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            Foreword   

 We are in the midst of one of the biggest transformations of Information Technology 
(IT). Rapidly evolving business requirements have demanded agility in all aspects of IT. 
As more and more paper-based business processes are getting digital, rapid application 
development, staging, and deployment have become the norm. In addition, the data 
exhaust from these digital applications has become enormous and needs to be analyzed 
in real time. Growing volumes of historical data is considered valuable for improving 
business efficiency and identifying future trends and disruptions. Ubiquitous end-user 
connectivity, cost-efficient software and hardware sensors, and democratization of 
content production have led to the deluge of data generated in enterprises. As a result, 
the traditional data infrastructure has to be revamped. Of course, this cannot be done 
overnight. To prepare your IT to meet the new requirements of the business, one has to 
carefully plan re-architecting the data infrastructure so that existing business processes 
remain available during this transition. 

 Hadoop and NoSQL platforms have emerged in the last decade to address the 
business requirements of large web-scale companies. Capabilities of these platforms 
are evolving rapidly, and, as a result, have created a lot of hype in the industry. However, 
none of these platforms is a panacea for all the needs of a modern business. One needs 
to carefully consider various business use cases and determine which platform is most 
suitable for each specific use case. Introducing immature platforms for use cases that 
are not suited for them is the leading cause of failure of data infrastructure projects. Data 
architects of today need to understand a variety of data platforms, their design goals, their 
current and future data protection capabilities, access methods, and performance sweet 
spots, and how they compare in features against traditional data platforms. As a result, 
traditional database administrators and business analysts are overwhelmed by the sheer 
number of new technologies and the rapidly changing data landscape. 

 This book is written with those readers in mind. It cuts through the hype and gives 
a practical way to transition to the modern data architectures. Although it may feel like 
new technologies are emerging every day, the key to evaluating these technologies is to 
align your current and future business use cases and requirements to the design-center 
of these new technologies. This book helps readers understand various aspects of the 
modern data platforms and helps navigate the emerging data architecture. I am confident 
that it will help you avoid the complexity of implementing modern data architecture and 
allow seamless transition for your business.

  —Milind Bhandarkar, PhD 
 Founder and CEO, Ampool, Inc.   
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  Milind Bhandarkar was the founding member of the team at Yahoo! that took Apache 
Hadoop from 20-node prototype to datacenter-scale production system, and has been 
contributing and working with Hadoop since version 0.1.0. He started the Yahoo! Grid 
solutions team focused on training, consulting, and supporting hundreds of new migrants 
to Hadoop. Parallel programming languages and paradigms has been his area of focus 
for over 20 years. He has worked at the Center for Development of Advanced Computing 
(C-DAC), National Center for Supercomputing Applications (NCSA), Center for Simulation 
of Advanced Rockets, Siebel Systems, Pathscale Inc. (acquired by QLogic), Yahoo!, and 
Linkedin. Until 2013, Milind was chief architect at Greenplum Labs, a division of EMC. 
Most recently, he was chief scientist at Pivotal Software. Milind holds his PhD degree in 
computer science from the University of Illinois at Urbana-Champaign.    
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   Introduction 

   I have spent more than 20 years consulting for large corporations, and when I started, 
it was just relational databases. Eventually, the volumes of accumulated historical data 
grew, and it was not possible to manage and analyze this data with good performance. 
So, corporations started thinking about separating the parts (of data) useful for analaysis 
(or generating insights) from the descriptive data. They soon realized that a fundamental 
change was needed in the relational design, and a new paradigm called data warehousing 
was born. Thanks to the work done by Bill Inmon and Ralph Kimball, the world started 
thinking (and designing) in terms of Star schemas and dimensions and facts. ETL (extract, 
transform, load) processes were designed to load the data warehouses. 

 The next step was making sure that large volumes of data could be retrieved 
with good performance. Specialized software was developed, and RDBMS solutions 
(Oracle, Sysbase, SQL Server) added processing for data warehouses. For the next level 
of performance, it was clear that data needed to be preprocessed, and data cubes were 
designed. Since magnetic disk drives were slow, SSDs (solid state devices) were designed, 
and software that cached (or held data in RAM) data for speed of processing and retrieval 
became popular. So, with all these advanced measures for performance, why is Hadoop 
or NoSQL needed? For two reasons. 

 First, it is important to note that all this while, the data being processed either was 
relational data (for RDBMS) or had started as relational data (for data warehouses). This 
was structured data, and the type of analysis (and insights) possible was very specific (to 
the application that generated the data). The rigid structure of a warehouse put severe 
limits on the insights or data explorations that were possible, since you start with a design 
and fit data into it. Also, due to the very high volumes, warehouses couldn’t perform per 
expectations, and a newer technology was needed to effectively manage this data. 

 Second, in recent years, new types of data were introduced: unstructured or 
semi-structured data. Social media became very popular and were a new avenue for 
corporations to communicate directly with people once they realized the power behind 
it. Corporations wanted to know what people thought about their products, services, 
employees, and of course the corporations themselves. Also, with e-commerce forming 
a large part of all the businesses, corporations wanted to make sure they were preferred 
over their competitors—and if that was not the case, they wanted to know why. Finally, 
there was a need to analyze some other types of unstructured data, like sensor data from 
electrical and electronic devices, or data from mobile devices sensors, that was also very 
high volume. All this data was usually hundreds of gigabytes per day. 

 Conventional warehouse technology was incapable of processing or managing this 
data. So, a new technology had to be designed to process it, and with good performance 
(since total volumes were in terabytes). In some cases, as the unstructured data (or 
insights from it) needed to be combined with structured data, the new technology needed 
to support interfacing with data warehouses or RDBMS. 
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 Hadoop offers all these capabilities and in addition allows a schema-on-read 
(meaning you can define metadata while performing analysis) that offers a lot of flexiblity 
for performing exploratory analysis or generating new insights from your data. 

 This gets us to the final question: how do you migrate or integrate your existing 
RDBMS-based applications with Hadoop and analyze structured as well as unstructured 
data in tandem? Well, you have to read rest of the book to know that! 

   Who This Book Is For 
 This book is an excellent resource for IT management planning to migrate or integrate 
their existing RDBMS environment with Big Data technologies or Big Data architects who 
are designing a migration/integration process. This book is also for Hadoop developers 
who want to implement migration/integration process or students who’d like to learn 
about designing Hadoop applications that can successfully process relational data along 
with unstructured data. This book assumes a basic understanding of Hadoop, Kerberos, 
relational databases, Hive, Spark, and an intermediate level understanding of Linux.  

   Downloading the Code 
 The source code for this book is available in ZIP file format in the Downloads section of 
the Apress Web site (   www.apress.com/9781484212882     ).  

   Contacting the Author 
 You can reach Bhushan Lakhe at blakhe@aol.com or bclakhe@gmail.com.   

http://www.apress.com/9781484212882


1© Bhushan Lakhe 2016 
B. Lakhe, Practical Hadoop Migration, DOI 10.1007/978-1-4842-1287-5_1

    CHAPTER 1   

 RDBMS Meets Hadoop: 
Integrating, Re-Architecting, 
and Transitioning                          

 Recently, I was at the Strata + Hadoop World Conference, chatting with a senior executive 
of a major food corporation who used a relational solution for storing all its data. I asked 
him casually if they were thinking about using a Big Data solution, and his response 
was: “We already did and it’s too slow!” I was amazed and checked the facts again. This 
corporation had even availed of the consulting services of a major Hadoop vendor and 
yet was still not able to harness the power of Big Data. 

 I thought about the issue and possible reasons why this might have occurred. To start 
with, a Hadoop vendor can tune his Hadoop installation but can’t guarantee that generic 
tuning will be valid for specific type of data. Second, the food corporation’s database 
administrators and architects probably had no idea how to transform their relational data 
for use with Hadoop. This is not an isolated occurrence, and most of the corporations 
who want to make the transition to using of relational data with Hadoop are in a similar 
situation. The result is a Hadoop cluster that’s slow and inefficient and performs nowhere 
close to the expectations that Big Data hype has generated. 

 Third, all NoSQL databases are not created equal. NoSQL databases vary greatly in 
their handling of data as well as in the models they use internally to manage data. They 
only work well with certain kind of data. So, it’s very important to know the type of your 
data and select a NoSQL solution that matches it. 

 Finally, success in applying NoSQL solutions to relational data depends on 
identifying your objective in using Hadoop/NoSQL and on accommodating your data 
volumes. Hadoop is not a cure-all that can magically speed up all your data processing—
it can only be used for specific type of processing (which I discuss further in this chapter). 
And Hadoop works best for larger volumes of data and is not efficient for lower data 
volumes due to the various overheads associated. 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-1287-5_1    ) contains supplementary material, which is available to 
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1
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 So, having defined the problem, let’s think about a solution. You are probably 
familiar with the myriad design methodologies and frameworks that are available for 
use with relational data, but do you know of similar resources for Hadoop? Probably not. 
There is a good reason for that—none exists yet. Lambda is being developed as a design 
methodology (Chapter   12    ), but it is not mature yet and not very easy to implement. 

 So, what’s the alternative? Do you need to rely on the expertise of your data architects 
to design this transition, or are there generic steps you can follow? How do you ensure an 
efficient and functionally reliable transition? I answer these questions in this book and 
demonstrate how you can successfully transition your relational data to Hadoop. 

 First, it is important to understand how Hadoop and NoSQL differ from the relational 
design. I briefly discuss that in this chapter and also discuss the benefits as well as 
challenges associated with using Hadoop and NoSQL. 

 It is also important to decide whether your data (and what you want to do with it) is 
suited for use with Hadoop. Therefore, factors such as type of data, data volume, and your 
business needs are important to consider. There are some more factors that you need to 
consider, and the latter part of this chapter discusses them at length. Typically, the four 
“V”s (volume, velocity, variety, and veracity) separate NoSQL data from relational data, 
but that rule of thumb may not always hold true. 

 So, let me start the discussion with conceptual differences between relational 
technology and Hadoop. That’s the next section. 

     Conceptual Differences Between Relational and 
HDFS NoSQL Databases 
 Database design has had a few facelifts since E.F. Codd presented his paper on relational 
design in 1970. 1  Leading relational database systems today (such as Oracle or Microsoft 
SQL Server) may not be following Codd’s vision completely; but definitely use the 
underlying concepts without much of modification. There is a central database server 
that holds the data and provides access to users (as defined by Database Administrator) 
after authentication. There are database objects such as views (for managing granular 
permissions) or triggers (to manipulate data as per data ‘relations’) or indexes for 
performance (while reading or modifying data). 

 The main feature, however, is that relations can be defined for your data. Let me 
explain using a quick example. Think of an insurance company selling various (life, 
disability, home) policies to individual customers. A good identifier to use (for identifying 
a customer uniquely) is customers’ social security number. Since a customer may buy 
multiple policies from the insurance company and those details may be stored in separate 
database tables, there should be a way to relate all that data to the customer it belongs to. 

 Relational technology implements that easily by making the social security 
number as a primary key or primary identifier for the  customer  table and a foreign 
key or referential identifier (an identifier to identify the parent or originator of the 
information) for all the related tables, such as  life_policies  or  home_policies . 
Figure  1-1  summarizes a sample implementation.  

  1     www.seas.upenn.edu/~zives/03f/cis550/codd.pdf      “A Relational Model of Data for Large 
Shared Data Banks” 

http://dx.doi.org/10.1007/978-1-4842-1287-5_12
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
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 As you can see in Figure  1-1 , the policy data is related to customers. This relation 
is established using the social security number. So, all the policy records for a customer 
can be retrieved using their social security number. Any modifications to the customer 
identifier (social security number) are propagated to maintain data integrity. 

 Next, let me discuss Hadoop and NoSQL databases that use HDFS for storage. HBase 
is a popular NoSQL database and therefore can be used as an example. Since HDFS is 
a distributed file system, data will be spread across all the data nodes in contrast to a 
central server. Kerberos is used for authentication, but HBase has very limited capability 
for granular authorization as opposed to relational databases. HBase offers indexing 
capabilities, but they are very limited and are no match for the advanced indexing 
techniques offered by RDBMS (relational database management systems). However, the 
main difference is absence of relations. Unlike RDBMSs, HBase data is not related. Data 
for HBase tables is simply held in HDFS files. 

 As you can see in Figure  1-2 , the policy data is not related automatically with a 
customer. Any relating that’s necessary will have to be done programmatically. For example, 
if you need to list all the policies that customer “Isaac Newton” holds, you will need to 
know the tables that hold policies for customers (here, Hbase tables  Life_policies  and 
 Home_policies ). Then you will need to know a common identifier to use (social security 
number) to match the rows that belong to this customer. Any changes to the identifier can’t 
be propagated automatically and will need to be implemented manually.  

  Figure 1-1.    Relational storage of data (logical)       
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 So, for example, if an error in social security number is discovered, then all the files 
containing that information will need to be updated separately (programmatically). 
Unlike RDBMS, HDFS or HBase doesn’t offer any utilities to do that for you. The reason 
is that HBase (or any other HDFS-based NoSQL databases) doesn’t offer any referential 
integrity—simply due to their purpose. HBase is not meant for interactive queries over a 
small dataset; it is best suited for a large batch processing environment (similar to data 
warehousing environments) involving immutable data. Till recently, updates for HBase 
involved loading the changed row in a staging table and doing a left outer join with the 
main data table to overwrite the row (making sure the staging and main data table had 
the same key). 

 With the new version of HBase, updates, deletes, and inserts are now supported, 
but for small datasets these operations will be very slow (compared to RDBMS) because 
they’re executed as Hadoop MapReduce jobs that have high latency and incur substantial 
overheads in job submission and scheduling. 

 Starting with a large block size used by HDFS (default 64 MB) and distributed 
architecture that spreads data over a large number of DataNodes (helping parallel reads 
using MapReduce or Yarn), HBase (and other HDFS based NoSQL databases) are meant 
to perform efficiently for large datasets. Any transformations that need to be applied 
involve reading the whole table and not a single row. Distributed processing on DataNodes 
using MapReduce (or Yarn on recent versions) provides the speed and efficiency for such 
reads. Again, due to the distributed architecture, it is much more efficient to write the 
transformed data to a new “file” (or staging table for HBase). For the same reason, Hadoop 
and NoSQL databases are better equipped to store (and process) large image or video files, 
large blocks of natural language text, or semi-structured as well as sensor data. 

Home_policies

Life_policies

Customer

234-56-2243~Albert~Einstein ~1 oak drive, Palatine, IL 60421~ 8472453333
345-86-1223~Stephen ~Hawking ~100 Maple ct. , Darien , IL ~60561~6304271623
453-65-2244~Thomas ~Edison~55 Pine st. , Naperville , IL 60660~6307246565
294-85-4553~Isaac~New ton~99 Redwood drive, Woodridge, IL 60561~6304275454

45341441 ~01/24/1962 ~N~Y~72~234-56-2243
41441442 ~03/18/1972 ~Y~Y~60~294-85-4553
41671443 ~10/12/1976 ~Y~N~64~453-65-2244
41489744 ~09/06/1968 ~N~N~82~345-86-1223

45341441~1 oak drive, Palatine, IL 60421~500,000~4,000~234 -56-2243
45356442~100 Maple ct. , Darien , IL 60561~750,000~5,000~345-86-1223
45987443~55 Pine st. , Naperville , IL 60660~1,100,000~8,000~45 3-65-2244
45671444 ~99 Redwood drive, Woodridge, IL 60561~300,000~2,000~29 4-85-4553

  Figure 1-2.    NoSQL storage of data       
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 Compare this with a small page size for RDBMS (for example, Microsoft SQL Server 
uses a page size of 8 KB) and absence of an efficient mechanism to distribute the read 
(or update) operations and you will realize why NoSQL databases will always win in 
any scenarios that involve data warehouses and large datasets. The strength of RDBMS, 
though, is where there are small datasets with complex relationships and extensive 
analysis is required on parts of it. Also, where referential integrity is important to be 
implemented over a dataset, NoSQL databases are no match for RDBMS. 

 To summarize, RDBMS is more suited for a large number of data manipulations for 
smaller datasets where ACID (Atomicity, Consistency, Isolation, Durability) compliance 
is necessary; whereas NoSQL databases are more suited for a smaller number of data 
manipulations to large datasets that can work with the “eventual consistency” model. 
Table  1-1  provides a handy comparison between the two technologies (relational and 
NoSQL).

     Table 1-1.    Comparative Features of RDBMS vs. NoSQL   

 Feature  HDFS-based NoSQL  RDBMS 

 1  Large datasets  Efficient and fast  Not efficient 

 2  Small datasets  Not efficient  Efficient and fast 

 3  Searches  Not efficient  Efficient and fast 

 4  Large read operations  Efficient and fast  Not efficient 

 5  Updates  Not efficient  Efficient and fast 

 6  Data relations  Not supported  Supported 

 7  Authentication/Authorization  Kerberos  Built-in 

 8  Data storage  Distributed over 
DataNodes 

 Central Database 
server 

 9  ACID compliant  No  Yes 

 10  Concurrent updates to dataset  Not supported  Supported 

 11  Fault tolerance  Built-in  Not built-in 

 12  Scalability  Easily scalable  Not easily scalable 

 Figure  1-3  shows the physical data storage configurations (for the preceding 
example) including a Hadoop cluster (Hive/NoSQL) and RDBMS (Microsoft SQL Server).   


