eginning
ava MV( 1.0

Model View Controller Development
to Build Web, Cloud, and Microservices

Applications

Peter Spath

Apress:




Beginning Java MVC 1.0

Model View Controller Development
to Build Web, Cloud, and
Microservices Applications

Peter Spath

Apress’



Beginning Java MVC 1.0: Model View Controller Development to Build Web, Cloud,
and Microservices Applications

Peter Spith
Leipzig, Sachsen, Germany

ISBN-13 (pbk): 978-1-4842-6279-5 ISBN-13 (electronic): 978-1-4842-6280-1
https://doi.org/10.1007/978-1-4842-6280-1

Copyright © 2021 by Peter Spidth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Janko Ferlic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262795. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-6280-1

To Nicole



Table of Contents

About the AULROK ........ccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWET .......ccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
11T 11T (1 . xvii
Chapter 1: About MVC: Model, View, Controller..........ccccummmmmmmmmmmmmessssssssssssssssesssssnas 1
The HiStory 0f MVC........cccieerrerireserese s s s s sesss s s ssssssssesssssssssssessssensnns 3
MVG in WED ApPPlICALIONS......ccviiiicirierere et 4
L (0] - T 6
Finally, Java MVC (JSR-371)....ccccuriiiirirernnnrninssssssssesesesesesesess s s s s s s ssssssssssssssssssssssssssssssesenes 6
WRY MVC....ceeccceeeeeeess s s bbb bbb e e e e e 7
WheEre IS HEllO WOEIU? ... 8
(] (01T 17
SUMIMAIY....ceiieeteesese s Re e e e e e e e R e e s R e e ne e e e e Re e be e nen e e nnnnn s 18
Chapter 2: Prerequisite: Jakarta EE/Java EE.............ccciinnemmmmnnsssnnnnnssssnsnnsssssssnnnns 19
The Nature of Java for Enterprise AppliCations........cccccvvrverennsnseniennser s sessese e sessessessens 19
GlassFish, @ Free Java SEIVET ... s 25
GEttiNg GIASSFISN......ccovieiiccrir s 26
GlassFish Shell AdmiIniStration ... s 28
GlassFish GUI ADMINISTration...........cccovrernnnmseserennsssse s sesssssssaes 32
GlassFish REST Interface AdminiStration..........c.covveenenennnsnsnesesssssssesess s sessssseas 33
Using a PreinStalled JAVA SEIVET ........cvvivverernrersereseressesessessssssessesssssssessessesssssssessesssssssensesaes 36
Learning Java for Enterprise Applications ... 36
RESTIUI SEIVICES....uceeeecrereerreseree e resese s se s s n s sss e s s enns 37
(] (01T 41
SUMIMAIY ...ttt e e e e R e b e e e R e e R e e e A e e a e e e Re e b e e e e n e nnnsn e 4



TABLE OF CONTENTS

Chapter 3: Development WOrkflow ..........ccceurnsssennmmssssnsnsessssnsssssssssnssssssssssssssssnnnsnsss 45
Using Gradle as a BUild FramEWOIK...........ccceererrrernenernserenesesssessssesessesessssessssessssessssssessssesenns 45
Using EClipse @s an IDE...........coviiinninenc ettt s s s 46

INSTAINNG ECHIPSE ..veueeeieiesirer sttt b s s b e et s et 46
Configuring ECHIPSE.....ccueiiirire st e e s r s e 48
Adding Java RUNTIMES........ccccciiiirenirinene e st se s 49
AddiNg PIUGINS......coiiiirerere st n s bbb s 49
Eclipse Everyday USAge...........ccucriniinininn s ss s s s se s s sss s s 50
MOre ADOUL GrAGIE ........cceeecereee s 51
A BasiC Gradle ProjECt ..........cccovererenereeserenesessese s sesessese s sessesesse e e sessesessssessssesessssssssnens 51
Gradle Main CONCEPLS ....ccvvircirererin st r e s s s r e nne s 53
Standard Gradle Project LayouL...........ccoeeoreernerreer e 54
The Central Gradle BUilt File ..o 55
RUNNiNg Gradle TaSKS .......covciivrrinn s s s s s s 57
Gradle Tasks EXPIAINEU..........ccoeriniininienn s sss e se s ssesnssessesnens 61
Gradle PIUGINS .....ccveirererie et e e s b sn e e nne s 63
More ADOut REPOSITOMIES ......ccecerereriririre s 64
More About DEPENUENCIES. .......ccccreriiccrere e 66
Changing the Project SIrUCLUIE ... e 69
The Gradle Build File IS @ Groovy SCHPL ......cccccvvrireirrre s 70
SCHPLVAMADIES........ceeeeer et st e e et 72
CUSTOM TASKS ...vuveeecereresssseesesesessssessese e sssesesesss s s s e e s ssss s s sesassasssssssssesssssnssssssensassnsaes 73
The Gradle WIAPPET ..ottt sa s e s e e sttt st s senne e 74
MUHi=ProjeCt BUilds..........covieriirerininrircne s s 75
Adding @ Deploy TaSK ......ccccveierieierininsenese s s s sr s 79
Developing Using the CONSOIE..........cccuiimiririinninn s s ss s srs e snes 81
INSTAIING MVC ... 84
(] (oSSR 85
E 11104 RS 86



TABLE OF CONTENTS

Chapter 4: Hello World for Java MVC.........ccccussseenmmssssnnssessssnssssssssssssssssssssssssssnnnssnss 95
Starting the Hello WOrld ProjJECT ..ot 95
The Hello WOrld MO .........ccoueeeeeeeeeerescrerese e se e s s s sennenens 102
THe HEllo WOIIA VIBW ......coveerercrereseriee s se s ses e se s s sssnssessssssesssssnssnens 104
The Hello World CONtrollEr ........couveeiinernsesssesesese s sessess e s ssssesssssssssssessssessssenens 107
Using Gradle to Build Hello WOIId ...........ccucererniininene s sesese s sesse s s sessessessessssessesaens 108
Starting @ JaKarta EE SEIVET .......cccvevrvrrere e sene e sss e sse s s sse s saessssessesaesssssssesaesnes 111
Deploying and Testing HElIO WOKId...........ccooeerircrce et se e 111
(] (o1 114
£ 111 T S 115

Chapter 5: Start Working with Java MVC .........ccccccmmmmmmmmmmssssssssssnssssssssssssssssssssnnss 117
Handling User INput from FOrMS .........ccvienieniiisc e ss s sessesenns 117
Exception Handling in Java MVC...........ccccuvrirnnninenn s sessessessessssessessessssessessessesssssssesaens 120
NON-String POST Parameters.......cccccreverrerrererensersesesssssssessessessssessessesssssssessesssssssessessesssssssessens 124
Handling QUEry Parameters........ccovvrninineniners s s se s s sesse s 126
(] (o 130
£ 11T T 130

Chapter 6: In-Depth Java MVC..........cccccusemmmmmsssnnnnmmssssssnmsssssssnsssssssssssssssssssssssnnnnss 133
THE MOUEL ... b bbbt 133

CDIiN JaVa MVC........coiieriririnis st se ettt 134
Model ODJECE SCOPES....cciveerrrerrrrirerese s er e ra e 137
The Simplified Model Data CoNtaiNer ..........cccvivvrinininnnn e 139
TRE VIBW: JSPS.....ccccccrcsss e bbb s 140
JSP BASICS....ucuiiiriirisisese e 141
DIrECHIVES. .. eeereerrrer et p e p e R e 141
STALIC CONTENT.......cceccceceer s 143
Java Scriptlets and Java EXPressions ... sessessssssesesssssnns 144
IMPIICIE ODJECIS. ...uerieeerircer e e 145
JavaBeans COMPONENTS ......cccccviiririerenn et e sae e se e nne s 145
EXPreSSion LANQUAGES. .....coevruerrrrenersesersssessssessssesesssssssssesssssssssssessssessssssssssnsssssssssssnssssnsssnnes 146

vii



TABLE OF CONTENTS

1] O 148
LT 10 T 149
00 1SS 150
Conditional BranChiNg ........ccccvrerererserieressssessesessesessessessessssessessessssessessesassssssssessesssssssessees 152
L0101 153
The VIEW: FACEIELS ..o s s 154
L TeT=] (o 3| TSN 155
Facelets CONfIgUIatioN..........ccvcvieviernrriere s s s saesae e s saennes 155
Templating via FACEIETS.......c.ccevererirer s s s 157
The <uizdecOorate> TAQ .......ccvvrveriririr e e a e s e 161

An Example Facelets Project ..o e s s ssae s sae s 164
Mixing FAcelets @and JSTL........ccuceviererreriererensenessessssessessessessssessessessssessessesssssssessesassssssssesaes 177
UNified EXPrESSIONS .....cvieieeririersie et ressee s s e s s s s s e sa e s s s s s st e sa e s s e s snesae s e nnean 178
LI 0011 0] P 179
CONTrOHIEE BASICS .....cervrerreseeeresesseseesesesss s e s s se s ses s sesassssss s sesssssnsaes 179
[T T J a2 Vo[ 180
Preparing the MOGEL ..........cocvvriere e s r e s s sa e s ne e aenae e 182
Posting Data into CONTIOIIEIS.......c.cevrvererererierrere e ses e s s e s s e saesae e s saesaesa s e saesnes 183
(] (o1 T 187
£ 0111 187
Chapter 7: In-Depth Java MVC: Part Il.........cccunnmmmmmmmmnnnmmmsmsssssssssssssssssssssssssssnnnes 193
Adding Bean Validation ...........cccvieirinieniennninsire s sessessessessssessessessessssessesssssessssessessens 193
INJECLADIE CONTEXE .....vevveererertr e re s s s se s e s a e s r e s s ae e e e e e saeene e e e naenae e 203
Persisting STate........cccoecieirrre e s 205
Dealing with Page Fragments ..o sse st sessesnens 207
(00T 1T 212
[ 10 TH 0 o SRS 215
o= {1 RN 218
£ 11134 7R 218

viil



TABLE OF CONTENTS

Chapter 8: Internationalization.........cccccuseemrrnsssnnnnnnssssnnnnnsssnmnssssns———— 223
Language RESOUICES.......ccccuerriireresie i s e se s s sr s s se s s s n e e s be st e e nnens 223
Adding Localized Messages t0 the SESSION ... 225
Formatting Data in the VIEW.........cccveerrcnrererecrs e 229
Using JSF for FOrMatting .........ccovenerenernsmsnnessssss s s s ssssssessssesessesenns 234
Localized Data CONVEISION..........c.coverrrinmsissssssssse s s s s 236
(=] (1T O 238
£ 11134 7 238

Chapter 9: Java MVC and EJBS.......ccccrussssnnnmsssssssnssssssssssssssssnsssssssnnsssssssssssssssnnnnss 241
ADOUL SESSION EUBS ... e s e se s s e e 241
DEfiNNG EJBS......coviiereeeriecriresere e e 242
ACCESSING EUBS.....ceiviiiricirese e s s sr s sr s nna s 246
S o 0] T OSSN 248
EJBS With DEPENAENCIES....ccuerrererrererrererserersessssessessessessssessessessssessessesssssssessessessssessessesssssnsessens 250
Asynchronous EJB INVOCALION ...........ccecervrieenerersir e reres e s e s sne s s 252
LT = TR 253
(] (o1 256
B30T 111 T o OSSR 257

Chapter 10: Connecting Java MVC to a Database...........ccccsusemsssnsssansssassssnsssansssans 261
Abstracting Away Database Access With JPA ... nennens 261
Setting Up @ SAL DAtahASE ......cccverrrerirerirese s s 262
Creating @ DAtASOUICE........cccueririerne st p st 264
Preparing the Member Registration Application ... 266
Adding EClipSELINK @S ORM .........ccovermrenerrenereresesese s se e ses e e sessssessssessssessenes 274
[0 0101 275
Adding Data ACCESS DDJECTS ..cvuevriveriiriererrrr s s nne s 279
UPAAting the VIBW ......cvvvcerereririerere s sse e sss e s sas e sessessesessessesaessssessesnesasssssesaesassssssnsesaens 281
D ¥0 o T 0= L 283

ix



TABLE OF CONTENTS

Adding RElAtiONS .......cceiiriiiii it 285
(] (01T T O 289
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 291
Chapter 11: Logging Java MVC Applications......cccccussemmmmssssnssmssssssnnssssssssssssssnnnnss 295
SYSTEIM SIrBAMS.....ccvieeerreserrre e n e ne s p e e s 295
JDK LOgQing in GIASSFISN........ccceiiieriserinesnnesess e sr s s ss s sessssssnenens 296
GIASSFISN LOG FIlES ....cceivieriririrreserissessse s s e s s ss e e s s snssssssnssensans 297
Adding Logging Output 10 the CONSOIE ........cceveerrrenmrinernsesrse s sesnenens 297
Using the Standard Logging API for Your Own Projects.......c.cueuererernsesessessssssessnsessssssessnns 298
LOGGING LEVEIS......ccveeeerieerircsire s s nra s 299
The Logger Hierarchy and THreSholds..........cooueevrenninernnesnsesesese s sss e sessesessenens 299
The Logging Configuration ..........c.ucevenerenernsesesesesese s sesse s sss e sessessssssessssesesssssssenens 301
The Logging FOrMAL .......ccccveeerenrnesrsesesese s sn s s sesse s e senssssssenens 303
Using JDK Standard Logging for Other SErVers..........cuererrnsesnsesnneses s sessesenns 303
Adding Log4j Logging to Your AppliCation........c.cceeevvrrverernnensensenesssssssesessessssessessesssssssessensens 304
Adding LOg4j SEIVEr-Wite .......eoeveerrerrerirnerserersesessessessessesessessessessssessessessessssessessesssssssessesses 305
Changing the Logging FOrmat ..........cccvevrinininennsnie s s ses e s ssessssessesaees 308
Adding Log4j to Jakarta EE Web Applications ........c.cccvvvrrvienenssnsene s ses s sessessessenees 310
Using Log4j in the COdiNg......cccccvererrerieresinsersenesse s s sse s sesessessssessessesaessssessessesssssssesneses 312
(] (0T T 313
£ 1134 7 314
Chapter 12: A Java MVC Example Application.........ccccccvvnssssseemsmmnnnnnnssssssssssssnns 321
The BOOKIUDD Databhase........ccoueererenerreserensesrssenessssessssssesssssssssesessssssssssssssssssssssssssssssnsssssssssssnens 321
The BoOKIUDD ECIIPSE PrOJECL ......cecervecerrneriseserise s s s se e s ss s e sessessssenens 323
The BooKIubb INfrastructure CIASSES...........currmimnmserinmnssssse s sesssnns 326
Configuring BoOKIUDD DataDase ACCESS ......cvvererrerreresersersersersesessessessessssessessessssessessessessssessesses 328
The BooKlubb Internationalization ..............cooerenrnnnnnnc e 328
The BooKIubb Entity ClaSSES.......cccvirrrrerienininsine s s s srs s s s s ssssessesne s 333
BooKlubb Database ACCESS Vid DADS .......ccocveererrenmrenseresesesese s sesesese s e sessesessssessesesessesenns 340
The BOOKIUDD MOTEL ..ottt 347



TABLE OF CONTENTS

The BOOKIUDD CONTIOIIET ......covoveicierericsee s 354
The BOOKIUDD VIBW .......eeeeeericcerce e 364
Fragment Files........o s s s s 365

[ 1010 ] T T = Vo - S 367
Member-Related VIEW FileS.........cco i 368
BOOK-Related VIEW FilES.........ccoviierererrereseeree s 381
Deploying and Testing BOOKIUDD..........cco oo 390
£ T S 391
APP NI e eiriiiinnnnrssssnnnnessssnsnnessssnnnnessssnnnsessssnnneessssnsnnessssnnnsessssnnnesssssnnnsssssnnnnssssnnns 393
SOIULIONS t0 The EXEICISES.....uueierieeriserireserese e sr e 393
CHapLEr T EXEICISES...ccuvuierrrrerrrreserrssesrse s e s s ss s s e nnnna s 393
(081 10 (= g o (=T o LT OO 394
Chapler 3 EXBICISES...uvuiuirriririeririesirse st st s st b e s 394
ChapPIEr 4 EXEICISES...ueiuirriiriereriesir st s s s e s s s st b p e e s 396
Chapler 5 EXBICISES...uciueiiiirereriesir ettt e et e bbb e s 399
Chapler B EXEICISES....ciueviiiriererir st s s st e st s s e s 403
ChaPIEr 7 EXBICISES..ccueiverieiririeriesis st rs st s e st s bbb e s 405
Chapler 8 EXBICISES....ciueiriirieririrsis st s s st e b e e s e b e s 413
Chapler 9 EXEICISES....ciuiviiirrire sttt st s b s e b e s 423
Chapler 10 EXEICISES......cuiuiriririsinsinese s s s st s st s st st 428
Chapler 11 EXEICISES.....uiiirveririsirsine s s s et s st s st e s s 433
1T - 437

xi



About the Author

Peter Spéth graduated in 2002 as a physicist and soon afterward became an IT
consultant, mainly for Java-related projects. In 2016, he decided to concentrate on
writing books on various aspects, but with a main focus on software development.
With two books about graphics and sound processing, three books on Android app
development, and a beginner’s book on Jakarta EE development, the author continues
his effort in writing software development-related literature.

xiii



About the Technical Reviewer

Luciano Manelli was born in Taranto, Italy, where he
currently resides with his family. He graduated in Electronic
Engineering at the Polytechnic of Bari at 24 years of age and
then served as an officer in the Navy. In 2012, he earned a
PhD in computer science from the IT department, University
of Bari - Aldo Moro. His PhD focused on grid computing

and formal methods, and he published the results in

international publications. He is a professionally certified

engineer and an innovation manager, and in 2014, he began
working for the Port Network Authority of the Ionian Sea - Port of Taranto, after working
for 13 years for InfoCamere SCpA as a software developer. He has worked mainly in the
design, analysis, and development of large software systems; research and development;
testing; and production with roles of increasing responsibility in several areas over the
years. Luciano has developed a great capability to make decisions in technical and
business contexts and is mainly interested in project management and business process
management. In his current position, he deals with port community systems and digital
innovation.

Additionally, he has written several IT books and is a contract professor at the

Polytechnic of Bari and at the University of Bari - Aldo Moro. You can find out more at his
LinkedIn page: it.linkedin.com/in/lucianomanelli.



Introduction

Starting at the very infancy of software creation, developers tried to modularize their
applications in order to streamline their projects and increase the maintainability of
the software they created. Soon, a very basic segregation scheme was identified: One
part of the software must deal with data and persistence, another part must deal with
presenting the data to the user, and one last part must handle data input and frontend
view propagation.

This segregation scheme showed up in so many projects that it was promoted to a
common software design pattern, called Model-View-Controller, or MVC for short. Its
power also manifested in its versatility, even with big paradigm changes, like the onset of
the Internet age. With database products for the model layer, browsers for the view layer,
and some kind of user input processing for the controller layer, the pattern’s accuracy
and applicability to the majority of software projects became even more apparent with
web applications.

Interestingly, even though most web application frameworks under the hood apply
some kind of MVC layer demarcation, Java Server products up to JEE 7 did not include
a dedicated MVC framework. With JSR-371 (Java Specification Request number 371)
only recently and starting with JEE 8/Jakarta EE 8, an MVC specification entered the Java
Enterprise application realm, which is one of the reasons this book was born. It does
not describe all MVC Frameworks that you can add to Java EE/Jakarta EE as an external
library. There are just too many of them and you can learn about them by looking at
each library’s documentation. Instead, we talk about the genuine Java MVC library as
described by JSR-371.

The target version of Java MVC is 1.0, and we use a Jakarta EE version 8.0 compliant
server to run Java MVC on it.

The Book’s Targeted Audience

The book is for beginning or advanced enterprise software developers with knowledge
of Java Standard Edition version 8 or later and some experience in Jakarta EE (or JEE)
development. It is also assumed that the reader is able to use the online API references,

xvii



INTRODUCTION

as this book is not a reference in the sense that all API classes and methods are listed.
Instead, it presents techniques and technologies that help professional Java Enterprise
level developers leverage web application programming by including Java MVC in their
software.

The book uses the Linux operating system as the development platform, although
the code can be run on other platforms (Windows and macOS) without complex
adaptions. This book also does not talk about hardware issues (in case you don’t use a
laptop, a PC, or a server).

The readers will in the end be able to develop and run Java MVC programs of mid- to
high-level complexity.

Sources

All sources shown or referred to in this book can be accessed via the Download Source
Code button located at waw.apress.com/9781484262795.

How to Read This Book

You can read this book sequentially from the beginning to the end, or you can read
chapters on an ad hoc basis if your work demands special attention on a certain topic.

xviii


http://www.apress.com/9781484262795

CHAPTER 1

About MVC: Model,
View, Controller

MVC is a software design pattern. It describes the separation of software into three
elements:

e Model: Manages the data of an application. This is to be understood
in a narrow sense. Of course, any part of a less than trivial application
deals with the application’s data in one way or another, but the
model from MVC corresponds to data items viewable to the user and
possibly subject to change by user interactions. The model is agnostic
to the way the data is represented to the user or any application
workflow, so it can be said that the model is the central part of a MVC
application. It is not surprising that developing a model is among the
first steps of any MVC software project.

e View: Describes the presentation of the data and control elements
(inputs, buttons, check boxes, menus, and so on) to the user. A view
may provide different modes, like paged or non-paged tables, a
formatted list or a link list, and so on. A view also may use different
technologies, like a GUI component installed on the user’s PC, an
app on a mobile phone, or a web page to be viewed in a browser.

o Controller: Handles user input and prepares the data set necessary
for the view part to do its work. While a view shows model items, the
view never has to know how data is stored and retrieved from some
persistent storage (database). This is the controller’s responsibility.
Because the user input determines what an application has to do next,
the controller also contains the application logic. Any calculation and
data transformation happens in the control part of MVC.

© Peter Spath 2021
P. Spith, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_1


https://doi.org/10.1007/978-1-4842-6280-1_1#DOI

CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

For example, consider a book club application. In this case, the model consists of
elements such as books (including rental status), book storage location (building, room,
or shelf), and member. For search application modules, you normally define lists of
books, users, and so on, as model values.

The view part of the book club application will contain pages that show books, show
members, show book locations, enable members to rent books, add club members, show
book and member lists, as well as various search functionalities, and so on. Technically,
this will often go hand in hand with a templating engine that defines placeholders for
model elements, shortcuts for loops (for tables and lists), and other view elements like
menus and buttons.

The controller handles the data the user enters. If, for example, the view currently
shows a search page for books and the user enters a book’s name and clicks on the
Search button, the controller is informed as to which button was clicked. The controller
then reads the request parameters (the book’s name in this case) and possibly some
model values (for example, the username and whether the user is logged in), queries
the database, builds a result list, creates a model from this list, and finally decides which
view page to show next.

There exists some fluffiness concerning the implementation details. This comes
from the technical details of the data flow between view elements and model elements.
MVC makes no assumption about when updates to view elements and model elements
actually happen and which procedure is chosen to keep them synchronized. This is why,
for MVC, you find many different diagrams in the literature.

For Java MVC, we can narrow our ideas about MVC to the following—a model
(stored in memory) defines the application’s state; a view shows model values and sends
user interactions to a controller; and the controller prepares model data, handles user
input and accordingly changes model values, and then decides which view page to show
next. This kind of MVC model is depicted in Figure 1-1.



CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Read R Update Model
Model Values Prepares *, After Submit
Model R

Data
Submitted

Select View
Page

Reads /
Updates

Backend i

(Not Part of MVC)

Figure 1-1. The Java MVC design pattern

The History of MVC

The advent of MVC dates back to the 1970s. It was introduced into the computer

language Smalltalk as a programming concept. At that time, it did not have a name. Only
later, in the late 1980s, was the moniker MVC explicitly used. It appeared in an article in

the periodical Journal of Object Technology.

MVC steadily became more and more widespread, and its ideas were so widely

adopted that variants evolved from MVC. We don’t talk about these variants in this book,

but a short list includes:

PAC (Presentation-Abstraction-Control) and HMVC (Hierarchical
MVC). This is a variation of MVC, where submodules have their own
MVC-like structure and only later is a view page constructed from
them.



CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

e MVA (Model-View-Adapter). In this pattern, the view and the model
are separated and only the controller (called an adapter in this case)
mediates between the model and the view. The view has no direct
access to model values.

e« MVP (Model-View-Presenter). In MVP, the view contains logic to
inform the controller (called a presenter in this case) about view-
related data changes. The presenter then performs some activities
and eventually calls back to the view in order to inform the user
about data changes.

¢ MVVM (Model-View-View-Model). In MVVM, some automatism is
introduced, which translates model values to view elements and vice

versa.

The real power of MVC was revealed in the 1990s with the rise of the Internet.
Although some technical details changed—such as the exact technical characteristics of
the data flow and the point in time when data traverses the layer boundaries—the idea
remained the same: a model holds the application state, a view presents the browser
pages, and a controller handles the interaction between the browser and the model, and
decides which view page to show.

Various MVC web frameworks were invented; https://en.wikipedia.org/wiki/
Comparison\ of\ web\ frameworks shows you a comprehensive list (further down on
the page, MVC capabilities are also listed).

MVC in Web Applications

Web applications impose some restrictions if we try to let them work the MVC way. The
most important distinction comes from the stateless nature of the HTTP protocol, which
is used for communication between the view (browser window) and the controller
(HTTP server). In fact, the way web application frameworks handle the HTTP protocol
leads to decisive differences between the different MVC implementations.


https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks
https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

In more detail, important questions concerning MVC for web applications

are as follows:

Sessions: We already pointed out the stateless nature of HTTP. So, if
the browser sends a request, maybe because the user entered some
string into a text field and then pressed the Submit button, how
would the server know which user is performing the request? This
usually gets handled by a session, which is identified by a session ID
transmitted as a cookie, request, or POST parameter. Sessions are
transparently handled by the framework, so you don’t have to create
and maintain sessions from inside the application’s code.

Accessing model values from the view: With web applications,
some kind of templating engine usually handles the view generation.
There, we could have expressions like ${user.firstName} to read the
contents of a model entry.

Transmitted data extent: If data is submitted from the web page to
the server, we basically have two options. First, the complete form
could be transmitted. Second, only the data that changed could be
sent to the server. The latter reduces network traffic, but requires
some script logic (JavaScript) to perform the data collection on the
web page.

Updating the view: With web applications, the way a view is updated
is crucial. Either the complete page is loaded after the controller
works a request, or only those parts of a web page that actually need
an update are transmitted from the server to the browser. Again, the
latter method reduces network traffic.

From these points, you can see that programming a MVC framework for web

applications is not an utterly trivial task. This is also why there are quite a large number

of different MVC frameworks you can use for web applications. In the rest of the book, I

will show you why choosing Java MVC is not the worst thing you can do if you need MVC

software for your Java platform.



CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

MVC for Java

In the Java ecosystem, a framework named Struts entered the software world around
2000. It is a MVC framework aimed at web applications and integrating with Java EE/
Jakarta EE and Tomcat (a server product boiled down to web functionalities). It has been
used in many software projects and is still being used, albeit it is not part of the Java EE/
Jakarta EE specification. Instead, Java EE/Jakarta EE names JSF (Java Server Faces) as the
dedicated web framework. JSE in contrast to MVC, uses a component-oriented approach
for creating web applications.

JSF works out-of-the-box for any Java EE/Jakarta EE 8 or later product. Up to version
7, if you wanted to use MVC, Struts was one of the prominent frameworks you could
use. However, in order for Struts to work, an external library had to be added to the
application, and Struts always felt like an extension and not so much like something that
seamlessly integrated with Java EE/Jakarta EE.

With Java EE 8/Jakarta EE 8, the MVC world reentered the game in form of a Java
MVC specification. It is still kind of a second-class citizen in the Java EE/Jakarta EE
world, but there are reasons to favor MVC over JSE. We talk about the merits and
disadvantages of MVC over other frameworks like JSF at the end of this chapter.

Finally, Java MVC (JSR-371)

The latest Java EE/Jakarta EE MVC implementation operates under the name Java MVC
and is governed by JSR-371. It is the first MVC framework available for Java EE/Jakarta
EE servers version 8 or higher. In fact, the JSR describes an interface. For Java MVC to
actually work, you need to add an implementation library.

Note We use Eclipse Krazo as the Java MVC implementation library. See
https://projects.eclipse.org/proposals/eclipse-krazo

or

https://projects.eclipse.org/projects/ee4j.krazo

We will later see how to install Eclipse Krazo for your web application.


https://projects.eclipse.org/proposals/eclipse-krazo
https://projects.eclipse.org/projects/ee4j.krazo

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Java MVC is a lean and clever extension of the REST technology JAX-RS included
within Java EE/Jakarta EE. This relationship gives Java MVC a modern touch and allows
for a concise and highly comprehensive programming style.

We already learned that MVC allows for some fluffiness concerning the
implementation details. Figure 1-1 describes how Java MVC works quite well: A request
for a first page in the browser window routes to the controller, which prepares model
values (with or without querying some backend for additional data). The controller
then decides which view page (browser page) to show next (maybe a login page). The
view can access model values. With a data set entered by the user and submitted to
the controller, the controller takes request parameters (for example, the login name
and password), possibly queries the backend (the user database), updates the model,
and finally selects a new view page (for example, a welcome page after successful
authentication).

But there is an additional feature that seamlessly integrates with Java MVC. Instead
of always loading a complete new page after each HTTP request, you can decide to
let parts of your web application use AJAX for more fine-grained frontend-backend
communication. Because we use Java MVC in a Java EE/Jakarta EE 8 (or later)
environment, we can use JAX-RS for that aim out-of-the-box.

Why MVC

With so many web frontend technologies out there, it is not easy to decide which to use

for your project. The new Java MVC certainly is an option and it might very well suit your

needs. In order to help you make a decision, here is a list of pros and cons of Java MVC.
Cons:

e MVC seems to be a old-fashioned design pattern. Although this is
true, it also has been proven to work well for many projects, and Java
MVC allows developers to mix in more modern web development
techniques.

e MVC forces the developer to be aware of HTTP internals. MVC is
also said to be an action-based design pattern. Actions in a web
environment mean HTTP requests and responses. MVC doesn’t
really hide the internals of the HTTP communication like other
frameworks do.



CHAPTER 1

Pros:

ABOUT MVC: MODEL, VIEW, CONTROLLER

MVC does not introduce two-way data bindings like other
frameworks do. With two-way data bindings, a change in a frontend
input field immediately reflects in the model value changes. Instead,
in a MVC controller, you have to explicitly implement the update of
model values.

Since it’s closer to the HTTP communication internals compared

to other frameworks, despite introducing some complexity, this
introduces less invasive memory management. If you look at JSE a
complete component tree (and component data tree) is built with
each browser request. In contrast, a MVC application can be tailored
with an extremely small memory footprint.

Java MVC is part of the Java EE/Jakarta EE 8 specification. This helps

to more reliably handle maintenance.

If you are used to Struts or similar frontend frameworks, switching
to Java MVC feels more natural compared to switching to other
products with other frontend design patterns.

Where Is Hello World?

In many software-related development instruction books, you find a really simple "Hello

World” example in one of the first chapters. For Jakarta EE, this means we must provide a

shortcut way to do the following:

Write a short program that does something simple, like output the
string "Hello World".

Build a deployable artifact from the string (for example, a .war file).
Run a Jakarta EE server.

Deploy the application (the .war file) on the server.

Connect a client (for example, a browser) to the server.

Observe the output.



CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

This is a lot of stuff, so instead of building a quick-and-dirty setup to run such an
example, I prefer to first talk about Java/Jakarta Enterprise Edition (Java/Jakarta EE) in
general, then discuss the development workflow, and only after that, introduce a simple

first project. This way, we can make sure your first Java MVC application is developed

and runs correctly.

If you think a quick-and-dirty Hello World example will help you, the following

paragraphs show you how to create one. Note that we won'’t use the development
processes shown here in the rest of the book—this is simply a simplistic and fast, and

maybe not-so-clean, approach. You can also skip this section safely, because we create a
proper Hello World project in Chapter 4.

1.

3.

First make sure OpenJDK 8 is installed on your PC. Go to https://
jdk.java.net/java-se-ri/8-MR3 to download it. In the rest of
this section, we call the OpenJDK 8 folder OPENJDK8 DIR.

Download and install GlassFish 5.1 from https://projects.
eclipse.org/projects/ee4j.glassfish/downloads (choose
the "Full Profile” variant). In the rest of this section, we call the
GlassFish installation folder GLASSFISH_INST_DIR.

Inside the GLASSFISH_INST DIR/glassfish/config/asenv.conf
(Linux) or GLASSFISH_INST DIR/glassfish/config/asenv.bat
(Windows) file, add the following lines:

REM Windows:

REM Note, if the OPENJIDK8 DIR contains spaces, wrap it
REM inside "..."

set AS_JAVA=OPENJDK8 DIR

# Linux:
AS_JAVA="OPENJDK8 DIR"

You must replace OPENIDK8_DIR with the installation folder of the OpenJDK 8 installation.

4.

Start the GlassFish server:

REM Windows:
chdir GLASSFISH INST DIR
bin\asadmin start-domain


https://jdk.java.net/java-se-ri/8-MR3
https://jdk.java.net/java-se-ri/8-MR3
https://projects.eclipse.org/projects/ee4j.glassfish/downloads
https://projects.eclipse.org/projects/ee4j.glassfish/downloads

CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

# Linux:
cd GLASSFISH INST DIR
bin/asadmin start-domain

You must replace GLASSFISH_INST DIR with the installation folder
of GlassFish.

5. Create a folder called hello world anywhere on your file system.
Its contents have to be (instructions follow):

build
|- <empty>
src
|- java
| |- book
| |- javamvc
| |- helloworld
| |- App.java
| |- RootRedirector.java
| |- HelloWorldController.java
|- webapp
| |- META-INF
| | |- MANIFEST.MF
| |- WEB-INF
| |- 1ib
| | |- activation-1.1.jar
| | |- javaee-api-8.0.jar
| | |- javax.mail-1.6.0.jar
| | |- javax.mvc-api-1.0.0.jar
| | |- jstl-1.2.jar
| | |- krazo-core-1.1.0-M1.jar
| | |- krazo-jersey-1.1.0-M1.jar
| |- views
| | |- greeting.jsp
| | |- index.jsp
| |- beans.xml

10



CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

| |- glassfish-web.xml
make.bat
make.sh

Get the JARs for the 1ib folder from https://mvnrepository.com.
Enter each name without the version and the . jar extension in
the search field, select the version, and then get the JAR file.

The Java code reads as follows:

// App.java:
package book.javamvc.helloworld;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

// RootRedirector.java
package book.javamvc.helloworld;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

/**
* Redirecting http://localhost:8080/HelloWorld/
* This way we don't need a <welcome-file-list> in web.xml
*/
@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
@verride
protected void doFilter(HttpServletRequest req,
HttpServletResponse res,

11


https://mvnrepository.com

CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

FilterChain chain) throws IOException {
res.sendRedirect("mvc/hello");

}

// HelloWorldController.java
package book.javamvc.helloworld;

import javax.inject.Inject;

import javax.mvc.Controller;

import javax.mvc.Models;

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/hello")

@Controller

public class HelloWorldController {
@Inject
private Models models;

@GET
public String showIndex() {
return "index.jsp";

}

@POST
@Path("/greet")
public Response greeting(@MvcBinding @FormParam("name")
String name) {
models.put("name", name);

return Response.ok("greeting.jsp").build();

12



CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER
As MANIFEST.MF, write the following:

Manifest-Version: 1.0

The view files read as follows:

<%-- index.jsp --%>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
<form method="post"
action="${mvc.uriBuilder('HelloWorldController#
greeting').build()}">
Enter your name: <input type="text" name="name"/>
<input type="submit" value="Submit" />
</form>
</body>
</html>

<%-- greeting.jsp --%>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>
<meta charset="UTF-8">
<title>Hello World</title>

</head>

13



CHAPTER 1  ABOUT MVC: MODEL, VIEW, CONTROLLER

<body>

Hello ${name}
</body>
</html>

(Remove the line break and the spaces after Hel1loWorldController#.)
10. Asbeans.xml, create an empty file (the file must exist, though!).

11. The contents of glassfish-web.xml reads as follows:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url="">
<class-loader delegate="true"/>

</glassfish-web-app>

12. The Linux build file called make.sh reads as follows:

#!/bin/bash
JAVA _HOME=/path/to/your/openjdk-8

rm -rf build/*
cp -a src/webapp/* build
mkdir build/WEB-INF/classes

$JAVA_HOME/bin/javac \
-cp src/webapp/WEB-INF/1ib/javaee-api-8.0.jar:
src/webapp/WEB-INF/1ib/javax.mvc-api-1.0.0.jar \
-d build/WEB-INF/classes \
src/java/book/javamvc/helloworld/*

cd build
$JAVA_HOME/bin/jar cf ../HelloWorld.war *
cd ..

(Remove the line break and spaces after the :.)

14



CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

13. The Windows build file make.bat reads as follows:

set JAVA_HOME=C:\dev\java-se-8u41-ri

mkdir build

CD build && RMDIR /S /Q .
c ..

rmdir build

xcopy src\webapp build /s /e /i
mkdir build\WEB-INF\classes

%JAVA_HOME%\bin\javac "
-cp src\webapp\WEB-INF\1ib\javaee-api-8.0.jar;
src\webapp\WEB-INF\1ib\javax.mvc-api-1.0.0.jar *
-d build\WEB-INF\classes "

src\java\book\javamvc\helloworld/*

cd build
%JAVA_HOME%\bin\jar cf ..\HelloWorld.war *
cd ..

(Remove the line break and spaces after the ;.)

To build the application from inside the console, move into the hello world folder
and start the script:

# Linux
cd hello_world
./make.sh

rem Windows
chdir hello_world
make

Apart from some error messages for the Windows build script that you can safely
ignore, you will end up with the HelloWorld.war web application in the main folder.
From there, you can deploy the application via the following:

# Linux
GLASSFISH INST DIR/bin/asadmin deploy --force=true \
HelloWorld.war

15



