Lakhe heads the Big Data practice for HCL America, a $7 billion 
global consulting company with offices in 31 countries. At HCL, Mr. Lakhe is involved in 
architecting Big Data solutions for Fortune 500 corporations. Mr. Lakhe is active in the 
Chicago Hadoop community and is co-organizer for a Meetup group (   www.meetup.com/
ambariCloud-Big-Data-Meetup/     ) where he regularly talks about new Hadoop 
technologies and tools. You can find Mr. Lakhe on LinkedIn at    www.linkedin.com/in/
bhushanlakhe     . 

       

http://www.meetup.com/ambariCloud-Big-Data-Meetup/
http://www.meetup.com/ambariCloud-Big-Data-Meetup/
http://www.linkedin.com/in/bhushanlakhe
http://www.linkedin.com/in/bhushanlakhe


   



xix

        About the Technical 
Reviewer 

     Robert   L.   Geiger       is currently Chief Architect and 
acting VP of engineering at Ampool Inc., an early stage 
startup in the Big Data and analytics infrastructure 
space. Before joining Ampool, he worked as an 
architect and developer in the solutions/SaaS space 
at a B2B deep learning based startup, and prior to that 
as an architect and team lead at Pivotal Inc., working 
in the areas of security and analytics as a service 
for the Hadoop ecosystem. Prior to Pivotal, Robert 
served as a developer and VP, engineering at a small 
distributed database startup, TransLattice. Robert spent 
several years in the security space working on and 
leading teams in at Symantec on distributed intrusion 
detection systems. His career started with Motorola 
Labs in Illinois where he worked on distributed IP over 
wireless systems, crypto/security, and e-commerce 
after graduating from University of Illinois Champaign-
Urbana. 

       

      



   



xxi

  Acknowledgments  

 This is my second book for Apress (the first being  Practical Hadoop Security ) continuing 
the  Practical Hadoop  series, and I want to thank Apress for giving me the opportunity 
to write it. I would like to thank the Hadoop community and the user forums that bring 
innovation to this technology and keep the world interested! I have learned a lot from the 
selfless people in the Hadoop community who believe in being Good Samaritans. 

 On a personal note, I want to thank my friend Satya Kondapalli for making a forum 
of Hadoop enthusiasts available through our Meetup group Ambaricloud. I also want 
to thank our sponsors Hortonworks for supporting us. Finally, I would like to thank my 
friend Milind Bhandarkar (of Ampool) for taking time from his busy schedule to write a 
foreword and a whole section about his new Butterfly architecture. 

 I am grateful to my editors, Rita Fernando, Robert Hutchinson, and Matthew Moodie 
at Apress for their help in getting this book toegther. Rita has been there throughout to 
answer any questions that I have, to improve my drafts, and to keep me on schedule. 
Robert Hutchinson’s help with the book structure has been immensely valuable. And 
I am also very thankful to Robert Geiger for taking time to review my second book 
technically. Bob always had great suggestions for improving a topic, recommending 
additional details, and of course resolving technical shortcomings. 

 Finally, the writing of this book wouldn’t have been possible without the constant 
support from my family (my wife, Swati, and my kids, Anish and Riya) for the second 
time in the last three years, and I’m looking forward to spending lots more time with all of 
them.  



   



xxiii

   Introduction 

   I have spent more than 20 years consulting for large corporations, and when I started, 
it was just relational databases. Eventually, the volumes of accumulated historical data 
grew, and it was not possible to manage and analyze this data with good performance. 
So, corporations started thinking about separating the parts (of data) useful for analaysis 
(or generating insights) from the descriptive data. They soon realized that a fundamental 
change was needed in the relational design, and a new paradigm called data warehousing 
was born. Thanks to the work done by Bill Inmon and Ralph Kimball, the world started 
thinking (and designing) in terms of Star schemas and dimensions and facts. ETL (extract, 
transform, load) processes were designed to load the data warehouses. 

 The next step was making sure that large volumes of data could be retrieved 
with good performance. Specialized software was developed, and RDBMS solutions 
(Oracle, Sysbase, SQL Server) added processing for data warehouses. For the next level 
of performance, it was clear that data needed to be preprocessed, and data cubes were 
designed. Since magnetic disk drives were slow, SSDs (solid state devices) were designed, 
and software that cached (or held data in RAM) data for speed of processing and retrieval 
became popular. So, with all these advanced measures for performance, why is Hadoop 
or NoSQL needed? For two reasons. 

 First, it is important to note that all this while, the data being processed either was 
relational data (for RDBMS) or had started as relational data (for data warehouses). This 
was structured data, and the type of analysis (and insights) possible was very specific (to 
the application that generated the data). The rigid structure of a warehouse put severe 
limits on the insights or data explorations that were possible, since you start with a design 
and fit data into it. Also, due to the very high volumes, warehouses couldn’t perform per 
expectations, and a newer technology was needed to effectively manage this data. 

 Second, in recent years, new types of data were introduced: unstructured or 
semi-structured data. Social media became very popular and were a new avenue for 
corporations to communicate directly with people once they realized the power behind 
it. Corporations wanted to know what people thought about their products, services, 
employees, and of course the corporations themselves. Also, with e-commerce forming 
a large part of all the businesses, corporations wanted to make sure they were preferred 
over their competitors—and if that was not the case, they wanted to know why. Finally, 
there was a need to analyze some other types of unstructured data, like sensor data from 
electrical and electronic devices, or data from mobile devices sensors, that was also very 
high volume. All this data was usually hundreds of gigabytes per day. 

 Conventional warehouse technology was incapable of processing or managing this 
data. So, a new technology had to be designed to process it, and with good performance 
(since total volumes were in terabytes). In some cases, as the unstructured data (or 
insights from it) needed to be combined with structured data, the new technology needed 
to support interfacing with data warehouses or RDBMS. 



■ INTRODUCTION

xxiv

 Hadoop offers all these capabilities and in addition allows a schema-on-read 
(meaning you can define metadata while performing analysis) that offers a lot of flexiblity 
for performing exploratory analysis or generating new insights from your data. 

 This gets us to the final question: how do you migrate or integrate your existing 
RDBMS-based applications with Hadoop and analyze structured as well as unstructured 
data in tandem? Well, you have to read rest of the book to know that! 

   Who This Book Is For 
 This book is an excellent resource for IT management planning to migrate or integrate 
their existing RDBMS environment with Big Data technologies or Big Data architects who 
are designing a migration/integration process. This book is also for Hadoop developers 
who want to implement migration/integration process or students who’d like to learn 
about designing Hadoop applications that can successfully process relational data along 
with unstructured data. This book assumes a basic understanding of Hadoop, Kerberos, 
relational databases, Hive, Spark, and an intermediate level understanding of Linux.  

   Downloading the Code 
 The source code for this book is available in ZIP file format in the Downloads section of 
the Apress Web site (   www.apress.com/9781484212882     ).  

   Contacting the Author 
 You can reach Bhushan Lakhe at blakhe@aol.com or bclakhe@gmail.com.   

http://www.apress.com/9781484212882


1© Bhushan Lakhe 2016 
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_1

    CHAPTER 1   

 RDBMS Meets Hadoop: 
Integrating, Re-Architecting, 
and Transitioning                          

 Recently, I was at the Strata + Hadoop World Conference, chatting with a senior executive 
of a major food corporation who used a relational solution for storing all its data. I asked 
him casually if they were thinking about using a Big Data solution, and his response 
was: “We already did and it’s too slow!” I was amazed and checked the facts again. This 
corporation had even availed of the consulting services of a major Hadoop vendor and 
yet was still not able to harness the power of Big Data. 

 I thought about the issue and possible reasons why this might have occurred. To start 
with, a Hadoop vendor can tune his Hadoop installation but can’t guarantee that generic 
tuning will be valid for specific type of data. Second, the food corporation’s database 
administrators and architects probably had no idea how to transform their relational data 
for use with Hadoop. This is not an isolated occurrence, and most of the corporations 
who want to make the transition to using of relational data with Hadoop are in a similar 
situation. The result is a Hadoop cluster that’s slow and inefficient and performs nowhere 
close to the expectations that Big Data hype has generated. 

 Third, all NoSQL databases are not created equal. NoSQL databases vary greatly in 
their handling of data as well as in the models they use internally to manage data. They 
only work well with certain kind of data. So, it’s very important to know the type of your 
data and select a NoSQL solution that matches it. 

 Finally, success in applying NoSQL solutions to relational data depends on 
identifying your objective in using Hadoop/NoSQL and on accommodating your data 
volumes. Hadoop is not a cure-all that can magically speed up all your data processing—
it can only be used for specific type of processing (which I discuss further in this chapter). 
And Hadoop works best for larger volumes of data and is not efficient for lower data 
volumes due to the various overheads associated. 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-1287-5_1    ) contains supplementary material, which is available to 
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1


CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

2

 So, having defined the problem, let’s think about a solution. You are probably 
familiar with the myriad design methodologies and frameworks that are available for 
use with relational data, but do you know of similar resources for Hadoop? Probably not. 
There is a good reason for that—none exists yet. Lambda is being developed as a design 
methodology (Chapter   12    ), but it is not mature yet and not very easy to implement. 

 So, what’s the alternative? Do you need to rely on the expertise of your data architects 
to design this transition, or are there generic steps you can follow? How do you ensure an 
efficient and functionally reliable transition? I answer these questions in this book and 
demonstrate how you can successfully transition your relational data to Hadoop. 

 First, it is important to understand how Hadoop and NoSQL differ from the relational 
design. I briefly discuss that in this chapter and also discuss the benefits as well as 
challenges associated with using Hadoop and NoSQL. 

 It is also important to decide whether your data (and what you want to do with it) is 
suited for use with Hadoop. Therefore, factors such as type of data, data volume, and your 
business needs are important to consider. There are some more factors that you need to 
consider, and the latter part of this chapter discusses them at length. Typically, the four 
“V”s (volume, velocity, variety, and veracity) separate NoSQL data from relational data, 
but that rule of thumb may not always hold true. 

 So, let me start the discussion with conceptual differences between relational 
technology and Hadoop. That’s the next section. 

     Conceptual Differences Between Relational and 
HDFS NoSQL Databases 
 Database design has had a few facelifts since E.F. Codd presented his paper on relational 
design in 1970. 1  Leading relational database systems today (such as Oracle or Microsoft 
SQL Server) may not be following Codd’s vision completely; but definitely use the 
underlying concepts without much of modification. There is a central database server 
that holds the data and provides access to users (as defined by Database Administrator) 
after authentication. There are database objects such as views (for managing granular 
permissions) or triggers (to manipulate data as per data ‘relations’) or indexes for 
performance (while reading or modifying data). 

 The main feature, however, is that relations can be defined for your data. Let me 
explain using a quick example. Think of an insurance company selling various (life, 
disability, home) policies to individual customers. A good identifier to use (for identifying 
a customer uniquely) is customers’ social security number. Since a customer may buy 
multiple policies from the insurance company and those details may be stored in separate 
database tables, there should be a way to relate all that data to the customer it belongs to. 

 Relational technology implements that easily by making the social security 
number as a primary key or primary identifier for the  customer  table and a foreign 
key or referential identifier (an identifier to identify the parent or originator of the 
information) for all the related tables, such as  life_policies  or  home_policies . 
Figure  1-1  summarizes a sample implementation.  

  1     www.seas.upenn.edu/~zives/03f/cis550/codd.pdf      “A Relational Model of Data for Large 
Shared Data Banks” 

http://dx.doi.org/10.1007/978-1-4842-1287-5_12
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf


CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

3

 As you can see in Figure  1-1 , the policy data is related to customers. This relation 
is established using the social security number. So, all the policy records for a customer 
can be retrieved using their social security number. Any modifications to the customer 
identifier (social security number) are propagated to maintain data integrity. 

 Next, let me discuss Hadoop and NoSQL databases that use HDFS for storage. HBase 
is a popular NoSQL database and therefore can be used as an example. Since HDFS is 
a distributed file system, data will be spread across all the data nodes in contrast to a 
central server. Kerberos is used for authentication, but HBase has very limited capability 
for granular authorization as opposed to relational databases. HBase offers indexing 
capabilities, but they are very limited and are no match for the advanced indexing 
techniques offered by RDBMS (relational database management systems). However, the 
main difference is absence of relations. Unlike RDBMSs, HBase data is not related. Data 
for HBase tables is simply held in HDFS files. 

 As you can see in Figure  1-2 , the policy data is not related automatically with a 
customer. Any relating that’s necessary will have to be done programmatically. For example, 
if you need to list all the policies that customer “Isaac Newton” holds, you will need to 
know the tables that hold policies for customers (here, Hbase tables  Life_policies  and 
 Home_policies ). Then you will need to know a common identifier to use (social security 
number) to match the rows that belong to this customer. Any changes to the identifier can’t 
be propagated automatically and will need to be implemented manually.  

  Figure 1-1.    Relational storage of data (logical)       

 



CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

4

 So, for example, if an error in social security number is discovered, then all the files 
containing that information will need to be updated separately (programmatically). 
Unlike RDBMS, HDFS or HBase doesn’t offer any utilities to do that for you. The reason 
is that HBase (or any other HDFS-based NoSQL databases) doesn’t offer any referential 
integrity—simply due to their purpose. HBase is not meant for interactive queries over a 
small dataset; it is best suited for a large batch processing environment (similar to data 
warehousing environments) involving immutable data. Till recently, updates for HBase 
involved loading the changed row in a staging table and doing a left outer join with the 
main data table to overwrite the row (making sure the staging and main data table had 
the same key). 

 With the new version of HBase, updates, deletes, and inserts are now supported, 
but for small datasets these operations will be very slow (compared to RDBMS) because 
they’re executed as Hadoop MapReduce jobs that have high latency and incur substantial 
overheads in job submission and scheduling. 

 Starting with a large block size used by HDFS (default 64 MB) and distributed 
architecture that spreads data over a large number of DataNodes (helping parallel reads 
using MapReduce or Yarn), HBase (and other HDFS based NoSQL databases) are meant 
to perform efficiently for large datasets. Any transformations that need to be applied 
involve reading the whole table and not a single row. Distributed processing on DataNodes 
using MapReduce (or Yarn on recent versions) provides the speed and efficiency for such 
reads. Again, due to the distributed architecture, it is much more efficient to write the 
transformed data to a new “file” (or staging table for HBase). For the same reason, Hadoop 
and NoSQL databases are better equipped to store (and process) large image or video files, 
large blocks of natural language text, or semi-structured as well as sensor data. 

Home_policies

Life_policies

Customer

234-56-2243~Albert~Einstein ~1 oak drive, Palatine, IL 60421~ 8472453333
345-86-1223~Stephen ~Hawking ~100 Maple ct. , Darien , IL ~60561~6304271623
453-65-2244~Thomas ~Edison~55 Pine st. , Naperville , IL 60660~6307246565
294-85-4553~Isaac~New ton~99 Redwood drive, Woodridge, IL 60561~6304275454

45341441 ~01/24/1962 ~N~Y~72~234-56-2243
41441442 ~03/18/1972 ~Y~Y~60~294-85-4553
41671443 ~10/12/1976 ~Y~N~64~453-65-2244
41489744 ~09/06/1968 ~N~N~82~345-86-1223

45341441~1 oak drive, Palatine, IL 60421~500,000~4,000~234 -56-2243
45356442~100 Maple ct. , Darien , IL 60561~750,000~5,000~345-86-1223
45987443~55 Pine st. , Naperville , IL 60660~1,100,000~8,000~45 3-65-2244
45671444 ~99 Redwood drive, Woodridge, IL 60561~300,000~2,000~29 4-85-4553

  Figure 1-2.    NoSQL storage of data       

 



CHAPTER 1 ■ RDBMS MEETS HADOOP: INTEGRATING, RE-ARCHITECTING, AND TRANSITIONING

5

 Compare this with a small page size for RDBMS (for example, Microsoft SQL Server 
uses a page size of 8 KB) and absence of an efficient mechanism to distribute the read 
(or update) operations and you will realize why NoSQL databases will always win in 
any scenarios that involve data warehouses and large datasets. The strength of RDBMS, 
though, is where there are small datasets with complex relationships and extensive 
analysis is required on parts of it. Also, where referential integrity is important to be 
implemented over a dataset, NoSQL databases are no match for RDBMS. 

 To summarize, RDBMS is more suited for a large number of data manipulations for 
smaller datasets where ACID (Atomicity, Consistency, Isolation, Durability) compliance 
is necessary; whereas NoSQL databases are more suited for a smaller number of data 
manipulations to large datasets that can work with the “eventual consistency” model. 
Table  1-1  provides a handy comparison between the two technologies (relational and 
NoSQL).

     Table 1-1.    Comparative Features of RDBMS vs. NoSQL   

 Feature  HDFS-based NoSQL  RDBMS 

 1  Large datasets  Efficient and fast  Not efficient 

 2  Small datasets  Not efficient  Efficient and fast 

 3  Searches  Not efficient  Efficient and fast 

 4  Large read operations  Efficient and fast  Not efficient 

 5  Updates  Not efficient  Efficient and fast 

 6  Data relations  Not supported  Supported 

 7  Authentication/Authorization  Kerberos  Built-in 

 8  Data storage  Distributed over 
DataNodes 

 Central Database 
server 

 9  ACID compliant  No  Yes 

 10  Concurrent updates to dataset  Not supported  Supported 

 11  Fault tolerance  Built-in  Not built-in 

 12  Scalability  Easily scalable  Not easily scalable 

 Figure  1-3  shows the physical data storage configurations (for the preceding 
example) including a Hadoop cluster (Hive/NoSQL) and RDBMS (Microsoft SQL Server).   


