Pro
Couchbase
Development

A NoSQL Platform for the Enterprise

A HANDS-ON GUIDE TO LEARNING AND
DEVELOPING WITH COUCHBASE

Deepak Vohra

Apresse

Pro Couchbase
Development

Deepak Vohra

ApPress’

Pro Couchbase Development
Copyright © 2015 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1435-0
ISBN-13 (electronic): 978-1-4842-1434-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Massimo Nardone

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484214350. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerlLinkin the
Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484214350
www.apress.com/source-code/

Contents at a Glance

About the AUNOFccouusemmmsnnmmssnmsssssmssssssssssssssssnsssssnsssssnnesssnnssssnnesssnnsssnnnnsssnnnsss xiii
About the Technical REVIEWEFcuccesssesssssssssssmsssssssssssssmssssssssssssssssssssnsssnssnsssnsannas XV
Chapter 1: Why NOSQL?cccccurmmsmmnmmmssssnssmsssnnssssssnnnnsssns 1
Chapter 2: Using the Java Clientccouemmmmssnmmssssmmsssssmsssssssssssssssssssssssssssnsnsssns 19
Chapter 3: Using Spring Dataccocummmmmmmmmssmmmmmssssnmmssssssssmssssssssmsssssssssssssnnsnns 55
Chapter 4: Accessing Couchhase with PHP.............ccccimnnnemmmnnnssssnnmnsssssssssssssnns 99
Chapter 5: Accessing with Ruby........ccccccinnnnemmmnnnsssmmmmnsssnmmsssssmssssnsssnn 119
Chapter 6: USiNg NOUE.jS ...uceerrrssssnmnmmssssnnnmsssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 155
Chapter 7: Using Elasticsearch..........ccusccemmmnnssemnmnnsssssnnmssssssnmmssssssssssssssssssssssnnns 175
Chapter 8: Querying with NT1QLcccccnnnnmeemmmmmmmmmmmmssssssssssssesssssssssssssmmnns 197
Chapter 9: Migrating MongoDBccccimnmmmnnmmmmsnnnmmmmsssnmesssssssssssssssssssssnnns 233
Chapter 10: Migrating Apache Cassandra..........cccusmmmmsssnnnmmsssssnssssssssssssssssnnns 255
Chapter 11: Migrating Oracle Databaseccovnnsmmnmmsssesnmmssssnsmmssssssnssssssnnn 281
Chapter 12: Using the Couchbase Hadoop Connectorccuuseerrnsssnnnnsssssnnnnas 291
INdeX.ciiiiiirri s —————————_——————_———_—_—_ 327

iii

Contents

AboUt the AULNOKciirmeeiiireenerirresesrrss s nns s rsnsa s s s nnas s nannnassnnnnnssssnnnnnnssnnnns Xiii

About the Technical REVIEWETccurrrrrmmmmmnsssssssmmsssssssssssssssssssssssssssssssnsssssssssssssssnns XV

Chapter 1: Why NOSQL?.......ccccmsemmmsmsmsssmsassmssssssssssssmsssssssnsasssssssssnsssnssnsnssnsnsnnnnas 1
WhAL IS JSON? ...t ss s n s a s re e nen s nn e s e s 2
What Is Wrong With SQL? ..ot 4
Advantages of NOSQL Databasesccerererrereerereiesesse e ssessesse e ssessssssssssssssssssssssssseas 5
T2 1 Lo 4O 5
Ultra-High AVAIADITIEYccceeeereeeceee et e 6
COMMOAitY HAIAWAIEceeeecceeeccir et 6
Flexible Schema or NO SChema...........ccovnnnn s 6
51 1 D - O 6
Object-Oriented Programming...........cococereeecnernenesesesesesesessss e sesssss e sssss e s s e s sssssssesssssaes 7
PEITOIMANCE ... 7
FAIIUIE HANGIING ...t 7
LesS AdMINISTration ... s 7
Asynchronous Replication with AUt0-FailOVErcccourrieerirreserreee s 7
Caching for Read and Write PErfOrmanceccccoceururercneresencnirsesssesesse e sssnens 10
Cloud ENADIR........cciiic 10
What Has Big Data Got to Do with NOSQL?ccccvveeevrennseresessesese e ssse e 11
NoSQL Is Not without Drawbacks...........cccurrrninnn s 11
BASE, NOTACIDcueeeeeeeeesresseseiesssssessessessssssssssessess s s s st s bbbt snseas 11
SHll NEW 10 The FIBlt ... 12
Vendor SUPPOIT IS LACKING......cuicvriricrcrirre et se s sas e st et 12

vi

CONTENTS

Why COUCNDASE SEIVEI? ...t 12
Flexible Schema JSON DOCUMENTS.......cccovueererrrereeresrsseeseses s sss s s s s s s ssssssssssssssssssaes 12
T2 1 o111 4TRSS 12
Auto-Sharding Cluster TEChNOIOQYccccovueererererenerirseeseresee e sesnns 12
High Performance from High Throughput and LOW Latency.........c.ccceecernenenerennsesesesesesesesssesesessssenes 13
Cluster High AVAIlabilityc.cceoceerereiesernesecssseeses s 13
Cross Data Center RepliCALION..........cccceceereeescririeeesis e 14
DAtA LOCAITY.....coveeeeeeeresreeseserie e e e s e e e e nr e 14
RACK AWAIENESSecuceerreeesesseseesesssesesessssssessssssssesssssssssssssssssssssssessssssssensssssssssssssssessnsssssesssssssasenes 15
Multiple Readers ant WHTEISccceeerereiencnrieesesis e snss 15
Support for Commonly Used Object-Oriented LANQUAGEScovvereererrerererenerinerie e sesesessessesenaes 15
Administration and Monitoring GUL..........ccoeeerrrencnresescreseese e ssssns 15

Who Uses Couchbase Server and for What?...........ccccoeevieensnicssscssse s 15

T 1 11 18

Chapter 2: Using the Java Clientcccciunninemmmmnnssssnmmmmssssmmmssssssmssssssssssssssn 19

Setting Up the ENVIFONMENt ...t e 19

Creating @ Maven ProjeCt.........ccveeiierensiierinsese e s sss e s snssessssnnnens 20

Creating @ Data BUCKEL...........ccceerererrrc e ree e s saesa e sassas e sn e sa s sassasnnes 26

Connecting to CouChbhase SErVer ... cere e 30

Creating @ DOCUMENLccvveeerimrenisseressse s sns s sn s sne e s sns s sns e snesnnnens 34

Getting @ DOCUMENT.........coceierere e raesa e sa e sa e sa e sa e sa e sa s sn e sn e naenn e nn 38

Updating @ DOCUMENL.........coeoeeeecececece e nesn e s n e sn e n e sn e sn e sn e nnennenas 40

Creating @ VIBWcccceierresrreressesessssessssssesss e ssesesesssssssesss s ssessssesssssssssssssssessssessensasens 43

QUETYING @ VIBW ..ottt e ettt 48

Deleting @ DOCUMENL.........ocoocercercrrr s 50

1111 1P SRS 53

CONTENTS

Chapter 3: Using Spring Dataccccunemmmmmnsssnnmmmmssssmmmssssmmsssssssessssssssssssssnns 55
Setting Up the ENVIFONMENTc..ccoecirieerccrc e sn s sne e 55
Creating @ Maven Project ... sse s s snesnesns s s s snennas 55
Installing Spring Data COUCNDASEcccvcereereerererere e saesne e 60
Configuring JavaConfigccoceererereresesessesse e se e e e ssesne e snesnssnssnssnesnennenas 62
Creating @ MOGEIcoceeeirierereceser e n s nnenn s 64
Using Spring Data with Couchbase with Template..........ccccocevvrerrrrrrrrrrrr e 66
Running Couchbase CRUD Operationscccvernmrnersesnssssssessessssssssssssssssssssssssssesssnsens 70
T LT 0 oSS 70
REIMOVE OPS...cviieirieiirierierere e s s e s saesae s e ae s e s s e s b e s e sa e sa e s e e e e s e e e e saeee e e e e e saesaenaesaesaenaesee e e neesansnnnan 72
11 EST<T A0 0SSR 73
EXISTS MEBENOM ... 74
LT 00RO 74
QUETY VIBW....cvecereecie e se e e et se e e s e e s a e R e e s e deRe A e e R e e e Re e e Re e e e ReeR e e e Re e eRenennnnennees 78
L1010 (e 0] oSSR 78
BUCKET CalIDACK........c.ceeieeeireceereeee et 80
Using Spring Data Repositories with Couchbasecccccvvrvervrrrrver s 85
Creating the all VIEW.........ccccreeee et 85
DOCUMENT COUNL ...t s e enp e e e e nrn s 88
Finding Entities from the REPOSITOrY ..o 89
Finding if @n ENtity EXISTSccovouececreieccseec st 91
SAVING ENEILIESvcucceeeeeecririre e enp e 91
DEIEtiNG ENTILIEScvceeeeeeccresiecire et e e e p s 93
E3 1141 1P 2SS 97
Chapter 4: Accessing Couchhase with PHP..............ccciinnnemmmnnnssssmnnnsssssnmsssssnns 99
Setting the ENVIFONMENT..........cooecrierrrr e 99
LTS3 221140 5 PSSR 100
Installing Couchbase PHP SDK...........coiiierecere s ses s s s s s snnnns 101
Connecting with COUChDASE SEIVENcoevererrerrrr e sae e 102

vii

CONTENTS

Creating @ DOCUMENL..........cccveeicererreris et ne s s 105
Upserting @ DOCUMENL..........ooerererrrr s e e sas e e e sassassnssaesassassassasnns 108
Getting @ DOCUMENT.........coeecee e sr e sr e sr e sr e sn e n e sn e sn e nn e nnenn 109
Replacing @ DOCUMENTcccceveeesriernsr e sss s s sn s sns e s s s 111

Incrementing and Decrementing @ DOCUMENT..........cccovreererneneseneree s eens 112
Deleting @ DOCUMENL........cocvvririerr st se s e e sn s sn s sn s sa e nn e 116
ST 117
Chapter 5: Accessing with Ruby........ccccccinnnnemnmnnnsennmmmssssnmmsssssmssssssssssnns 119
Setting the ENVIFONMENL...........coooee e 119
INSEAIlING RUDY.....cooeireiicrecrcer e sr s s e 120
INStalling DEVKItLceeireecee e e en e s ne 123
Installing Ruby Client LIDFarycocoeeeeeeeeerecccesee s ssssssssssnssnssnsssssnssnssnnnnns 124
Connecting with COUCNDASE SEIVEFccceeiverenirerinere e s ns 125
Creating a Document in COUChDASE SEIVEN........cocevvrereererrre e seeeens 130

SEttiNg @ DOCUMENL ..o ssssnssssssansnsnsnsnnas 130

AddiNg @ DOCUMENT ..ottt rere e s s ses e raesesae e sae e s s s e saesesaesasaesassesassesassesaesasaeassesasnesasnsnaes 134
Retrieving @ DOCUMENL...........cocrcercrcrsirersir s nnn e 136
Updating @ DOCUMENT..........ccoeereresrserisse e 141
Deleting @ DOCUMENL........ccocvveririerir st se s e sn e sn s sn e sn e sn e 147
Querying a Document With VIEW ... 150
SUMMAIY ...t r s a s a s srenn s e r e e s e n s e e ae e nsnnnnnnnnas 154
Chapter 6: USiNg NOUE.jS ...ucccerrrssssnmmmmssssnnnmsssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 155
Setting Up the ENVIFONMENTccvceiiiiiicnnsiresnssese e sss s snssnsnens 155

INSEAIING NOUEJSveeeeieeecreririe e s e e s s s e e s ne e e ne e e e 155

Installing Node.jS ClIENt LIDFAry.........cccoceerereseneresrsesesesseesessssesesesssssesesssssssssssssssssssssssssssssssssssnns 160
Connecting with COUChDASE SEIVENcoevereererirr s sne e e 160
Creating a Document in CouChbase Server..........oiererecesese e 163

Upserting @ DOCUMENL.........ccocciicirecrers e p s b p e e e e sn e p e s 164

INSerting @ DOCUMENT ..o e e p e e 166

viii

CONTENTS

Getting @ DOCUMENL.........covoeieeeeer e s s 168
Updating @ DOCUMENL.........coevererererie s sse e e s s sassassassassaesassassaesassassassasnnnns 170
Deleting @ DOCUMENL..........cocicrcscr s s nnenns 172
31111111 LRSS 173
Chapter 7: Using Elasticsearch...........ccccnnnnmmmmmmmmmnmnmssssssssssmmsmssssssssssssssssssssnes 175
Setting the ENVIFONMENT.........c.ccoeeiiererrern e 176
Installing the Couchbase Plugin for ElasticSearchccoevvvverrnssssnsssessessessennenns 177
Configuring EIaStiCSEAICN.........cceeeereererertrerererse v see s saere s sa s sae e sae e saesasaesas e sae e sae e sae e saesansesannenes 178
Installing the Elasticsearch Head Third-Party PIUGIN.........cccecevrrererresrererereserse e sessesessesessessssenes 179
Starting EIaStiCSEArCh ..o e 180
Providing an Index Template in Elasticsearch...........ccccverrvrenriennscnessnsesesesesensens 181
Creating an Empty Index in EIastiCSEarch.........cceevvrrrrrrrsss s ses e sesenns 182
Setting the Limit on Concurrent Requests in Elasticsearchcccoevvvercrcrcencnnen. 183
Setting the Limit on Concurrent Replications in
COUCHDASE SEIVEceecereecrerieiresse e se s s se s sns e saenis 184
Creating an Elasticsearch Cluster Reference in Couchbasecccccvververcericencerinnne 184
Creating a Replication and Starting Data Transfercccccvrvrirennssesssesssesesenens 187
Querying ElastiCSBAICN...........ccccceereriririrr et se s se e s 191
Adding Documents to Couchbase Server while Replicatingccccceeveerriercercnnnnne. 194
The Document Count in EIaStICSEArC...........covceerricnirrere e 195
SUMMAIY ...ttt ae s e e s ae e e re e s e n e ae e e e nennaens 196
Chapter 8: Querying with NTQLcccocccemmmmsssenmmmmmsssnmmmmssssnmmsssssssssssssssssssssnsns 197
Setting Up the ENVIFONMENTccveieeirccr e 198
Running @ SELECT QUETY.......ccvererererereressesse s s s e e sss s sss e sss s sesss e sssssssessssesnns 199
Filtering With WHERE ClaUSE............ccocvverierrerirserer s e ses e e e e s e s ssssssnnns 200
JSON with Nested ODJECLScccucceeeerierenscrerine s se s 203
JSON With NeSted Arraysc.cccvvrrrrersensessesses s se s sns s sns e srssnssns s s 205
JSON with Nested Objects and Arraysccccevrverversessessensesses s e sessssssssassasses 209
Applying Arithmetic & Comparison OPerators..........cccccveeerserenessernsessesessessesessessssesns 220

CONTENTS

Applying ROUND() and TRUNC() FUNCHONSccccovrcerrenircrneresessesese s 222
Concatenating SIriNGSccvererererererere s sresaesaesaesaesaesassaesaesaennens 223
Matching Patterns with LIKE & NOT LIKEcoorereece e ses s s snnnns 224
Including and Excluding Null and Missing Fields..........ccoviiernninennsenesnssesssesesensenns 225
Using Multiple Conditions With AND..........ccccevirerenererr s see e e snesesneens 226
Making Multiple Selections with the OR Clause..........cccooovvrersercssesss s 227
Ordering RESUIL SEt........ccoeoeieeniererriers e n s s 228
Using LIMIT and OFFSET to Select @ Subsetccoceveverenennnens s seesessensenns 228
Grouping With GROUP BY........coeoeeerererecresse e ssessessesssssesssssssssssssssssssnssnssnsssssssssssssnsnns 229
Filtering With HAVINGccoorirrr ittt se s ss e se e e snssn s sn s snssn s snesaenns 231
Selecting DiStiNCt VAIUEScccovveercrerecrirecsese s se s 231
31111111 LR 231
Chapter 9: Migrating MongoDBccccimmnmmnmmmmmsnsnmmmmsssnmmsssssssesssssssssssnsns 233
Setting Up the ENVIrONMENtoooeoececee e 234
Creating @ Maven ProjecCtoovvevererererese e sss s sss s ssesesssesassassasssssasssssssnnnns 235
Creating Java ClaSSEScccuerrerrenrressssise s ses e sss e sss s s e sss e s e ssssessessssessssesssssssenns 238
Configuring the Maven Project ... e e sne s e 242
Creating a BSON Document in MONGODBcccoerererenrrrrcree s sas e seeeens 244
Migrating the MongoDB Document to Couchbase...........ccooeevveenirenniennsccesnsesensennes 249
1111 11T SRS 254
Chapter 10: Migrating Apache Cassandra.........cccusmrmsssnmmsssnsssssssesssssesssssssssnness 255
Setting Up the ENVIrONMENt ..o n s 255
Creating a Maven Project in EClIPSE.......cvcevererererereree s s ssessesssssssassasssssassassassassenns 256
Creating a Database in Cassandracccerverenniernsnesn s s ses s 267
Migrating the Cassandra Database t0 COUChDASEccccorervcirenrnserssenesesse e 273

E3 1111 P2 7SS 280

CONTENTS

Chapter 11: Migrating Oracle Databasecccovnnnmmmnmmsssssnnmnnsssnnnnnssssnsnsannn 281
Overview of the chtransfer TOOL..........cccovererrescrnesrse s 281
Setting the ENVIFONMENT..........c.ooecececccecre e n s 283
Creating an Oracle Database TabIecccecererererinere s e 285
Exporting Oracle Database Table to CSV File.........cccooevrvrcercessesses e snesennns 287
Transferring Data from CSV File to Couchbaseccccoverrieresincsssesessesessesesenens 288
Displaying JSON Data in COUCNDASEccecrverrerrerrirrerrer e ses e e e saeeens 289
1111111 R 290
Chapter 12: Using the Couchbase Hadoop Connectorccccusseemrmnsssnnnnsnsssnnnn 291
Setting Up the ENVIrONMENt ...t 291
Installing Couchbase Server 0N LINUX ..o sesssssssessssessesesssssssssssssssssessssenns 292
Installing Hadoop and SQO0Pcccoerieriernrerr e s e n e sn e sn e s r e 299
Installing Couchbase Hadoop ConNector...........ccccceeeecececccc s 301
Listing Tables in COUChDASE SEIVEN.........ccceverrrerereree s sae e s s e e s sannens 302
Exporting from HDFS 10 COUChDASEccoceeeiririrrer e 303
Importing into HDFS from CouChDASEcccccervniiennsircsnnse s 310
Importing the Key-Value Pairs Previously EXPOrted...........ccovreeenenreiescnnsescsessee s 310
Importing the BACKFILL TADIE.........ccoieeeerirreecreeisesesesisse s ses s e e ssssssssesasssssssnens 313
Importing JSON from Couchbase Server into HDFS ...t 323

E3 1111 1P 7SS 325
INO@X uueniissnnnsssnnnsssnnssssanssssanssssanssssanssssanssssannssssnsssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 327

xi

About the Author

Deepak Vohra is a consultant and a principal member of the

NuBean. com software company. Deepak is a Sun-certified Java
programmer and Web component developer. He has worked in the fields
of XML, Java programming, and Java EE for over ten years. Deepak is the
coauthor of Pro XML Development with Java Technology (Apress, 2006).
Deepak is also the author of the JDBC 4.0 and Oracle JDeveloper for
J2EE Development, Processing XML Documents with Oracle JDeveloper
11g, EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g,
and Java EE Development in Eclipse IDE (Packt Publishing). He also
served as the technical reviewer on WebLogic: The Definitive Guide
(O'Reilly Media, 2004) and Ruby Programming for the Absolute Beginner
(Cengage Learning PTR, 2007).

xiii

http://NuBean.com

About the Technical Reviewer

Massimo Nardone holds a Master of Science degree in Computing
Science from the University of Salerno, Italy. He worked as a PCI QSA
and Senior Lead IT Security/Cloud/SCADA Architect for many years
and currently works as Security, Cloud and SCADA Lead IT Architect
for Hewlett Packard Finland. He has more than twenty years of work
experience in IT including Security, SCADA, Cloud Computing,
IT Infrastructure, Mobile, Security, and WWW technology areas for both
national and international projects. Massimo has worked as a Project
Manager, Cloud/SCADA Lead IT Architect, Software Engineer, Research
Engineer, Chief Security Architect, and Software Specialist. He worked
as visiting a lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University).
Massimo has been programming and teaching how to program with Perl,
PHBP, Java, VB, Python, C/C++, and MySQL for more than twenty years.
He holds four international patents (PKI, SIP, SAML, and Proxy areas).
Massimo is the author of Pro Android Games (Apress, 2015).

XV

CHAPTER 1

Why NoSQL?

NoSQL databases refer to the group of databases that are not based on the relational database model.
Relational databases such as Oracle database, MySQL database, and DB2 database store data in tables,
which have relations between them and make use of SQL (Structured Query Language) to access and query
the tables. NoSQL databases, in contrast, make use of a storage and query mechanism that is predominantly
based on a non-relational, non-SQL data model.
The data storage model used by NoSQL databases is not some fixed data model, but the common
feature among the NoSQL databases is that the relational and tabular database model of SQL-based
databases is not used. Most NoSQL databases make use of no SQL at all, but NoSQL does not imply that
absolutely no SQL is used, because of which NoSQL is also termed as “not only SQL.” Some examples of
NoSQL databases are discussed in Table 1-1.

Table 1-1. NoSQL Databases

Database Type Data Model

Support for SQL-like query
language

NoSQL Database

Couchbase Server Document
Apache Cassandra Columnar
MongoDB Document
Oracle NoSQL Key-Value
Database

Key-Value pairs in which the
value is a JSON (JavaScript
Object Notation) document.

Key-Value pairs stored in a
column family (table).

Key-Value pairs in which the
value is a Binary JSON (BSON)
document.

Key-Value pairs. The value is

a byte array with no fixed data
structure. The value could be
simple fixed string format or a
complex data structure such as a
JSON document.

Supports N1QL, which is an
SQL-like query language.

Cassandra Query Language
(CQL) is an SQL-like query
language.

MongoDB query language is an
SQL-like query language.

SQL query support from an
Oracle database External Table.

CHAPTER 1 © WHY NOSQL?

This chapter covers the following topics.
e Whatis JSON?
e Whatis wrong with SQL?
e Advantages of NoSQL Databases
e What has Big Data got to do with NoSQL?
e NoSQL is not without Drawbacks
¢ Why Couchbase Server?

e Who Uses Couchbase Server and for what?

What Is JSON?

As mentioned in Table 1-1, the Couchbase Server data model is based on key-value pairs in which the value
is a JSON (JavaScript Object Notation) document. JSON is a data-interchange format, which is easy to read
and write and also easy to parse and generate by a machine. The JSON text format is a language format that
is language independent but makes use of conventions familiar to commonly used languages such as Java,
C, and JavaScript.

Essentially a JSON document is an object, a collection of name/value pairs enclosed in curly braces {}.
Each name in the collection is followed by ‘:’ and each subsequent name/value pair is separated from the
precedingbya',". An example of a JSON document is as follows in which attributes of a catalog are specified
as name/value pairs.

{

"journal":"Oracle Magazine",
"publisher":"Oracle Publishing",
"edition": "January February 2013"

}

The name in name/value pairs must be enclosed in double quotes "". The value must also be enclosed

in "" if a string includes at least a single character. The value may have one of the types discussed in Table 1-2.

Table 1-2. JSON Data Types

CHAPTER 1 © WHY NOSQL?

Type Description Example
string A string literal. A string {
literal must be enclosed "c1":"v1",
in IIII. IIC2II:IIVZII
}
The string may consist of any Unicode character except " and
\. Each value in the following JSON document is not valid.
{
megni
Mgt
}
The " and \ may be included in a string literal by preceding
them with a \.
The following JSON document is valid.
{
IIC1II : II\IIII ,
"CZ" : II\\|I
}
number A number may be positive {
or negative, integer or "c1": 1,
decimal. "c2": -2.5,
n C3 n :0
}
array An array is a list of values ~ {
enclosed in []. "c1":[1,2,3,4,5,"v1","v2"],
"c2":[-1,2.5,"v1",0]
}
true false The value may be a {
Boolean true or false. "c1":true,
"c2":false
}
null The value may be null. {
"c1":null,
"c2":null
}
object The value may be another {

JSON object.

Clllz{"al":"V].", ua2 . VZ“, l|a3||:[1)2,3]},
"c2":{"a1":1, "A2":null, "a3":true},

"c3":{)

CHAPTER 1 © WHY NOSQL?

The JSON document model is most suitable for storing unstructured data, as the JSON objects can
be added in a hierarchical structure creating complex JSON documents. For example, the following JSON
document is a valid JSON document consisting of hierarchies of JSON objects.

{

"1t ",

"CZ": {
"c21":[1,2,3],
“C22“ :

{
"c221":"v221",
"c222":
{
"c2221":"v2221"
b
"c223":
{
"c2231":"v2231"
}
}
}
}

What Is Wrong with SQL?

NoSQL databases were developed as a solution to the following requirements of applications:

e Increase in the volume of data stored about users and objects, also termed as big
data.

e Rate at which big data influx is increasing.

e Increase in the frequency at which the data is accessed.

¢ Fluctuations in data usage.

e Increased processing and performance required to handle big data.
e Ultra-high availability.

e The type of data is unstructured or semi-structured.

SQL-based relational databases were not designed to handle the scalability, agility, and performance
requirements of modern applications using real-time access and processing big data. While most RDBMS
databases provide scalability and high availability as features, Couchbase Server provides higher levels
of scalability and high availability. For example, while most RDBMS databases provide replication within
a datacenter, Couchbase Server provides Cross Datacenter Replication (XDCR), which is replication to
multiple, geographically distributed datacenters. XDCR is discussed in more detail in a later section.
Couchbase Server also provides rack awareness, which traditional RDBMS databases don't.

Big data is growing exponentially. Concurrent users have grown from a few hundred or thousand to
several million for applications running on the Web. It is not just that once big data has been stored new data
is not added. It is not just that once a web application is being accessed by millions of users it shall continue
to be accessed by as many users for a predictable period of time. The number of users could drop to a few

CHAPTER 1 © WHY NOSQL?

thousand within a day or a few days. Relational database is based on a single server architecture. A single
database is a single point of failure (SPOF). For a highly available database, data must be distributed across a
cluster of servers instead of relying on a single database. NoSQL databases provide the distributed, scalable
architecture required for big data. "Distributed" implies that data in a NoSQL database is distributed across
a cluster of servers. If one server becomes unavailable another server is used. The "distributed" feature is a
provision and not a requirement for a NoSQL database. A small scale NoSQL database may consist of only
one server.

The fixed schema data model used by relational databases makes it necessary to break data into small
sets and store them in separate tables using table schemas. The process of decomposing large tables into
smaller tables with relationships between tables is called database normalization. Normalized databases
require table joins and complex queries to aggregate the required data. In contrast, the JSON document
data model provided by NoSQL databases such as Couchbase provide a denormalized database. Each JSON
document is complete unto itself and does not have any external references to other JSON documents.
Self-contained JSON documents are easier to store, transfer, and query.

Advantages of NoSQL Databases

In this section I'll cover the advantages of NoSQL databases.

Scalability

NoSQL databases are easily scalable, which provides an elastic data model. Why is scalability important?
Suppose you are running a database with a fixed capacity and the web site traffic fluctuates, sometimes
rising much in excess of the capacity, sometimes falling below the capacity. A fixed capacity database won't
be able to serve the requests of the load in excess of the capacity, and if the load is less than the capacity the
capacity is not being utilized fully. Scalability is the ability to scale the capacity to the workload. Two kinds of
scalability options are available: horizontal scalability and vertical scalability. With horizontal scalability or
scaling-out, new servers/machines are added to the database cluster. With vertical scalability or scaling-up,
the capacity of the same server or machine is increased. Vertical scalability has several limitations.

e Requires the database to be shut down so that additional capacity may be added,
which incurs a downtime.

e Asingle server has an upper limit.

e Asingle server is a single point of failure. If the single server fails, the database
becomes unavailable.

While relational databases support vertical scalability, NoSQL databases support horizontal scalability.
Horizontal scalability does not have the limitations that vertical scalability does. Additional server nodes
may be added to a Couchbase cluster without a dependency on the other nodes in the cluster. The capacity
of the NoSQL database scales linearly, which implies that if you add four additional servers to a single server,
the total capacity becomes five times the original, not a fraction multiple of the original due to performance
loss. The NoSQL cluster does not have to be shut down to add new servers. Ease of scalability is provided by
the shared-nothing architecture of NoSQL databases. The monolithic architecture provided by traditional
SQL databases is not suitable for the flexible requirements of storing and processing big data. Traditional
databases support scale-up architecture (vertical scaling) in which additional resources may be added to
a single machine. In contrast, NoSQL databases provide a scale-out (horizontal scaling), nothing shared
architecture, in which additional machines may be added to the cluster. In a shared-nothing architecture,
the different nodes in a cluster do not share any resources, and all data is distributed (partitioned) evenly
(load balancing) across the cluster by a process called sharding.

CHAPTER 1 © WHY NOSQL?

Ultra-High Availability

Why is high availability important? Because interactive real-time applications serving several users need
to be available all the time. An application cannot be taken offline for maintenance, software, or hardware
upgrade or capacity increase. NoSQL databases are designed to minimize downtime, though different
NoSQL databases provide different levels of support for online maintenance and upgrades. Couchbase
Server supports online maintenance, software and hardware upgrades, and scaling-out. As mentioned
earlier, Couchbase Server provides ultra-high availability.

Commodity Hardware

NoSQL databases are designed to be installed on commodity hardware, instead of high-end hardware.
Commodity hardware is easier to scale-out: simply add another machine and the new machine added does
not even have to be of similar specification and configuration as the machine/s in the NoSQL database
cluster.

Flexible Schema or No Schema

While the relational databases store data in the fixed tabular format for which the schema must be defined
before adding data, the NoSQL databases do not require a schema to be defined or provide a flexible
dynamic schema. Some NoSQL databases such as Oracle NoSQL database and Apache Cassandra have a
provision for a flexible schema definition, still others such as Couchbase are schema-less in that the schema
is not defined at all. Any valid JSON document may be stored in a Couchbase Server. One document may
be different from another and the same document may be modified without adhering to a fixed schema
definition. The support for flexible schemas or no schemas makes NoSQL databases suitable for structured,
semi-structured, and unstructured data. In an agile development setting the schema definition for data
stored in a database may need to change, which makes NoSQL databases suitable for such an environment.
Dissimilar data may be stored together. For example, in the following JSON document the c21 name has an
array of dissimilar data types as value.

{

et it
"c21":[1,"c213", 2.5, null, true]

In contrast, a value in a relation database column must be of the schema definition type such as a string,
an integer, or a Boolean. Flexible schemas make development faster, code integration uninterrupted by
modifications to the schema, and database administration almost redundant.

Big Data

NoSQL databases are designed for big data. Big data is in the order of tens or even hundreds of PetaByte
(PB). For example, eBay, which makes use of Couchbase stores 5.3 PB on a 532 node cluster. TuneWiki uses
Couchbase to store more than one billion documents. Big data is usually associated with a large number of
users and a large number of transactions. Viber, a messaging and VoIP services company handles billions of
messages a month and thousands of ops per second with Couchbase for its big data requirements.

https://wiki.apache.org/hadoop/PoweredBy#E
http://blog.couchbase.com/couchbase-nosql-tunewiki-billion-documents-and-counting
http://www.couchbase.com/press-releases/viber-chooses-couchbase-to-support-high-scalability-applications-for-hundreds-of-millions-of-users

CHAPTER 1 © WHY NOSQL?

Object-Oriented Programming

The key-value data model provided by NoSQL databases supports object-oriented programming, which is
both easy to use and flexible. Most NoSQL databases are supported by APIs in object-oriented programming
languages such as Java, PHP, and Ruby. All client APIs support simple put and get operations to add and get data.

Performance

Why is performance important? Because interactive real-time applications require low latency for read
and write operations for all types and sizes of workloads. Applications need to serve millions of users
concurrently at different workloads. The shared-nothing architecture of NoSQL databases provides
low latency, high availability, reduced susceptibility to failure of critical sections, and reduced
bandwidth requirement. The performance in a NoSQL database cluster does not degrade with the
addition of new nodes.

Failure Handling

NoSQL databases typically handle server failure automatically to failover to another server. Why is auto-
failover important? Because if one of the nodes in a cluster were to fail and if the node was handling a
workload, the application would fail and become unavailable. NoSQL databases typically consist of a
cluster of servers and are designed with the failure of some nodes as expected and unavoidable. With a large
number of nodes in a cluster the database does not have a single point of failure, and failure of a single node
is handled transparently with the load of the failed server being transferred to another server. Couchbase
keeps replicas (up to three) of each document across the different nodes in the cluster with a document on
a server being either in active mode or as an inactive replica. The map of the different document replicas on
the different servers in the cluster is the cluster topology. The client is aware of the cluster topology. When

a server fails, one of the inactive replica is promoted to active state, and the cluster topology is updated,
without incurring any downtime as is discussed in a later section.

Less Administration

NoSQL databases are easier to install and administer without the need for specialized DBAs. A developer is
able to handle the administration of a NoSQL database, but a specialized NoSQL DBA should still be used.
Schemas are flexible and do not need to be modified periodically. Failure detection and failover is automatic
without requiring user intervention. Data distribution in the cluster is automatic using auto-sharding. Data
replication to the nodes in a cluster is also automatic. When a new server node is added to a cluster, data gets
distributed and replicated to a new node as required automatically.

Asynchronous Replication with Auto-Failover

Most NoSQL databases such as Couchbase provide asynchronous replication across the nodes of a cluster.
Replication is making a copy of data and storing the data in a different node in the cluster. Couchbase stores
up to three replicas. The replication is illustrated in Figure 1-1 in which a JSON document is replicated to
three nodes in a Couchbase cluster. On each node the document is available either in Active state or as

a passive Replica. If the Active document on a node becomes unavailable due to server failure or some
reason such as power failure, a replica of the document on another server is promoted to Active state. The
promotion from Replica passive state to Active Sate is transparent to the client without any downtime or very
less downtime.

CHAPTER 1 © WHY NOSQL?

JSON Document

Active |Replica Active ﬁ Active |Replica

Couchbhase Cluster

Figure 1-1. Replication on a Couchbase Cluster

Replication within a cluster provides durability, reliability, and high availability in the eventuality of
a single node failure. The terms durability, reliability, and high availability seem similar but have different
connotations. Durability is a measure of the time for which the data is not lost and is in a persistent state.
Reliability is a measure of the operational efficiency of the database. Common measures of reliability are
Mean Time Between Failure (MTBF=total time in service/number of failures during the same time) and
Failure rate (number of failures/total time in service). High availability is the measure of time for which the
database is available; Available time/(Available time+Not Available time).

Couchbase also supports Cross Datacenter Replication (XDCR), which is replication of data from one
data center to another. In addition to failure recovery, XDCR provides data locality because, with the same
data replicated across multiple data centers, it is more likely to find a cluster/node closer to a client. I cover
XDCR in the section “Cross Data Center Replication.”

“Asynchronous” implies that a server does not wait for the replication to complete before sending
an ACK (acknowledgment) to the client. The difference between synchronous and asynchronous mode
is explained next. In synchronous mode a data is replicated in the following sequence and illustrated in
Figure 1-2.

1. Client sends a new data record to Serverl.

The data record is stored in NoSQL database on Serverl.
The data record is propagated to Server2 for replication.
The data record is stored in NoSQL database on Server2.

The Server2 sends ACK to Server1 that the data record has been replicated.

S o W Db

The Serverl sends ACK to Client that the data record has been replicated.

CHAPTER 1 © WHY NOSQL?

Synchronous Mode

Client

1 Send database record 6 ACKto Client

--'-'_"\

3 Propogate data

Servert Server2

5 ACK to Servert

2 Add database record 4 Add database record

NoSQL DB MNoSGL DB

Figure 1-2. Data Replication in Synchronous Mode

In asynchronous mode, a data is replicated in the following sequence and illustrated in Figure 1-3.
1. Client sends a new data record to Serverl.

The data record is stored in NoSQL database on Serverl.

The data record is propagated to Server2 for replication.

The Serverl sends ACK to Client that the data record has been replicated.

The data record is stored in NoSQL database on Server2.

o @ w bh

The Server2 sends ACK to Server1 that the data record has been replicated.

CHAPTER 1 © WHY NOSQL?

Asynchronous Mode

Client

1 Send database record 4 ACKto Client

.-—-—---.\

3 Propogate data

Servert Server2

6 ACK to Servert

2 Add datahase record 5 Add database record

NoSQL DB NoSGL DB

Figure 1-3. Data Replicationin Asynchronous Mode

Asynchronous mode prevents the latency associated with waiting for a response from the servers to
which data is propagated for replication. But, the servers in the cluster could be an inconsistent state while
data is being replicated. The client, however, gets an ACK for data replication before the consistent state is
stored. Data in asynchronous mode is eventually consistent.

Caching for Read and Write Performance

Most NoSQL databases, including Couchbase Server, provide integrated object-level caching to improve
read and write performance. With caching, applications are able to read and write data with a latency of less
than a millisecond. Caching improves read performance more than it improves write performance.

Cloud Enabled

Cloud computing has made unprecedented capacity and flexibility in choice of infrastructure available.
Cloud service providers such as Amazon Web Services (AWS) provide fully managed NoSQL database
services and also the option to develop custom NoSQL database services. AWS has partnered with
Couchbase to provide support and training to those running Couchbase Server on Amazon EC2 and
Amazon EBS.

10

CHAPTER 1 © WHY NOSQL?

What Has Big Data Got to Do with NoSQL?

Though NoSQL databases may be used for storing small quantities of data, NoSQL databases were motivated
by big data and the dynamic requirements of big data storage and processing. Couchbase Server is designed
for big data with features such as scalability, intra cluster, and cross datacenter replication. In some of the
examples in the book we shall use small quantities of data to demonstrate features and client APIs. The
quantity of data stored or fetched may be scaled as required in a big data application. The same application
that is used to stored ten lines of data in Couchbase may be modified to store a million lines of data. The
same application that is used to migrate five rows of data from Apache Cassandra to Couchbase Server may
be used to migrate a million rows of data. The performance of Couchbase Server does not deteriorate with
increase in data processed.

NoSQL Is Not without Drawbacks

While much has been discussed about their merits, NoSQL databases are not without drawbacks. Some of
the aspects in which NoSQL databases have limitations are as follows.

BASE, Not ACID

NoSQL databases do not provide the ACID (Atomicity, Consistency, Isolation, and Durability) properties in
transactions that relational databases do.

e Atomicity ensures that either all task/s within a transaction are performed or none
are performed.

e Consistency ensures that the database is always in a consistent state without any
partially completed transactions.

e Isolation implies that transactions are isolated and do not have access to the data
of other transactions until the transactions have completed. Isolation provides
consistency and performance.

e Atransaction is durable when it has completed.

NoSQL database provide BASE (Basically Available, Soft state, and Eventually consistent) transactional
properties.

¢ Basically Available implies that a NoSQL database returns a response to every
request though the response could be a failure to provide the requested data, or the
requested data could be returned in an inconsistent state.

e Soft state implies that the state of the system could be in transition during which
time the state is not consistent.

e Eventually consistent implies that when the database stops receiving input,
eventually the state of a NoSQL database becomes consistent when the data has
replicated to the different nodes in the cluster as required. But, while a NoSQL
database is receiving input, the database does not wait for its state to become
consistent before receiving more data.

11

CHAPTER 1 © WHY NOSQL?

Still New to the Field

The NoSQL databases are still new to the field of databases and not as functionally stable and reliable as the
established relational databases.

Vendor Support Is Lacking

Most NoSQL databases such as MongoDB and Apache Cassandra are open source projects and lack

the official support provided by established databases such as Oracle database or IBM DB2 database.
Couchbase Server is also an open source project. Couchbase, however does provide subscription-based
support for its Enterprise Edition server.

Why Couchbase Server?

Couchbase Server is a high-performance, distributed, NoSQL database. Couchbase Server provides several
benefits additional or similar to those provided by some of the other leading NoSQL databases.

Flexible Schema JSON Documents

Interactive, real-time applications, processing unstructured data required to support a varying data model
as the unstructured data does not conform to any fixed schema. Not all NoSQL databases are based on the
JSON data model. In Couchbase Server, data is stored as JSON documents with each document assigned an
Id. The JSON data storage and exchange format is a schema-less data model as discussed earlier and stores
hierarchies of name/value pairs. The JSON document structure is not fixed and may vary from document to
document and may be modified in the same document. The only requirement is that the document is a valid
JSON document. A flexible schema data model does not require an administrator's intervention to modify
schema, which could lead to downtime.

Scalability
While all NoSQL databases are scalable Couchbase's scalability feature has the following advantages.

¢ Adding and removing nodes is a one-click solution without incurring downtime.
All nodes are the same type, which precludes the requirement to configure different
types of nodes.

e Auto-sharding, which is discussed in more detail in the next subsection, provides
automatic load balancing across the cluster with no hot spots on overloaded servers.

e The Cross Data Center Replication feature is unique to Couchbase and makes
Couchbase scalable across geographies.

Auto-Sharding Cluster Technology

When a new server is added or removed from a Couchbase cluster, data is automatically redistributed to

the nodes in the cluster and rebalanced without downtime in serving client requests. The process of evenly
distributing data across the cluster automatically is called auto-sharding. If more RAM and I/O capacity is
required, simply add a server. Data is available continuously while being balanced evenly among the cluster
nodes. Client requests are routed to a server closest to the client making use of data locality. Data locality
improves response time and reduces network traffic as data is being served from a server that is close to the client.

12

CHAPTER 1 © WHY NOSQL?

High Performance from High Throughput and Low Latency

Latency may be defined in different forms but all imply a delay: for example, the delay in receiving requested
data or a delay in data transfer to another server for replication. Throughput is defined as the rate of data
transfer over a network.

Couchbase is designed for the flexible data management requirements of interactive web applications
providing high throughput and low latency. While most NoSQL databases provide a fast response,
Couchbase's sub-millisecond latency is consistent across read and write operations and consistent across
varying workloads. The latency of some of the other NoSQL databases such as MongoDB and Apache
Cassandra increases as the number of ops/sec increases, but Couchbase's latency stays low even at high
workloads. While most NoSQL databases provide a high throughput, Couchbase's high throughput is
consistent across a mix of read and write operations. Throughput scales linearly with additional nodes. In a
performance benchmark (http://www.slideshare.net/renatko/couchbase-performance-benchmarking)
comparing Apache Cassandra, MongoDB, and Couchbase, Couchbase showed the lowest latencies and
highest throughput. One of the reasons Viber cited for choosing Couchbase was that “Couchbase was able to
provide several times more throughput using less than half the number of nodes.”

Couchbase provides built-in memcache-based caching technology. What is memcache? Memcache is
a cache in the memory (RAM) to store temporarily (also called to cache) frequently used data. Memcache
is used to optimize disk I/O; if data is made available from the RAM the disk does not have to be accessed.
Memcache is also used to optimize CPU; results of CPU intensive computations are stored in the cache
to avoid recomputation. What is "frequently used data" is determined by the server based on the number
and frequency of requests for the data. The RAM not being used for other purposes is used as memcache,
and memcache is temporary as the RAM may be reclaimed for other use if required. Couchbase Server
coordinates with the disk to keep sufficient RAM to serve incoming requests with low latency for high
performance. When the frequently used information is re-requested it is served from the memcache
instead of fetching from the database. Memcache improves response time, which results in reduced latency
and high throughput. With sub-millisecond read and write performance, Couchbase Server is capable
of hundreds of thousands of ops per second per server node. Couchbase Server persists data from RAM
to disk asynchronously while keeping a set of data for client access in the object-level cache in RAM. An
append-only storage tier appends data contiguously to the end of a file, improving performance. Updates
are first committed to RAM and subsequently to disk using per-document commit. A cache miss is defined
as a direct access of a database disk when the cache does not provide the required data. Orbitz mentioned
caching mechanism as the main reason for choosing Couchbase.

Cluster High Availability

Couchbase cluster stays highly available without downtime. While most NoSQL databases provide high
availability, Couchbase has the following advantages over the others.

e Cross Data Center Replication, which is discussed in detail in the next section,
provides high availability even in the eventuality of a whole data center failing.

e Software upgrades are done online, without shutting down the Couchbase Server.
e Hardware upgrades are done online.

e Maintenance operations such as compaction are done online.

13

http://www.slideshare.net/renatko/couchbase-performance-benchmarking

CHAPTER 1 © WHY NOSQL?

Cross Data Center Replication

Replication of data stores multiple copies of data on different nodes in a cluster for durability and high
availability. Durability implies that if one copy of the data is lost due to machine failure or some other reason
such as power failure, another copy of the data is still available. High Availability implies that the database
does not have downtime due to the failure of a single node in the cluster as a copy of the data from another
node is fetched. In additional to replication within a cluster (intra cluster replication), Couchbase 2.0 added
a feature called Cross Data Center Replication (XDCR) in which data is replicated across data centers to
cluster/s in another data center, which could be at a geographically remote location. XDCR provides data
locality in addition to the benefits discussed previously in this section. Data locality is the closeness of

data to a client. If each client is able to access a node that is close to the client, data is not required to be
transmitted across the network. If data is available at a data center close to a client, data is fetched from the
data center instead of fetching over the network from a distant data center. Transmitting data across the
network incurs delay (latency) and increased bandwidth requirement. Data locality improves response time.
Cross Datacenter Replication is illustrated in Figure 1-4 in which a JSON Document A is replicated using
intra cluster replication on Datacenterl, and JSON Document B is replicated using intra cluster replication
on Datacenter2. JSON document is also replicated using XDCR on Datacenter2 and JSON Document B is
replicated using XDCR on Datacenterl. The number of replicas may vary based on requirement.

JESON Document & JEON Document B
e [—
Datacenter! ANy 'T P Datacenter?

N /

™,

ephica T (:‘DlICd
= Active B .. | .‘ep ica I Active B
[Actr»'e A eiluca] [Active A epllca] [A five A eDIlce] tive B
Replica’
Active B Couchbase Cluster | CTVE [~ Aclive Couchbase Cluster | Active A ephco

g
N o \\l—'
i

Figure 1-4. Cross Data Center Replication (XDCR)

XDCR replicates data unidirectionally or bidirectionally between data centers. With bidirectional
replication, data may be added in either data center and read from another data center.

Data Locality

Data locality is the closeness of a Couchbase Server to its client. Cross Data Center Replication makes it
feasible to replicate data across geographies. A client is served from a data center that is closest to the client,
thereby reducing the network latency.

14

CHAPTER 1 © WHY NOSQL?

Rack Awareness

Couchbase Servers in a cluster are stored across several racks and each rack has its own power supply

and switches. Failure of a single rack makes data stored on the rack susceptible to loss. To prevent loss

of all copies of a data and provide high availability, Couchbase Server 2.5 Enterprise Edition introduced
Rack Awareness. Using Couchbase, Rack Awareness replicas of a document are placed on nodes across
different racks so that failure of a single rack does not cause all replicas of the document to be lost or become
unavailable, even temporarily.

Multiple Readers and Writers

As of Couchbase Server 2.1, multiple readers and writers are supported to persist/access data to/from a
disk to fully utilize the increase in disk speeds to provide high read and write efficiency. With a single thread
read and write, the data in the cache is less as compared to data on the disk resulting in cache misses, which
results in increased response time and increased latency. With multiple threads accessing the same disk,
more data may be fetched into the cache to improve efficiency of read and write to improve the response
time and reduce the latency. Multithreaded engine includes synchronization among threads to prevent
multiple threads from accessing the same data concurrently.

Support for Commonly Used Object-Oriented Languages

Couchbase Server provides client APIs for commonly used languages such as Java, PHP, Ruby, and C.

Administration and Monitoring GUI

Couchbase provides administration and monitoring graphical user interface (GUI), which some of the other
NoSQL databases such as MongoDB don't. Some third-party admin GUIs are available for MongoDB but a
built-in integrated admin GUI is not provided.

Who Uses Couchbase Server and for What?

A wide spectrum of companies from different industries use Couchbase Server. Different companies have
different reasons for choosing Couchbase Server. Reasons cited by some of the companies who chose
Couchbase are listed in Table 1-3.

Table 1-3. Reasons for Using Couchbase

Company Reasons

AOL for ad targeting AOL uses Couchbase in conjunction with Hadoop to make hundreds
of user profiles and statistics available for their ad targeting platform
with sub-millisecond latency.

DOCOMO Innovations for mobile Real-time data infrastructure, mobile-to-cloud-data

services synchronization, elastic scalability, production-ready solution with
high availability.

OMGPOP for Draw Something Scalability without downtime or performance degradation.

Orbitz for travel services Couchbase provides no downtime. Couchbase is used store user online

sessions. Couchbase provides integrated Memcache for fast response.

(continued)
15

CHAPTER 1 © WHY NOSQL?

Table 1-3. (continued)

Company

Reasons

Betfair for online betting

AdAction for ad serving

Amadeus for travel services

Concur for business travel

LinkedIn for professional social
networking

Nami Media for enterprise class
advertising solutions

Scalability and Replication with auto-failover are suitable for
Betfair's Continuous Delivery methodology. Betfair processes
more than 7 million transactions per day with each completing in
less than a second. Betfair uses Couchbase to store session data
across sessions and for storing user preferences for customization.
Couchbase provides high performance, scalability, schema
flexibility and continuous delivery.

Couchbase is used to store large quantities of consumer data for
about 75 million users per month. Couchbase chosen because of
its performance, uptime, high response time, low administrative
overhead, scalability without performance loss, and rapid
deployment.

Couchbase server was chosen because of its low (sub-millisecond)
latency, elasticity to handle traffic growth, high throughput and
linear scalability when adding/removing nodes.

As Concur processes more than a billion Couchbase operations
per day Couchbase's low latency was one of the reasons for being
chosen. Couchbase's cluster management made it feasible to
add/remove nodes without downtime. Couchbase's seamless
transition when adding/removing nodes requires no configuration
management with all clients being updated automatically. A single
solution for multiple tiers and languages was one of the main
reasons for choosing Couchbase.

With hundreds of millions of users LinkedIn chose Couchbase for its
performance and scalability that can be used for logging, monitoring
and analyzing the metrics of user activity. High availability caching
was one of the main reasons for choosing Couchbase.

Couchbase was chosen for its fault-tolerance, data persistence
and high availability. Linear scalability with no downtime and
Couchbase's monitoring of the cluster to provide RAM and disk
persistence statistics were some of the other reasons.

Couchbase users include AOL, Orbitz, Cisco, LinkedIn, and Concur. Table 1-4 lists additional Internet

companies and Enterprises who use Couchbase Server.

16

http://www.concur.com
http://www.namimedia.com

CHAPTER 1 © WHY NOSQL?

Table 1-4. Some Companies Using Couchbase

Internet Companies Enterprises
AOL LG

Orbitz ADP
LinkedIn Cisco

adscale NTT Docomo
Ubisoft Vodafone
Tapjoy Skechers
Dotomi NCR Corporation
Playdom Comcast
Concur ITT

Sabre Experian

Couchbase Server is used for a wide variety of applications ranging from advertising to VoIP services.
Couchbase Server and NoSQL, in general, are used for applications storing and processing big data.
Examples of types of applications using NoSQL are discussed in Table 1-5.

Table 1-5. Types of Applications Using Couchbase

Application Example

User profile management The user profile of millions of LinkedIn, Tunewiki, and AOL users is

distributed globally stored in Couchbase NoSQL database. The semi-transient device data
of millions of musiXmatch users is stored in Couchbase Server.

Session store management The user sessions of millions of clients who log on to Orbitz, Concur,
Sabre, and musiXmatch are stored in Couchbase database.

Content and metadata store Some of the challenges in content and metadata store management are:

management Content and metadata are unstructured.

Scalability to support millions of concurrent users.
High-performance interactive, customized applications.
Search across the full dataset.

Couchbase is suitable for the following reasons:

« Elastisearch provides real-time, integrated, distributed, full-text
search.

o Flexible data model to provide a wide variety of data.

Scalability for fluctuations in workload.

High performance with low latency and high throughput.
No downtime.

(continued)

17

