

■ ■ ■

Apress

Learn Cocoa Touch
tor iOS

Jeff Kelley

Learn Cocoa Touch for iOS

Copyright © 2012 by Jeff Kelley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN 978-1-4302-4269-7

ISBN 978-1-4302-4270-3 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Scott Gardner
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editors: Jennifer L. Blackwell and Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 100l3. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales­
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book's source code, go to www.
apress.com/source-code.

To my wife, Amanda. I love you.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Contents at a Glance

About the Author •• x

About the Technical Reviewer••• xi

Acknowledgments •• xii

Introduction ••• xiii

Chapter 1: Getting Started •• 1

Chapter 2: Objective-C in a Nutshell ... 15

Chapter 3: Managing On-Screen Content with View Controllers •••••••• 41

Chapter 4: Saving Content in Your App ••• 79

Chapter 5: Handling User Touches •• 109

Chapter 6: Integrating Networking and Web Services •••••••••••••••••••••• 141

Chapter 7: Writing Modern Code with Blocks 181

Chapter 8: Managing What Happens When 209

Chapter 9: User Interface Design .. 243

Chapter 10: Hardware APls ••• 277

Chapter 11: Media in Your App: Playing Audio and Video ••••••••••••••• 309

Chapter 12: Localization and Internationalizion 351

Appendix A: Running Code on an iOS Device 371
Index ••• 375

iv

■

■

■

■

■

■

■

------­Contents

About the Author .. x

About the Technical Reviewer ... xi

Acknowledgments .. xii

Introduction ... xiii

Chapter 1: GeHing Started .. 1
Summary .. 13

Chapter 2: Objective-C in a Nutshell ... 15
Object-Oriented Programming 15
Getting and Setting Data .. 24
Properties ... 27
Writing Your Code for You .. 28
Memory Management. .. 29

Garbage Collection .. 30
Reference Counting ... 30
Autorelease Pools 31
Automatic Reference Counting 32
ARC and Properties 33

Categories 34
Class Extensions 35
Protocols 36

Conforming to Protocols 37
Model-View-Controller Programming: Well-Designed Code ... 38
Summary .. 40

Chapter 3: Managing On-Screen Content with View Controllers 41
View Controller Life Cycle ... 42
Implementing Application Logic with Controls ... 46
Providing Lists of Content with Table Views .. .49

Providing Data to Your Table View .. 52
Providing Custom Table View Cells ... 53

Nib Loading In Depth .. 54
Loading Table View Cells from Nibs .. 55
iPhone and iPad Nibs ... 56

y

■

■

■

CONTENTS

Parent and Child View Controllers 57
Modal View Controllers 57
Navigation Controllers 57
Tab Bar Controllers .. 58
Split View Controllers .. 59
Page View Controllers .. 59

Passing Data Between View Controllers ... 60
Passing Data from a Parent View Controller to a Child View Controller .. 70
Passing Data to and from a Modal View Controller ... 71
Passing Data Between View Controllers with a Delegate Protocol 74

Summary .. 78

Chapter 4: Saving Content in Your App ... 79
Moving Data Around Your App 79

Delegate Chains 80
Key-Value Observing 80
Notifications .. 88
Singletons .. 90

Persisting Data to a File .. 92
NSUserDefaults .. 92
NSCoding ... 100
Manual File Handling 104
SaLite Databases 105
File Locations on iOS 106
Core Data ... 107

Summary .. 108

Chapter 5: Handling User Touches .. 109
The Responder Chain .. 109
Custom Views ... 111
UIGestureRecognizer .. 112

More Target-Action Methods ... 113
Gesture Recognizer Life Cycle ... 113
Built-in Gesture Recognizers ... 113
Custom UIGestureRecognizers 115

Scroll Views 118
Implementing UI Changes 120

Adding Pictures to Possessions ... 120
Using UIActionSheet 132
Implementing "Edit" for Table Views 135
Implementing Table View Reordering .. 137

Summary 139

Chapter 6: Integrating Networking and Web Services 141
Loading Data from the Network ... 142

Creating a URL Request ... 142
Creating a URL Connection .. 142
Interpreting the Response 143
Using Received Data 145

vi

■

■

CONTENTS

Asynchronous Operation 148
URL Connection Delegate Methods 149
Asynchronous Networking Concerns 152

Parsing JSON and XML from Web Services 153
Parsing XML. 154
Parsing JSON ... 157
Creating JSON Representations .. 158
Parsing Foundation Objects into Model Objects .. 159

Downloading Files .. 162
When to Cache Files .. 164
Downloading Images ... 165

Sending Data Across the Network .. 165
Creating a Twitter Client ... 166
Summary .. 180

Chapter 7: Writing Modern Code with Blocks 181
What Are Blocks? ... 181

Blocks Are Encapsulated Functions .. 182
Readable Block Declarations with Typedefs ... 183
Block Memory Management. ... 184
Blocks Are Objects 185
Blocks Capture Scope 186
Blocks Retain Objects .. 188
Using Blocks as Parameters to Methods ... 189

Why Should We Use Blocks? .. 190
UIView Animations ... 190
Using Blocks for Asynchronous Callbacks ... 193
Using Blocks for Enumeration ... 194
Using Blocks to Sort Arrays 199

Using Blocks in Your Code 201
Updating TwitterExample with Blocks .. 203

Adding a Completion Handler .. 203
Adding Activity Indicators 206

Summary 208

Chapter 8: Managing What Happens When 209
Sending Messages ... 209

Messages Under the Hood 21 0
Performing Selectors Manually ... 211

Scheduling Code with Timers ... 215
Run Loops 219
Multithreaded Code 222

Running Code on Another Thread 222
Thread Safety 223

Grand Central Dispatch 230
Dispatching Code ... 231
Using Global Dispatch Queues 233
Dispatch Objects .. 236

Yii

■

■

■

■

CONTENTS

Summary 242

Chapter 9: User Interface Design .. 243
Coloring Interface Elements with UICoior ... 244
Fonts and Text Size .. 249
Using Images 255
View Layout .. 257

View Hierarchy .. 258
View Coordinate Systems 258
View Display Properties 260
View Layout in UIView Subclasses .. 263
View Layout on Retina Display Devices ... 264
View Layout on iPad .. 265

View Animation ... 266
Example: Reddit Photo Browser ... 268
Summary .. 276

Chapter 10: Hardware APls ... 277
Using the Camera ... 278

Using UlimagePickerControlier for Photos ... 278
Using UlimagePickerControlier for Videos ... 282
Using UIVideoEditorControlier for Video .. 284

Using the Accelerometer .. 285
Accelerometer Events .. 285
Device Orientation Notifications .. 287
Using Raw Accelerometer, Gyroscope, and Magnetometer Data with Core Motion 288

Using Location Data .. 293
Using CoreLocation .. 293
Using Map Kit ... 295

Bring Your Own Device ... 307
Requiring Devices in Your App ... 307
Summary .. 308

Chapter 11: Media in Your App: Playing Audio and Video 309
Playing Audio 309

System Sound Services 310
AVAudioPlayer 314
Other Sound APls ... 317
Example: SoundBoard ... 317
Playing Music 322
Example: TitularSongs 327

Playing Video 333
Using MPMoviePlayerController 333
Example: CustomPlayer 338

Summary 349

Chapter 12: Localization and Internationalizion 351
Internationalization 352

Using Numbers 353

viii

■

■

CONTENTS

Example: LocaleNumbers 354
Using Dates ... 359
Processing User Input. ... 361

Localization .. 363
Localizing Text 365
Example: HelioLocalization .. 366
Localizing Resources ... 369
Localizing Nibs 369

Summary .. 370

Appendix A: Running Code on an iOS Device 371
The iOS Developer Program 371
iOS Application Security ... 372
Obtaining a Certificate .. 372
iOS Application Provisioning ... 373

Index ... 349

ix

�

x

About the Author

Jeff Kelley started programming for the iPhone with iPhone OS 2 and has seen it evolve into
the iOS we know and love today. Jeff has developed dozens of apps for clients both large and
small in a wide variety of industries, as well as several apps for his own use. He's been
programming since using BASIC in grade school, with his professional start coming in the Mac IT
world in education. Today he does iOS programming full-time, as well as speaking engagements
at conferences and the local chapter of CocoaHeads.

�

About the Technical Reviewer

Scott Gardner is an Apple technology evangelist, consultant, and
developer. He combines insight gained from the field and continuous
study of iOS to develop apps that are beneficial and intuitive. SCOII
resides in the Midwest with his wife and daughter.

xii

Acknowledgments

I'd like to thank everyone at Apress for their hard work on this book-specifically. Scott Gardner
as my technical reviewer. who made a number of suggestions that improved the quality of the
work. as well as keeping me honest with providing top-tier content. Douglas Pudnick. my
development editor. also did a great job guiding the direction of the content. and the other
editors. Michelle Lowman. Jennifer Blackwell. Kelly Moritz. and Jill Balzano. were all a great help
with this book. I'd also like to thank the Detroit Labs crew. specifically cofounders Paul Glomski.
Henry Balanon. Nathan Hughes. and Dan Ward. for being understanding with the challenges of
writing apps by day and a book by night. as well as for giving me an awesome place to work. At
home. a great deal of thanks goes to my wife. Amanda. who put up with me writing this book
while also pregnant with our first child. something she deserves endless credit for. Finally. I'd like
to thank my parents for helping me get my start in programming; my mom would copy BASIC
programs from a book when I was in kindergarten so that I could mess with them when I got
home. and later in grade school my dad bought me a copy of Visual Studio-the first app I ever
wrote for someone else was a retirement calculator he could keep on his screen at work to count
down the seconds until retirement. I've had a lot of help along the way in getting this book
published. so to everyone. mentioned here or not. thank you.

Introduction

With every successive release of iOS and its related hardware products, Apple and journalists the
world over spout hyperbolic statements about "revolutionary" features, "insanely great" devices,
and "unbelievable" sales. The numbers don't disappoint, with hundreds of millions of iOS
devices having been sold and billions of dollars sent to developers in revenue. As we enter the
post-PC era, we do so using our smartphones and tablets. Apple's iOS is consistently the most
user-friendly, powerful platform for these new devices, and developers the world over benefit
from offering their products on the App Store. That being said, it is a market that continues to
grow every day, especially when customers can obtain an iPhone for next to nothing up front
with a two-year contract. As the barrier to entry to the smartphone market declines and the user
base goes up, opportunity skyrockets. This book will allow you to take advantage of that
opportunity. We'll get up and running using Xcode on Mac OS X, we'll create applications as we
learn Objective-C (the language in which you'll be developing your apps) , and we'll tour the
frameworks that make Cocoa Touch one of the best development environments in the world.

As you should get used to when programming for an Apple environment, there are rules. As such,
there are some things you'll need to go through this book: a Mac with an Intel processor running
Mac OSX lO.7 (Lion) or newer, withXcode 4.3 or newer (available from the MacApp Store) , and
ideally an iOS device running iOS 5.1 or newer. While older versions of Mac OS X, Xcode, and iOS
may still be in use, screenshots and step-by-step instructions in this book may not work for other
versions.

Who This Book Is For
This book assumes a basic level of programming knowledge. You don't have to be an expert, but
any experience you have with C, C++, or even Java will be useful to help frame concepts explained
in the early stages ofthe book. You should also be familiar with the basics of Apple's Mac OS X
and iOS operating systems, enough to get around the filesystem in Mac OS X and launch Xcode
and enough to launch apps and understand typical app behavior on iOS.

How This Book Is Structured
In general, chapters in this book will begin with more abstract concepts. Where there has been
evolution in the development frameworks and libraries, we'll start with the older, more
complicated ways and lead in to the newer way of doing things in order to better understand why
things have developed the way they have. As each chapter progresses, we'll switch from the

xiii

INTRODUCTION

xiv

abstract to the concrete, with sample projects and example code. We'll develop two apps in
multiple chapters, with other smaller examples in addition.

Chapter 1 gets you up and running with Xcode and creating a "Hello, World!" app.
Chapter 2 covers the Objective-C language in detail, including memory management,

best practices, and the latest additions to the language.
Chapter 3 discusses working with view controllers, one of the most important types of

objects you'll use in iOS development.
Chapter 4 covers handling your data, from moving it around inside the app to saving

and loading from disk.

code.

Chapter 5 details handling user touches and basic app flow.
Chapter 6 covers networking and web services, including parsing JSON and XML.
Chapter 7 introduces blocks, Apple's new addition to the C language that encapsulates

Chapter 8 explains more about the message dispatch process in iOS, leading to a
discussion of multithreaded code.

Chapter 9 covers user interface design in your app.
Chapter 10 details the multitude of hardware APIs available on iOS devices, including

the accelerometer, gyroscope, and magnetometer, as well as location services using GPS.
Chapter 11 outlines using media in your app, both audio and video.
Chapter 12 covers the internationalization and localization processes, which help give

your app a broader reach.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com.
You can fmd a link on the book's information page under the Source Code/Downloads tab. This
tab is located underneath the Related Titles section of the page.

Contacting the Author
Send your questions, comments, criticisms, and lame puns (especially lame puns) to me on
Twitter as @SlaunchaMan or bye-mail atSlaunchaMan@gmail.com. Read my blog at
http://blog. slaunchaman.com, and check out my professional work at www.detroitlabs.com.

Chapter

Getting Started

While apps for your iPhone are a relatively new phenomenon, they're based on
decades-old technologies present also on your Mac. Mac OS X introduced a
new set of APls and frameworks collectively known as Cocoa. While iOS shares
many lower-level system frameworks and APls with Mac OS X, the APls relating
to its touch-based user interface, telephone capabilities, and iOS-only
functionality reside in the Cocoa Touch layer, an analog to Cocoa for mobile
devices. One of the similarities Cocoa Touch has with its desktop counterpart is
the tools used for development, including the same IDE, Xcode. In fact, SDKs
for iOS and Mac OS X development are included when you download the
developer tools. In this chapter, we'll take a closer look at these tools and get
started using them.

Installing Xcode
Before you get started writing your applications, you'll need to install Apple's
developer tools. While there are many individual applications, libraries, and
utilities you'll use over the course of app development, the main one you'll use is
Apple's IDE, Xcode.

NOTE: Unlike the iPhone and other Apple products, the leading X in Xcode is
capitalized.

There are two ways to install Xcode. The easiest, best-supported, and most up­
to-date way is to download Xcode from the Mac App Store. When the download
finishes, Xcode will be in your IApplications directory, with no further
installation required.

1

�

2 CHAPTER 1: Getting Started

NOTE: By default, the Xcode installer installs developer tools to the / Applications

folder on your hard drive. It is possible to install Xcode to a different location, but

recent versions of the installer have not exposed that option to users. I recommend

installing the App Store version of Xcode to / Applications and installing any beta

versions you may use to other folders.

The second way to install Xcode is by downloading an installer from Apple's
developer site. While Apple doesn't always release each final shipping version of
Xcode this way, this is how you'll install prerelease versions of the tool set. Once
you log in with your developer credentials, you'll download a disk image
containing an Installer package for the developer tools. Run that package to
install Xcode. As of this writing, the latest version of Xcode is 4.3; while older
versions may work on your Mac, versions older than 4.0 are significantly
different, enough so that it may be difficult to follow along with the tutorials in
this book.

Either way, you should know going in that Apple's tool set is a large download,
usually more than several gigabytes. There has been some progress on
separating individual components into something that Xcode can update
without redownloading the whole set of tools, but the initial download is
something you probably can't do at your local coffee shop.

The Developer Tools
The developer tools you've installed center around Xcode, but there are some
other components that you'll use a lot over the course of this book:

Instruments allows you to inspect the performance of your
application, finding memory leaks, discovering computational
bottlenecks, and even breaking down the 3D rendering of
games with ease.

�

�

�

CHAPTER 1: Getting Started

The iOS Simulator runs your iOS applications in a simulated
environment. It's important to note the difference between a
simulatarand an emulatar. In a simulator, your code is
compiled for the platform the simulataris running on. In the
case of an iOS app, the code is compiled for your Mac and
runs in a fake, iPhone-likeenvironment. In an emulator, the
code is compiled the same for the emulator and the platform
you're writing far. There is no iOS emulator available, but if
there were, code compiled for the emulator would be the same
as code compiled for the device. This is important in testing
because the processor architectures are different on different
platforms; your Mac has an Intel processor, but an iPhone has
an ARM processor. For this reason, you should always test on
the device before releasing an app to ensure that there aren't
any device-specific bugs.

Xcode allows you to download local copies of the entire
documentation set usually available at
http://developer.apple . com; this documentation allows you
to see help inline in Xcode while you write.

Finally, the tools include compilers, linkers, and other tools
needed to turn your code into an actual, functioning
application. If you're comfortable with the command line, you
can now use gee and related tools to compile applications.
Xcode 4 replaced GCC with Clang running on the LLVM
infrastructure, a more modern compiler and the new default.
For most cases, LLVM can replace GCC with no loss in
functionality-in fact, the gee command-line utility is really just
a symlink to LLVM in recent tool set distributions.

To get started, launch Xcode. By default, the path will be
/ Applieations/Xeode . app. With Xcode installed and launched, let's make our
first application.

Hello, World!
When you first start Xcode, you'll see a welcome screen (Figure 1-1). From here,
you can open recent projects, launch Apple's developer web site, open the
Xcode user guide (which you should definitely read at some point), download
source code from a revision control system, and create a new project. Since we
haven't created one yet, click "Create a new Xcode project."

3

4 CHAPTER 1: Getting Started

0 0("1

e come to Xcode
Version 4.3 (4EI09)

Create a new Xcode proj ect
Stan building a new Mac. iPhone or IPad
application from one of the Included templates

Conn@ct to a repos itory
Use xcode's integrated source control features to
work with your existing projects

Learn about USing Xcode
Explore the Xcode development environment with
the xcode 4 User Guide

G'O t'O Apple's developer portal
Visit [he Mac and lOS Dey Center webSiles at
developer.apple.com

Open Other... I Show this window when Xcode launches

Figure 1-1. The Xcode welcome screen

Recent-s

ill. liMY'

NO Selection

cancel 1 , Open

When you create a new project, Xcode presents a wizard, seen in Figure 1-2,
that starts with a list of the types of projects it can make. Xcode uses templates
to speed the development of common types of applications. On the left, you can
see the categories of templates that are currently installed. If it isn't already
selected, select Application under iOS on the left to display all of the iOS
templates. Our simple application will have only one screen, so select Single
View Application and click Next.

CHAPTER 1: Getting Started

n o o ."
[J EJ I loading I aID ~ • 1QI f.'lIVi I W I:; IU

• Stop Set tho· vunL',=====, ""tor vew Org.m Z~

I il l n I
Choose a template for your new project:

II lOS - I=' [ill 1J:t.'.1I'I"!!r.!lI
Framework &- Ubrary

,,~

~ Other
M;ute:r- Detail OpenCI.C<lme P.lge-8il~ed liMII ~ " MacOSX Application Applic.ation

~ ApplicatiOn
F,amtwork & Ubrary >t Applic;:.;!.tion Plug- In ~ .. -.. ...
System Plug-in

Other Tabbed Application Util itY Appl lut!on Empty Application

•
~ Single View Application

~[ill§
d for dtftning 0\

This tt mpl.ue provides .l starting point for an appllc;ulon Ih.u oses a single 'VIew. It provldes a
lable • Used for view controller to manilCJc the view. olnd a storyboilrd or nib fi le that contollns the vlew.
lbre50~u.n
l'uhiple timt5.

(Cancel 1 Previous ~ Ne)(t 1 etining .a type.

lLl C,,+:tl~~~~·.c~;~~
I e ,

Figure 1-2. Selecting a template from the Xcode New Project Wizard

The next screen gives you some options to set the metadata for the project and
to further refine which template Xcode uses. Since this is our first project, we'll
create a "Hello, World!" iOS application. "Hello, World!" is a tradition nearly as
old as programming itself wherein the first thing you do in a new language or on
a new platform is make a program that displays the words "Hello, World!" to the
user. Enter HelioWorld for Product Name. The Company Identifier value should
be a reverse-DNS label for your company name (if you have one). If you don't
have one, your personal web site will do. If you don't have one, consider getting
one before releasing any apps to the App Store.) Since my web site is at
http://learncocoatouch . com, I use com .learncocoatouch as my company
identifier. This reverse-DNS style listing is used often in iOS to differentiate
between applications and other identifiable things, typically with your application
ID affixed to the end. For me, the HelioWorld project has the identifier of
com.learncocoatouch.HelloWorld. App IDs must be unique in the App Store,
and installing an app on a device with the same ID as another app will overwrite
the existing one.

The class prefix is used to identify code that you create and differentiate it from
code that others write. Typically you'll use your initials. This is important to

5

6 CHAPTER 1: Getting Started

ensure that two developers don't create things with the same name. If your
initials happen to be the same as another developer's or what a system
framework uses for a prefix, you can use three letters, letters from your
company name, or any combination of letters you like. For Learn Cocoa Touch,
I'll use LCT.

NOTE: You can find an unofficial list of "claimed" prefixes at

www.cocoadev.comlindex.pl ?ChooseYourOwnPrefix. Claim yours now!

The next options affect the template that the project will use. Leave Device
Family set to iPhone for now. If you're creating an app for iPad or a Universal
app that supports both devices, this is where you set it. Uncheck Use
Storyboard and Include Unit Tests, but check Automatic Reference Counting.
We'll go over what those mean in more detail later. Once those are set, we're
finally ready to create our application. Your screen should look like Figure 1-3.
Click Next.

",.,0

Choose options for your new project

--::=::=
-j

.,.- J "'oc!uC1N r-IH-ellow-."-.-ci------------,
\! Com~ identifier com.learnccoalouch I

Bundle Identlfter (O'll [t'J'n,tOJtG~(" f'c':l";\v' d

(lin Preftx LCT

Device fanuly iPhOM

Use Storyboard

~ Use AutomatIC Reference Counting

_ Include UnIt Tests

C~ncel Previous II. II

: ;(~I
~"' ...

tt'tfPCSITIOUH­

"''''1Oft tctwhtn II'S

------..._------------___....--.-, lIII"allll'£CF!CIdlC""'Mh6_~~~:ts~ts
action mtS"9f to a urget object

Rounded Textured lunon .
In,,,",,,,,, ,,·.t'U~.""'-n _nil aNI

Figure 1-3. Choosing options for the new project

CHAPTER 1: Getting Started

Xcode will prompt you to select a location for the project on your hard disk, as
well as give you the option to create a local Git repository while it creates the
project. If you know and use Git, feel free to select that option; otherwise, it's
unneeded for this project. While going through this book, you may find it useful
to create a separate directory somewhere in your Home folder for the various
apps we'll be writing, such as -/Projects/Learn Cocoa Touch/ .

Once you select a location, Xcode creates your project. The initial screen,
shown in Figure 1-4, shows you your project settings. Here we can modify
project metadata such as supported resolutions, which iOS version(s) the
project will run on, the version number of the application, which device
orientations it supports, the icons to use, and so on. We' ll leave these alone for
now.

HeOowOtld IPtiont 5.0 SimulatOt

... CJ HdlDWGrld

hJ lCTA~'JI

II!lCU'~9-.lIot..m

hJ ~_roll.r.h

ml lO'\1!t>o(:onvoiltr.m
lC1Vl~OMtOIItf' lb

It P1tOJ OCT

o

SU~"D .. 'keOritrlIMiOOll5

I lCJ :-1
PQnnoi, -.,~~

"""'
~""J

[:;J r:-;:::I

Rl:llnatN.pI;ry

UiuMh~ti

[J K ~ ~ . ..-
~

Y~ldate~nl",$

.-e
I,.&nds.(-I'Pt

."

I"" ..
f~. PM~ ,,",p(titllolN«IcI1

Ho.!laWortcl.J<COdtproj Q

-;-hoJert~t
".,..a I'onr.u J lt(_U-~lIb1e : 1

Vto1lo!1 -

5QIw CJ I%o;Id\otcI o<K'~
Loc;,uilwl Itmp(tkiJowoddl

HtiroWottcl Coftpj'oj' C

[) II • •

GrMtM"1 M lo..· InltfUOCl _~. j , __ ".,",.".u_
IIIf1,s.Iqe\.O~UCV'ttobjKt"iI ·.

~~ .lfCl'''II" - Ioo:~n:tDl'
"-'f~_nn~ndloHld'iIII
~ion_'~IO.UlVftotl,rKL

~ftCk:d TUtll'ltcl ',mOll ' __ 'U~_L .. ""
e

Figure 1-4. This is the initial layout of the Xcode window once you've created a project.

To run your application in the iOS Simulator, click the Run button at the upper­
left corner of the Xcode window (the one that looks like the iTunes Play button).
Since we haven 't modified the code at all, it won 't look like much. Figure 1-5
shows what you should see at this point when you run your app.

7

8 CHAPTER 1: Getting Started

NOTE: If the text to the right of the Run button says iOS Device, change the selection

to the iPhone Simulator.

Figure 1-5. Our first iOS app running in the simulator

Now that we have the application set up and ready to modify, let's take a look at
our goal for this application:

Goal: Build an app that says "Hello, world!" to the user.

Ready to modify the app? Good. Quit the iOS Simulator and head back to
Xcode. Press Command+ 1 to open the File browser on the left pane. Find the
file under HelloWor Id that ends in ViewController. xib and select it. Note that it

CHAPTER 1: Getting Started

will start with your class prefix-in my case, it's called LCTView(ontroller .xib
by default. The file will open in an Interface Builder view: a visual layout of your
application's interface. Right now, it's the same gray view that you saw in the
iOS Simulator. Let's change that. The bottom-right corner of the screen contains
the Object Library, a collection of user interface elements that you can add to
the view. You can switch to its search field by pressing
Control+Option+Command+3. Figure 1-6 shows what your screen should look
like with the Object Library visible.
8 0 0 ~ H.UoWorJd.xcockproJ - l.CTV1ewConuoflcr.x(b _ I lulld HdIowarid: Sc!cuflt,.,d TDd.ayaJ l l'S7PW I

~~"'~ ""'

IJ

+ G GlI3' e "

."

fl 0' ••

lt4M''''IIIItIl<IIIII1~ ·''tlW:'''5Iwt11
_M~lII4M:11d,~ICIkIn"",I"'«>1
~otIjoKt'Atlt~it'J~

$eu_ntfil Cor!lrol . Oh~

1 2 =:'~dl~;:I!"'~~

"
Figure 1-6. The Xcode window using Interface Builder with the object library visible.

To add an object to your view, either drag it from the Object Library to your view
or double-click it. Drag two objects to your view: a Label and a Round Rect
Button. Double-click the button to add a title; let's make this one read "Say
Hello." Notice that the button resizes itself when you add the title. You can get
labels and buttons to resize themselves to their content by pressing
Command+=. Double-click the label and remove the text, and then make it
stretch across the view. Once you remove the text, the label will appear to be
invisible; if you can't find it, click Editor ~ Canvas ~ Show Bounds Rectangles,
which will outline the label for you. When you 're done, it should look something
like Figure 1-7. If so, now is a good time to save your work. Xcode isn't perfect,
and if it crashes, your unsaved changes go with it, so getting into a habit of
saving often is recommended.

9

10 CHAPTER 1: Getting Started

HelioWorld) i!JKViewContr. ..) ".; JKViewContr.. .) U View) [j Label

IJ
~

[Say Hello]

·0

Figure 1-7. The view set up for our "Hello, World" application

Now let's add some code to this application. We want the label to say "Hello,
World!" when the user presses the button. To do that, we'll add a method to our
view controller. Method is Objective-C's word for function . If you're familiar with
object-oriented programming, then methods will be familiar. If not, follow along
in this chapter; we will discuss Objective-C later in much more detail.

The view controller's header file is a file that describes it. Headers are the
"public" portion of your code; they describe what the code will do without
actually showing how it works. When you receive source code that's already
been compiled, typically you 'll also receive the headers associated with it. In the
file browser, select the file ending in ViewController. h with your prefix before it.
In the header, we define the methods that we will create. By default, it should
look like this (with some comments at the top):

II
II LCTViewController.h
II HelloWorld
II
II Created by Jeff Kelley on 1/28/12.
II Copyright (c) 2012 Jeff Kelley. All rights reserved.
II

#import <UIKit/UIKit . h>

@interface LCTViewController UIViewController

@end

CHAPTER 1: Getting Started

The first part of creating a method is declaring it, that is, telling the code that
there will be a method. So, add this line between the @interface and @end lines
and save your changes:

- (IBAction)sayHelloButtonPressed:(id)sender;

We'll go into more detail later on what each part of this line means. For now, you
should know that the name of the method is sayHelloButtonPressed: . Now that
we've declared it, we can go back to the view and tell our app to run our
method when the button is pressed. Head back to the view by opening
LCTViewController .xib and select the button. Open the right utilities pane to the
Connections Inspector, either by clicking the rightmost icon at the top of the
pane or by pressing Command+Option+6. You'll see a list of empty circles on
the right side of the list under Sent Events. We're interested in the event Touch
Up Inside. These events represent different points of interaction the user has
with the button. When they first place their finger on the button, the Touch Down
event occurs, and when they lift it, the Touch Up Inside event occurs. Typically
on iOS, we use the Touch Up Inside event for user interaction; that way, the user
can cancel pressing the button by moving their finger away.

To connect the Touch Up Inside event to the method we created, click the
empty circle next to it and drag. We're connecting it to the object called File's
Owner, which looks like a transparent box and is to the left of our view. With
File's Owner highlighted, release the mouse button, and a list of methods will
pop up. The method we created should be the only one in the list. Select it, and
the button is now connected to the method. It should look like Figure 1-8.

11

12 CHAPTER 1: Getting Started

T Sent Events
DId End On Ex,t 0
Editing Changed 0
Editing Old Begin 0
Ed it ing D,d End 0
Touch Cancel 0
Touch Down 0
Touch Down Repeat 0
Touch Drag Enter 0
Touch Drag Exit 0
Touch Drag Inside 0
Touch Drag Outside 0
Touch Up Inside • File's Owner •

savHelioButton ...

Touch Up Outside 0
Value Changed 0

Figure 1-8. The Connections Inspector view after we've connected the button to the method

The next step is writing the code that will happen when we press the button.
First, we need to create a way to get to the label from our code. Much like
creating the method, we'll modify the header first and then connect the view to
it. Modify the header to add this line:

#import <UIKit/UIKit.h>

@interface JKViewController : UIViewController {
IBOutlet UIlabel *helloWorldlabel;

}

- (IBAction)sayHelloButtonPressed:(id)sender;

@end

Now, we need to connect the label in our view to the IBOutlet we created.
Select the label in your view, and then open the Connections Inspector. Drag the
circle next to New Referencing Outlet to File's Owner and select
helloWorldlabel. Now that we've done that, we can use helloWorldlabel in our
code to refer to the label.

We have everything set up for our method, so let's create it. We define our
methods in the view controller's imp/ementationfile, which ends in .m. Open the
file and add the lines in bold:

#import "JKViewController.h"

@implementation JKViewController

II Other methods will be defined here

- (IBAction)sayHelloButtonPressed:(id)sender
{

}

@end

[helloWorldlabel setText:@"Hello, Worldl"];

CHAPTER 1: Getting Started

This code calls a method on your label, setText:, with the text "Hello, World!"
Now that we've imp/ementedour method, click Run again to run the application.
Xcode will build the app and run it in the iOS Simulator. You'll see the button.
Click it, and the label will say "Hello, World!"

Summary
While creating a "Hello, World!" app is an important beginner's task in any
language, it's not going to sell too many copies in the App Store. It doesn 't
really access too many features of the device, and it doesn 't push the envelope
with an engaging user interface. It's a good step toward making a quality app,
however, and that's what counts. In this chapter, we covered installing and
using Xcode, as well as the beginnings of using it for programming. Now that
we've created a simple app in Xcode, let's learn more about Objective-C, the
programming language we'll be using throughout the book.

13

Objective-C in a
Nutshell

Chapter

Objective-C is the primary language you'll be using to create iOS apps using
Cocoa Touch. This chapter will walk you through the basics of the language,
covering new developments in its evolution as well as tried-and-true methods
that are decades old. In this book, I'm assuming that you have at least a basic
understanding of the C programming language. If you're coming from a Java or
C++ background, you can probably get by just fine, but if you're new to C-like
languages altogether, I recommend familiarizing yourself with it. Some excellent
books on the subject are The C Programming Language by Brian Kernighan and
the late Dennis Ritchie, who originally designed the language; Programming in C
by Stephen Kochan; C Programming by K. N. King; and Learn C on the Mac by
Dave Mark.

Object-Oriented Programming
Objective-C is an object-oriented language, as are Java and C++, but Objective­
C is unique in that it is a superset of C; that is, anything that is valid in C is also
valid in Objective-C. C++ gets close, but not quite there. This means that if you
already have code written in C, you can use it as is for iOS. You can also use
existing C data structures, functions, and preprocessor macros. The more
interesting parts, however, are those that Objective-C adds to turn C into an
object-oriented programming language.

2

16 CHAPTER 2: Ob)ectlve-C In a Nutshell

An object in Objective-C is used much like other data types (integers, floating­
point values, characters, and so on) in C, but typically you'll use a pointer to
refer to it. The following line is an example of creating an object in Objective-C:

NSString *myString = @"Hello, World!";

In that line, we created the object myString. Its class, or the kindof object it is, is
NSString. myString is an instance of NSString. The asterisk (*) signifies that
we're creating a pointer-technically speaking, myString isn't the object itself
but rather a pointer to an instance of NSString.

NOTE: We created myString as a constant string. The @ followed by a string in

quotes signifies this to the compiler.

To declare a class, use the following syntax:

@interface ClassName : SuperClassName

The @interface is a compiler directive-that is, a special command to the
compiler that gives it instructions on how to compile your code. In this case,
@interface begins the class definition for a class. The SuperClassName is the
name of another class from which the class you're creating will inherit variables
and methods. The root object for most of the objects you'll create is NSObject
(the NS stands for NeXTStep, NeXT's operating system). While there are
technically other base classes, you're free to create your own. For now we'll use
NSObject; it contains many functions that Cocoa Touch relies on.

NOTE: The reason the NS prefix remains from NeXTStep has to do with the history of

Mac as X. Apple purchased NeXT Software, Inc., in 1996, and the NeXTStep

operating system formed the basis of Mac as X, introduced in 2001. iOS shares

many of its system-level frameworks, including Objective-C and the Foundation

framework, which contains NSObject and other essential classes, with Mac as X,

thereby inheriting the shared legacy of NeXTStep's NS prefix. One advantage of this

is that in most cases, classes that begin with an NS prefix are also available on the

Mac, so if you're interested in programming in Cocoa (the Mac as X equivalent of

Cocoa Touch), learning Cocoa Touch is a great first start.

To help explain this, we'll work toward a goal instead of talking in the abstract
the whole time. Our goal is going to be to create an address book. Let's create a
class that represents an entry in the address book. Each entry corresponds to
an individual person, so we'll name the class Person:

