Learn

Android Studio 3
with Kotlin

Efficient Android App Development
Ted Hagos

APress’

Learn Android Studio 3
with Kotlin

Efficient Android App Development

Ted Hagos

Apress’

Learn Android Studio 3 with Kotlin: Efficient Android App Development

Ted Hagos
Manila, National Capital Region, Philippines

ISBN-13 (pbk): 978-1-4842-3906-3 ISBN-13 (electronic): 978-1-4842-3907-0
https://doi.org/10.1007/978-1-4842-3907-0

Library of Congress Control Number: 2018962941

Copyright © 2018 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484239063. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3907-0

For Adrianne and Stephanie.

Table of Contents

About the AUROFccciiemmisnmmissnsmmsssnsssssnssssssssssansesssnsesssnsesssnnesssnnesssnnesssnnsessnnssss Xiii
About the Technical REVIEWEI'Sccuiesrsssssssssansssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnssssns XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
INtroductioncocieeriisennmssnnmsssnnmsssnnesssnnesssnnesssnnesssnnesssnnesssnnesssnnnsssnnenssnnssssnnssssnnnsns Xix
Part I: The Kotlin Languagecccuussemmmmmmmssssssnmmmssssssssnmnsssssssssnssssssssssnnssssssnnns 1
Chapter 1: Getting into Kotlinccccciiemmmmnnsmmmmmmnsssmmmmssssmmnssssmmmsssssssssssssnnnns 3
ADOUL KOHN...cveeiiecisesiscen st e e 4
Installing the Java SDK ... ettt 6
INStalling 0N MACOS........coeirrirer e e s e e eae s a e sa e e s a e s e e e e e naenaen 7
Installing on WindOWS 10.........ccocrieriririirsienerserree e s s s e s e e sae s s e s e e sresnensenns 8
103 P2 1 10T T 0] T GO 9
1LY LT 40 0] £ 10
Installing the Command LiNe TOOIS........ccoueermrererreserrnseseresessesesessesesssse s sessesessssessssesessesenns 10
Coding With the Command Ling TOOISccccvourerererennesereneseseresesesese s ses e ssssesessesenns 15
INSEAIING INTEHIIY ... 17
Creating @ PrOJECLccvecerierneses e n e 19
TR INEEIIIJ IDE ...t 29
Chapter SUMMANYccooeeeecr s n e ne e e nnn e 31
Chapter 2: Kotlin BaSiCScuuueemmrmsssnnmmmsssssnnssssssnsnsssssssnnssssssnsnssssssnnnssssssnnnsssssnnnnnssss 33
Program EIBMENTS ..ot e 33
)T OSSOSO 34
VaNIADIEScueieeerree s e p e n R 34
Expressions and Statements..........cvcvveinnninesns s 36

G A0 (0 SO SOP 37

TABLE OF CONTENTS

L L TE e 0 T S 38

00 T=T (0] O 39
BIOCKS ...cititiiiiit i ————— 41
COMMENTS ... 42

5 R [1] 0T O 44
Numbers and Literal Constants ..., 44
CRAFACTEIScvvrcicrs s 46
BOOIBANS.......ccciir i —————————— 47
1 47
Strings and String TEMPIALEScccocvecrri e 49
Controlling Program FIOWccooeermenrnenesesssessesssessssssssessesesssssssssssessssssssssssssssssssssssssssssssssnns 51
LS TSP 51
The when Statement ... ——————————— 53
The while Statement ... ——————— 55
{000 L OSSOSO 55
EXCeption HANAIINGccvvvereierirrire st s ss s s s a s se s s st s 57
g LT T T N L 58
Chapter SUMMANYccvverereserese s se s s rs e s e s e s nenns 60
Chapter 3: FUNCLIONSccuviisemmmmmsssmnnmmmsssssnmmssssssnmmssssssnsessssnsnsssssssnsssssssnnnsssssnnnnsnnss 63
DecClaring FUNCHIONScociiiie e r e s s s n e e s 63
Single EXPression FUNCHIONS.........cvcvveveveneniere s sessesse e sessessessessssessessessessssessessessssssnessesaes 67
Default ArgUMENTES ..o s e s e e e ns 68
Named Parameters ..o ———— 69
Variable Number of ArQUMENTSccce i e s sn e s 70
EXtension FUNCHONS ..o s 71
INFIX FUNCHIONS....c.ciiiiiicii e s 73
(00 T=T L0 G0NV =T 0 Vo [T R 75
Chapter SUMMAIY ... s s 78

TABLE OF CONTENTS

Chapter 4: Working With TYPeS.....ucccrrrmsssnnsrssssnnssssssssnsssssssnssssssssnssssssssnsnssssssnnnsssss 79
INEEITACESveec et ———————————————— 79
Diamond ProbIem ... —————— 81
INVOKING SUPEr BENAVIOL.........ccccoiircr e 82
LT 84
CONSEIUCTONS ... 85
INNEIIEANCEvveicieri i 88

o (0] 4T TSRS 92

DALA CIASSES ...vvvreresesescsiesiissss s 96
ViSiDility MOGIFIErS.ccurecereseresrrissires s 100
ACCESS MOIfIEIS.....ecueuiereriisiisi e 102
0DJECt DECIArAtiONSccvcervererrersere s s r e ae e e a e e nnen 102
(TGS 1T 1T O 103
Chapter 5: Lambhdas and Higher Order FUnctions.........ccccusssemmmmsssssnnsssssssnssssssnnnnss 105
Higher Order FUNCHIONSccvcvienincse e 105
Lambda and Anonymous FUNCHIONScocviiiiininin s ss s e ss s s saenns 109
Parameters in Lambda EXPreSSioNnsSccvvevvervennieneniensenssesessessesssesessessssssessesesssssaessessenns 110
0L 113

WIth @N0 APPIY c.eeeeciecicrr e e e e R e nn 114
Chapter SUMMANYcovevieiree e nr e 116
Chapter 6: Collections and Arraysosssmsmmsmmsmmsmsmssms s 117
2 S 117
COHBCTIONSceerreriscic e s 121
LISES ettt ————————————————— 123

SIS e —————————————————————— 124
2 0 OSSOSO 125
Collections TraVersal.........cccvrrrmiinisesssssss s 127

a1 T a0 1 o OSSN 128
(1P 10 (T AT 1 R 130

vii

TABLE OF CONTENTS

Chapter 7: GENEIICS .uuuuiseesrrrssssnnnmsssssnnnssssssnnsesssssnnssssssnnssssssssnnnesssssnnnsssssnnnnssssnnnnnss 133
WHY GENEIICS ..c.veueeeucerseerreeresesessesesseeses e sse e se e ses e e sse e se e see e e sse e ssesesensesssssssssensssnsesnsenens 133
TErMINOIOGIES. ... eeereserrrreserrese s e s s e e e e e r s s e b e e nae e e Re e r e e nnenrnnn e 135
Using GENerics iN FUNCHIONS.........ccvovevirierere s sse s sessesse s ssssessessessesessesaessessssensesaees 136
USiNg GENENICS iN ClIASSES......ccucrceririiririnene st nne 138
L1 T 140
SUDCIASS VS SUDTYPEeererei et sa e s s a e e s ae e se e e sa e e e naennen 144
Reified GENEIICS.....ciuiuisiiiri e s 149
Chapter SUMMANYccoverierree e nr s 153

Part ll: Android Programming with Kotlinccccccmmmnnnssemmnmnnnsssssssnnnnn. 155

Chapter 8: Android Studio Introduction and Setup.........ccccccmmrnssenmnnnssssnnnsnsssnnnns 157
3 15 (0] 7SS 157
AICRITBCIUNE ...t ———————— 158
Android StUI0 IDE ..o 160
£] R 161
Android Studio Configurationcccvriininni s 163
Hardware ACCEIBration............ouvrrrniinniss s 169
(1P 10 (T T R 170

Chapter 9: Getting Started..........ccurrmmmrnnsnmnnnnsssnnmmnsssnnssss s —————— 173
L e LI 1117 o SOOI 173

Component ACHIVALION.........ccccveriinrr e e e 176
Creating @ PrOJECLccvvceviererese e e nr s 177
TRE IDE........eeecerect ettt 190

MaIN MENU....eiitii i 192

Keyboard SHOMCULSccceveierrirere s se e e s s ss s sae s a e se e sae e nnennes 193

Customizing CoUe SEYIE......ccvcrerrrerrere e re e s a e sae e s s aesr e e nne s 195
Chapter SUMMAIY ... e e s e nnn 196

viil

TABLE OF CONTENTS

Chapter 10: Activities and Layouts.........ccccrrnssnnnnmmssssnsnmssssssssssssssssssssssssssssssssnnnss 197
Application Entry POINt.........cccrirsr e 197
ACHIVITY CIASS ...uvveuereenererscrerseserreeresesessese s ses e sesse e se e ses e e s sessesesee e sessesensssesessesensessssenees 198
LAYOUL FIlB ...t e e bbb 200

View and ViewGroup ODJECTS........cccrniinnnin s sn s enes 201
CONTAINEIS ...cuvririricie s s 203

HEHO WOKI......ccocciiiiri s s 204
Modifying Hello WOFIQ........ccoveeririreerssesssese s se s se s ssnnes 208
(1 T0 (T T 1 R 218
Chapter 11: Event Handlingccuscemmmnnssnmnmmsssssnnmmsssssssmssssssssssssssssssssssssssssssssnnnss 221
Introduction to Event HaNdIing.........cccocvcnnninnnnnn s sesesnens 221
Chapter SUMMANY ... e nr s 237
Chapter 12: Intents........ccciviiemmmmmnsnnmmmmnnsssmmmsssnnmmssssnssss s 239
WhaL INTENTS AF€......coviiiiiiini i ——— 239
LO0OSE COUPIING.....cieriiriiiircrerie st s e s s e s e e s e b et e e ne s 242
TWO Kinds Of INTENTceiirriicir 243
INtents Can Carry DAta..........coovvrveviererenserereses s sre s s ssessesessessessessssessessesassessesaesaesssnessesaens 243
Getting Back Results from AnOther ACHIVITYcocvvrvrieriernrenseniers s s ses e sessessesne s 246
IMPHCIE INTENTS ... eae e 249
Demo 1: Launch an ACHIVITY.......cocueeeerenernsesrnesesese s sesse s 251
Demo 2: Send Data to an ACHIVITYcoveevveriererierrerere s rsere s s s se e e s e s sre e s ssesnesassessesaees 259
Demo 3: Send and Get Data Back to and from an AGLIVItycccvvrninvninnnsnsnn s 265
Demo 4: IMPIICIt INTENTScveie e 278
(1P 10 (T AT 1 R 282
Chapter 13: Themes and MeNUScccvussseensrsssssnnnmssssssssssssssssssssssssnsssssssnsssssssnnnnss 283
SEYIES ANA THEIMES......ceeecerceree e n e p e ne e 283
Customizing the TNEME ... e s 286
MIBIUS ..ottt 288
(01 10 (T T 1 O 303

TABLE OF CONTENTS

Chapter 14: Fragments.......cccccmrunsnmmnmmssssnsnmsssssssssssssssssesssssssssssssssssssssssnsssssssnnnnss 305
Introduction t0 Fragments..........ccccinininsr e 305
Book Title and Description, @ Fragments DEmOccucevrenernsmsnsesnnssssssse s sessesenns 311
Fragments Demo, DYNAMIC........c.ccvcvierieriniinne e r s see s s se s e s s s ss e sae s 337
Chapter SUMMAIY ... e e s e 341

Chapter 15: Running in the Background..........ccoeemmmmmmmmnmsssssssssssnsssmssssssssssssssssnnes 343
5 (o 00 =T) OO 344
LILLLE © 1T o 344
Threads and RUNNADIES ... 349
Using the HANAIEr ClaSS.........cuccvvererrinerinsesrnesessse s ss e s ssse s s e ssssssesnnns 354
[- T S 357
ANKO’S UOASYNC......eierueriiiesirese e s e e st b e b e s s b b s s b b e e e e Re b e e e e naenae s 360
A Real-World EXAMPIEcccereriirire e rser e s s e s sn e s s sn s s s s s sne s s 363
(1 10 (T T 1 O 371

Chapter 16: DeDUGQINGcvsurssssasssasssnssssssasssasssssssnssssssnsssnsssnsssnssssssnsssnsssnsssnsnnss 373
B3 L1 t2 V. = (0] 373
RUNTIME EITOFS.....ciitiiiciini st s s 377
00 = 0] OSSP 382

Walking Through Code.........curirirmrerininisisiiisssssssssss s 385
Other NOTEScoieiiciri 387
Chapter SUMMANY ... e sr s e nr s 388

Chapter 17: SharedPreferenCes......ccccruussemmmsssssnnsmsssssnnssssssssnsssssssnnsssssssnnssssssnnnnss 389
Sharing Data BetWeen ACHIVITIEScucvivrerierrrerrere s sere s s e s sae e s e snesnes 398
ChapLer SUMMANYccoeeceereree e e ne e 406

Chapter 18: Internal Storagecccuunmmmmmmmmmnmmmsssssssssnmmmeessssssss s 407
Overview Of File STOrage........cucvvenrinernesinesese s s 407

Internal and External STOrage..........c.covnnnn s 408
L2 T3 T D1 (T (0] OSSPSR 409

TABLE OF CONTENTS

How to Work with Internal ST0ragecceevrevrrrrvniernsnsneneses s ssssessessesssssssessessessssessessens 409
(TG 1T 1 T T 424
Chapter 19: BroadcastReCeIVerScciuussssmmmmsssssnnsmsssssnnnssssssnnsssssssnnnsssssnnnssssssnnnnss 425
Introduction to BroadCastReCEIVErS..........ccuriiiinnn s 425
System Broadcast vs. Custom BroadCastccveeveverrnierenennnsesenessssessessessssessessesssssssessesses 426
Manifest Registration vs. Context RegiStration...........cocorerreernscnnsescree e 427
Basics 0f BroadCastRECEIVENS........c.cuuiirrmriissss s 430
Implicit vs. Explicit Broadcast ACtIONSc.ccoveviririnn s 432
Demo App: Custom BroadCast..........cccuuvvnirinnninnnenn s sesses s sessesesssssssessessessssessesnens 433
Demo App: System BroadCast..........couvrvnninnininenn s s snens 440
OthEr NOTES ...t 443
Chapter SUMMAIY ... e e s e 444
Chapter 20: App Distributionccccmmmmmmrnnmmnssssssssmnssss s —————————— 445
Preparing the App fOr REIEASEccevcerriereninerie e 446
Prepare Materials and Assets for Release.........ccvvvrvrernnnnniene s sessennes 446
Configure the App TOr REIEASE........ccccvvereriiiriene s s 447

Build a Release-Ready AppliCation.........c.covvvvrennnnsnie s s sessessesnes 448

e LT R T (=AY] oSSR 452
Chapter SUMMAIY ... e e s e 456
INA@X...ciiiisnmnnrssssnnnnsssssnnnssssssnnnssssssnnssnssssnnnsnssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 459

xi

About the Author

Ted Hagos is the CTO and Data Protection Officer of RenditionDigital International, a
software development company based out of Dublin, Ireland. Before he joined RDI, he
had various software development roles and also spent time as trainer at IBM Advanced
Career Education, Ateneo ITI, and Asia Pacific College. He spent many years in software
development dating back to Turbo C, Clipper, dBase IV, and Visual Basic. Eventually, he
found Java and spent many years there. Nowadays, he’s busy with full-stack JavaScript
and Android.

xiii

About the Technical Reviewers

Massimo Nardone has more than 24 years of experience
in Security, Web/Mobile development, Cloud, and IT
Architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,
Research Engineer, Chief Security Architect, Information
Security Manager, PCI/SCADA Auditor and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl,
Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,
and he is a member of ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has
coauthored Pro JPA in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8 (Apress, 2018),
and Pro Android Games (Apress, 2015).

ABOUT THE TECHNICAL REVIEWERS

Val Okafor is a software architect with expertise in Android
development and resides in sunny San Diego, California. He
has over 12 years of industry experience and has worked for
corporations such as Sony Electronics, The Home Depot,
San Diego County, and American Council on Exercise. Val
earned his BSc in IT from National University, San Diego and
his Masters in Software Engineering from Regis University,
Colorado. He is the creator and principal engineer of Pronto
line of mobile apps including Pronto Diary, Pronto Invoice,
and Pronto Quotes.

His passion for software development goes beyond
his skill and training; he also enjoys sharing his knowledge with other developers. He
has taught Android development to over 5,000 students through Udemy, and his blog
valokafor.com is considered an essential reading for Android developers. Val was also
recently named among the first cohort of Realm MVP program because of his active
participation in the Realm database community.

Acknowledgments

To Stephanie and Adrianne, for bearing with me for the past 9 months while I wrote this
book. My thanks and my love.

To Mark Powers, for his understanding when I missed some of the writing deadlines
and for keeping the schedule straight.

To Steve Anglin, for bringing me to Apress.

To everyone who made this book possible, Thank you. It truly feels great to hold
one’s printed book in one’s hands. It’s even more awesome the second time around.

Xvii

Introduction

Welcome to the Kotlin edition of Learn Android Studio 3, This book will help you get
started in your programming journey with the little green robot. You already bought
the book, so you don’t need to be convinced that programming for the mobile platform
offers a lot of opportunity for software developers. Thank you for buying it, by the way.

Who This Book Is For

The book is aimed at beginning Android programmers, but it isn’t for people who are
completely new to programming. Ideally, you already are a Java programmer trying to
get your feet wet in Android, and you wanna try the Kotlin language (coz all your dev
friends told you it was cool). But in case you're not a Java developer or you don’t have
Android programming experience, don’t sweat it. The book is friendly enough—I tried
hard to write it that way—and approachable enough such that anyone with a passing
knowledge of either C#, JavaScript, C, or C++ will be able to follow the code samples and
the concepts presented in this book.

What’s Different in the Kotlin Edition

All the code examples and the demo projects are mostly new. They're not a plain Kotlin
port of the first edition’s examples. I've also added new chapters; here they are:

¢ Collections

e Generics

o Higher Order Functions
e Broadcast Receivers

Some chapters in the first edition have been split into two or more chapters. I

”n

split them so that I can treat the subjects with more depth—for example, “Intents,

” u

“SharedPreferences,” “Internal Storage,” and “Fragments.”

Xix

INTRODUCTION

Organization and Treatment

The book is divided into two major parts. Chapters 1 to 7 are all about the Kotlin
language, and Chapters 8 to 20 are about Android programming.

While you can use it as a reference book, I didn’t write it that way. It's not meant as
a substitute for the docs in https://kotlinglang.org or the Android developer guides
https://developer.android.com. It’s also not meant to be a “Definitive Guide” type of
book where you can spend hours or days exploring every nook and cranny. Quite the
contrary—I wanted it to be a “get started quick” type of book, like a recipe book, but
without losing our grasp on the fundamental concepts.

Android and Kotlin are big subjects; I don’t think there exists a “single best way” to
present the materials for either of these two. So, I made certain bets on the instructional
design. Here they are:

o Bite-sized concepts. The troublesome topics are broken down into
a series of small steps so that you can solve them in isolation. When
you can solve small problems, it gives you confidence to solve bigger
ones. This approach helps a beginning programmer to grow in the
direction of skill.

o Conciseness. I tried to keep each chapter as short as possible, so you
can finish it in one sitting. Originally, I wanted each chapter to be a
“20-minute read”; that was too ambitious, so, I gave up on it—but
still, the chapters are short.

o Multiple Learning Curves. The book is about three topics: Android
Studio, Android Programming, and Kotlin. Although Kotlin and
Android programming may seem to have dedicated chapters for
them, techniques on how to use Android Studio (and IntelliJ) are
scattered throughout the book.

o Balance between concept and code. Admittedly, the treatment is
biased (just a little bit) toward code. Programming is not a spectator
sport; we learn by doing. Nonetheless, in every chapter, I tried to
explain what the fundamental concepts are, what we're trying to
do, what problems are we trying to solve, how we might solve those
problems, and what does the solution look like—in code. Almost all
of the chapters have one or more demo projects in them.

https://kotlinglang.org/
https://developer.android.com/

INTRODUCTION

o Verbose and complete code presentations. Sometimes (most of
the time actually), I presented the full source example, but only
one or two lines of it are relevant. I erred on the side of caution
(and verbosity) because it’s easier for a beginner to understand the
relevant codes if he can see it in relation to the whole program. So,
you don’t have to worry about, “Where do I put this code? Does this
go inside function main or inside a class?”

« Immediacy and coherence. Like I said, I wanted this to be a “get
started quick” or a “recipe” kind of book. So, instead of covering
everything, including the kitchen sink, I chose to cover some topics
and ignore others. I chose use-cases whose complexities are easy or
moderate and covered topics that are only relevant for those use-
cases. For example, in the BroadcastReceiver and Intent chapters,

I didn’t cover LocalBroadcastManager and PendingIntent. Cool as
these topics are, they weren’t relevant for the use-cases I chose. If I
added more use-cases or demo-projects, that would have stretched
the length of the chapter. It’s a balancing act, you see.

o Independent demo projects. I designed them as such so that the
demo project could be started (and followed) from scratch. There is
no “putting it all together” project in the end. This way, the book can
be conveniently used as a reference. If you pick a topic, it’s almost
self-contained, including the demo project.

In the end, I can only hope that the bets I made will pay off and that you will walk
away as a slightly better programmer after reading the book.

Chapter Overviews

Chapter 1: “Getting into Kotlin” introduces the language. It tells you how to setup Kotlin
in various ways on the three major platforms: macOS, Linux, and Windows. It also
contains instructions on how to create, configure, and run a project in IntelliJ]—this is the
IDE I used to create all the Kotlin code samples for Chapters 1 through 7.

Chapter 2: “Kotlin Basics” dives into the language fundamentals of Kotlin. You'll
learn the basic building blocks of a Kotlin program (e.g., Strings, control structures,

xxi

INTRODUCTION

exception handling, basic data types). You'll also see some of Kotlin’s features that are
very different from Java, like its treatment of nullable and non-nullable types.

Chapter 3: “Functions.” There’s a whole chapter dedicated to functions because
Kotlin’s functions have something new up their sleeves. It has all the trimmings of a
modern language like default and named parameters, infix functions, and operators;
and with Kotlin, we can also create extension functions. Extension functions lets you add
behavior to an existing class, without inheriting from it and without changing its source.

Chapter 4: “Working with Types.” This chapter deals with object-oriented topics.
You'll learn how Kotlin treats interfaces, classes, and access modifiers. We’ll also learn
about the new data classes in Kotlin. It also talks about object declarations—it’s the
replacement for Java'’s static keyword.

Chapter 5: “Lambdas and Higher Order Functions.” Now we go to Kotlins'’s
functional programming capabilities. It discusses how to create and use higher-order
functions, lambdas, and closures.

Chapter 6: “Collections” walks through the classic collection classes of Java and how
to use them in Kotlin.

Chapter 7: “Generics.” Using generics in Kotlin isn’t that much different from Java.

If generics is old hat for you, then most of this chapter will be a review. But try to read
through it still because it talks about reified generics, which Java doesn’t have.

Chapter 8: “Android Studio Introduction and Setup.” This chapter talks a bit about
Android’s history, its technical make-up, and the OS. It also walks you through the
installation and setup of Android Studio.

Chapter 9: “Getting Started” gets you grounded on the fundamental concepts about
Android programming. It talks about components, what they are, how they are organized,
and how they come together in an Android app. In this chapter, you'll learn how the basic
workflow of an Android project—how to create a project and run it on an emulator

Chapter 10: “Activities and Layouts.” Here, we'll learn how to build a UL Activity,
Layout, and View objects are the building blocks for an Android UL

Chapter 11: “Event Handling.” You'll learn how to react to user-generated events like
clicks and longclicks. We'll use some concepts that we learned in Chapters 4 and 5 (inner
objects and lambdas) to help us write more compact and succinct event-handling code.

Chapter 12: “Intents.” This chapter reviews some fundamental concepts on Android
programming, specifically the concept of components, which dovetails to the topic of
Intents. You'll learn how to use Intents to launch another Activity and pass data in-and-
around Activities.

xxii

INTRODUCTION

Chapter 13: “Themes and Menus.” This is a short chapter. You'll learn how to add
styles/themes to your app. We'll also work with some menus and the ActionBar.

Chapter 14: “Fragments.” You'll learn how to use Android Fragments as a more
granular composition unit for UL. We'll also see how to use Fragments to address
changes in device orientation.

Chapter 15: “Running in the Background.” Any non-trivial app will do something
substantial like read from a file, write to a file, download something from the network,
etc. These activities will likely take more than 16 ms to execute (you'll learn why 16 ms
should be the upper limit and why you should not exceed it). When that happens, the
user will see and feel “jank.” This chapter discusses the various ways on how to run our
code in a background thread.

Chapter 16: “Debugging” shows some of the things you can do to debug your apps
in Android Studio 3. It goes through a list of the kinds of errors you might encounter
while coding and what you can do in Android Studio to respond them.

Chapter 17: “SharedPreferences.” When you need to save simple data, you can use
the SharedPreferences API. This chapter walks you through detailed examples on how to
do that.

Chapter 18: “Internal Storage.” Just like in SharedPreferences, you can also store data
using the Internal Storage API of Android. This chapter discusses internal and external
storage.

Chapter 19: “BroadcastReceivers.” Android has a way to make highly decoupled
components talk to each other. This chapter talks about how BroadcastReceivers can
facilitate messaging for Android components.

Chapter 20: “App Distribution.” When you're ready to distribute your app, you’ll
need to sign it and list it in a marketplace like Google Play. This chapter walks you
through the steps on how to do it.

How to Get the Most From This Book

I designed it like a workbook; it’s best to use it like that. Most chapters have a “Demo
Project” section. There are details on how to create a project—for example, what name
should you use for the project, the minimum SDK to target, etc. The reason I included
this information is so you can follow the coding exercise.

xxiii

INTRODUCTION

I used three kinds of blocks in the book: Examples, Listings, and Figures.
o Examples are commands that you would type in a terminal window.

o Listings contains program or code listing; it's something that you
would type in a program file.

o Figures could be screenshots or diagrams. Some of the screenshots
are annotated to point out a sequence of steps and how to do them
on the IDE. I used Android Studio 3.1 and IntelliJ 2018.2 for the
examples in this book; it’s possible that by the time you read this
book, you'll be using a different or higher version of these tools.

Programmers (mostly) learn by doing. If you work your way through the demo
projects, I think the lessons will stick better. Remember that coding is like swimming or
driving, you can read as many books as you want on the subjects, but if you don’t go in
the water or behind the wheel, you won’t get anywhere.

Source Code

Source Code for this book can be accessed by clicking the Download Source Code
button at www.apress.com/9781484239063.

XXiv

http://www.apress.com/9781484239063

PART |

The Kotlin Language

CHAPTER 1

Getting into Kotlin

What we’ll cover:
e Anintroduction to the Kotlin language
e How to get Kotlin
e Installing Kotlin on macOS, Windows, and Linux
e Running a Kotlin program in the command line
o (Creating and running a project in Intelli] IDEA

This chapter introduces the Kotlin language and goes into some details on how
to set up a development environment. You will find instructions on how to install
Kotlin on macOS, Windows, and Linux. You'll also find instructions on how to install a
Kotlin environment using just bare-bones command line. Each developer gravitates to
certain kind of setup, and yours truly is not an exception. Here’s the setup that I've used
throughout the book:

o Intelli] 2018 running on macOS (High Sierra). I used this throughout
chapters 1to 7

e Android Studio 3 on macOS (High Siera). I used this for the rest of
the book

You don’t need to follow my exact setup. We've taken pains to ensure that the
instructions in this book works in Linux and Windows just as well as they do in
macOS. Also, when I say Linux, I don’t mean all the distributions of Linux. The fact is,

I tested these codes only in Lubuntu 17. Why? Because that’s the Linux distro that I'm
most familiar with. I believe that most readers of this book (who use Linux) will also be
familiar with this Linux distro (or any of its close cousins).

© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_1

CHAPTER 1 GETTING INTO KOTLIN

Android Studio 3 and Intelli] works on Windows 7, 8, and 10 (32- and 64-bit), but I
only tested the exercises on Windows 10 64-bit—this is the only machine I have access
to; and I believe that most readers who use Windows use this setup as well.

Lastly, let’s discuss the JDK version. At the time of writing, JDK 10 is in early access.
So the choices for JDK version was 8 or 9 (since JDK 7 ended its life sometime in 2015).
I went with 9—no special reason, I think 8 would have worked just as well.

About Kotlin

Kotlin is a new language that targets the Java platform; its programs run on the JVM (Java
Virtual Machine), which puts it in the company of languages like Groovy, Scala, Jython,
and Clojure, to name a few.

Kotlin is from JetBrains, the creators of Intelli], PyCharm, WebStorm, ReSharper, and
other great development tools. In 2011, JetBrains unveiled Kotlin; the following year, they
open-sourced Kotlin under the Apache 2 license. At Google I/0 2017, Google announced
first-class support for Kotlin on the Android platform. If you're wondering where the
name Kotlin came from, it’s the name of an island near St. Petersburg, where most of
the Kotlin team members are located. According to Andrey Breslav of JetBrains, Kotlin
was named after an island, just like Java was named after the Indonesian island of Java.
However, you might remember that the history of the Java language contains references
that it was named after the coffee, rather than the island.

Kotlin has many characteristics and capabilities as a language, and we have the
whole first part of this book to explore those, but here are a few things that makes it

interesting.

o Like Java, it’s object-oriented. So, all those long hours you've
invested in Java’'s OOP and design pattern won'’t go to waste. Kotlin
classes, interfaces, and generics look and behave quite a lot like
those of Java. This is definitely a strength because, unlike other JVM
languages (e.g., Scala), Kotlin doesn’t look too foreign. It doesn’t
alienate Java programmers; instead, it allows them to build on their
strengths.

o Statically and strongly typed. Another area that Kotlin shares with
Java is the type system. It also uses static and strong typing. However,
unlike in Java, you don’t have to always declare the type of the
variable before you use it. Kotlin uses type inference.

CHAPTER 1 GETTING INTO KOTLIN

e Less ceremonious than Java. We don’t (always) have to write a class;
top-level functions are OK. We don’t need to explicitly write getters
and setters for data objects; there are language features in Kotlin,
which allows us to do away with such boiler-plate codes. Also, the
natural way of writing codes in Kotlin prevents us from ever assigning
null to a variable. If you want to explicitly allow a value to be null, you
have to do so in a deliberate way.

« It’s a functional language. Functions are not just a named collection
of statements; you can use them anywhere you might use a variable.
You can pass functions from a parameter input to other functions,
and you can even return functions from other functions. This way
coding allows for a different way of abstraction.

o Interoperability with Java. Kotlin can use Java libraries, and you can
use it from Java programs as well. This lowers the barrier to entry in
Kotlin; the interoperability with Java makes the decision to start a
new project using Kotlin a less daunting enterprise.

There are many reasons to use Kotlin in your next project, but there are also counter-
arguments to it. We won'’t list the pros and cons of why you should or why you shouldn’t
use Kotlin in your next project; but I'll discuss one reason why I would advise you to slow
down and pause before you get all gung-ho about it.

It’s still relatively new. Some people are convinced that it’s approaching its “peak
of inflated expectation” and will soon enter the “trough of disillusionment.” Their main
argument is that if you bet on Kotlin right now, you'll be saddled with learning curve
problems and you’ll be obligated to maintain that codebase—even if Kotlin disappears
in a puff of smoke. In other words, you might carry it as a technical debt.

Kotlin’s adoption will also come at some cost. You'll have to train your team on how
to use it. No matter how experienced your team is, they will definitely lose some speed
along the way—and that’s a project management concern. Also, because Kotlin is new,
there is no “Effective Kotlin” guide post yet, while Java programmers will always have
their “Effective Java.

It will all boil down to your bet. If you bet that Kotlin will go the distance instead of
quietly disappearing in the dark, then the bet would have paid off. If you're wrong about
the bet, then you go down the arduous road of maintaining the codebase of a defunct
language—a technical debt. Either that or you rework it back to Java.

CHAPTER 1 GETTING INTO KOTLIN

Google has officially supported the language in Android Studio, and more and more
developers are getting on the bandwagon. Adoption is growing. These are good signs
that Kotlin won’t go down quietly and might actually go the distance. Plus, it’s a cool

language.

Note “Peak of inflated expectation” and “Trough of disillusionment” are part
of the the “Hype cycle.” The hype cycle is a branded graphical presentation
developed and used by the American research, advisory, and information
technology firm Gartner, for representing the maturity, adoption, and social
application of specific technologies. You can read more about it at https://
gtnr.it/cycleothype.

Let’s continue and build ourselves a dev environment.

Installing the Java SDK

Before we can use Kotlin, we need to install the JDK. If you already have an existing
setup of the Java development kit, you can skip this section and jump to the next one
(Installing Kotlin). The JDK installer is available for Windows, Linux, and macOS. You
can download the currently stable version from the Oracle site, http://bit.ly/
javagdownload.'

Figure 1-1 shows the download page for Oracle JDK. Choose the installer appropriate
for your platform, then click the “Accept License Agreement” to proceed.

'Available from http://www.oracle.com/technetwork/java/javase/downloads/jdk9-
downloads-3848520.html

6

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Gartner
https://en.wikipedia.org/wiki/Technology
https://gtnr.it/cycleofhype
https://gtnr.it/cycleofhype
http://bit.ly/java9download
http://bit.ly/java9download
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html

CHAPTER 1 GETTING INTO KOTLIN

< C (@ www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-384... vr | [0 v A g b & 1
5] o

ORACLE — Menu Q d Signinv (@ CountryRegion v @]

Oracle Technology Network / Java / Java SE / Dr.\'.mlua&i

Java SE Overview D y @ ity S Training Java SDKs and Tor
Java EE g = E : " & Java SE
Java EE and Glassfis|
SR IE Java SE Development Kit 9 Downloads x
Java SE Advanced & Suite Thank you for downloading this release of the Java™ Pilatform, Standard Edition Development Kit s M
ided (JDOK™). The JOK is a di i for building icati and using the =
Java Feb Java programming language. # JavaCarg
Java DB # NetBeans |DE
Weo T The JOK includes tools useful for ping and testing prog written in the Java programming pre i
ik language and running on the Java platform. & Java Mission Control
Java Card Sosals: J Ri s
Java TV " tar
« Java Developer Newsletter: From your Oracle account, select Subscriptions, expand &
New to Java Technology. and subscribe to Java. s iﬁlﬂfﬁlﬁ
Commurity » Java Developer Day hands-on workshops (free) and other evenls % B
& Demos and Videos
Java Magazine » Java Magazine ;
JOK 9.0.1 checksum b
& Java Magazine
& Developer Training
Java SE Development Kit 9.0.1 & ki
You must accept the Oracle Binary Code License Agreement for Java SE to download this =
Aftwarg, & Java com

) Decline License Agreement

Product / File o SIze Download
Linux 30499 MB #jdk-9.0.1_linux-x64_bin.rpm
Linux 338.11 MB #jdk-9.0.1_linux-x64_bin.lar.gz
macOS 382.11 MB #jdk-9.0.1_osx-x64_bin.dmg
Windows 37551 MB #jdk-9.0.1_windows-x64_bin.exe
Solaris SPARC 206.85MB #jdk-9.0.1_solaris-sparcvd_bin.tar.gz

Figure 1-1. Oracle JDK download page

Installing on mac0S

To install the JDK on macOS, double-click the downloaded dmg file and follow the
prompts. The installer takes care of updating the system path, so you don’t need to
perform any further action after the installation.

When you're done with the installation, you can test if the JDK has been installed by
launching the “Terminal.app” and trying out the Java command (see Listing 1-1).

Listing 1-1. Test the JDK tools on a macOS Terminal

$ java -version
$ javac -version

You'll know that you've installed the JDK without problems if the terminal outputs
the version of java and javac as shown in Figure 1-2.

CHAPTER 1 GETTING INTO KOTLIN

ted in ~
java -version
java version "9.0.1"
Java(TM) SE Runtime Environment (build 9.0.1+11)
Java HotSpot(TM) 64-Bit Server W (build 9.0.1+11, mixed mode)

ted in ~
javac -version
javac 9.0.1

ted in ~
Figure 1-2. java and javac on the Terminal.app

Installing on Windows 10

You can install Android Studio 3 in Windows 7/8/10 (32- and 64-bit); but for the purpose
of this book, I only used Windows 10 64-bit.

To install the JDK on Windows, double-click the downloaded zipped file, and follow the
prompts. Unlike in macOS, you must perform extra configuration after the setup. You need
to (1) include java/bin in your system path and (2) include a CLASSPATH definition in the
Environment Variables of Windows. Table 1-1 walks you through the steps on how to do this.

Table 1-1. DK Configuration in Windows

1 Include JAVA_HOME/bin 1. Click Start » Control Panel » System
to the system path 2. Click Advanced > Environment Variables. There are two boxes

for variables, the upper box reads “User variables” and the lower
box reads “System variables,” the system PATH will be in the
“System variables” box.

3. Add the location of the bin folder to the system PATH variable.

4. It is typical for the PATH variable to look like this: C: \WINDOWS\
system32;C:\WINDOWS;C: \Program Files\Java\jdk-9\bin;

2 Create a CLASSPATH While the Environment Variables window is still open, click the
definition in Windows “New” button on the “User variables” section. Another dialog window
Environment Variables will pop up with two text boxes that will allow you to add a new

variable. Use the values below to populate the textboxes.

1. Name » CLASSPATH

2.Value » C:\WINDOWS\system32;C:\WINDOWS;C:\Program
Files\Java\jdk-9\jre\lib\rt.jar;

CHAPTER 1 GETTING INTO KOTLIN

Close the Environment Variables window and get a cmd window so we can test
whether our changes have taken effect. When the cmd window is open, type the
commands as shown in Listing 1-2.

Listing 1-2. Test the JDK tools on a Windows cmd shell

C:\Users\yourname>java -version
C:\Users\yourname>javac -version

If the cmd shell shows you the version of java and javac, then you have successfully
installed and configured the JDK. If, on the other hand, you saw an error message (e.g.,
“Bad command or file name”), it means that JAVA_HOME\bin is still not part of the
system path. You should revisit Table 1-1 and recheck your entries, then retest.

Installing on Linux

If you are a Linux user, you may have seen the tar ball and rpm options on the download,
you may use that and install it like you would install any other software on your

Linux platform or you may install the JDK from the repositories (see Listing 1-3). This
instruction applies to Debian and its derivatives (e.g., Ubuntu, Mint, etc.).

Listing 1-3. Installing the JDK in Ubuntu Using a PPA

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update

sudo apt-get install oracle-java9-installer
sudo update-alternatives --config java

When the download finishes, you can test the installation by trying out the java
and javac tools from the command line (see Listing 1-4). Open your favorite terminal
emulator (e.g., xterm, terminator, gnome-terminal, Ixterminal, etc.).

Listing 1-4. Test the JDK Tools on Linux

$ java -version
$ javac -version

If the install was successful, you should be able to see the version of java and javac in
your system. Once the JDK is up and running, we can now get Kotlin.

CHAPTER 1 GETTING INTO KOTLIN

Installing Kotlin

There are a couple of ways to get started in Kotlin coding. You can use the online IDE,
which is the quickest because it won’t require you to install anything. You may also try to
download an IDE that has a plug-in for Kotlin (e.g., Intelli], Android Studio, or Eclipse).
Finally, you can download the command line tools for Kotlin. If you don’t want to install
a full-blown IDE and simply use your trusty favorite editor, you can certainly do that with
the command line tools. We won’t explore each and every one of these options, but we’ll
take a look at the command line tools and IntelliJ.

Note This book is about Android Studio, so you might be wondering why we
won’t use Android Studio to try out Kotlin. That’s because this part of the book

is about Kotlin only and not about Android programming (yet). | thought it best to
focus more on the language and not be hampered by Android-specific topics when
we do some coding exercises. Android Studio is based on IntelliJ anyway, so any
IDE techniques we learn in this part of the book should carry over nicely when we
get to part 2.

Installing the Command Line Tools

Even if you opt for the command line tools, there are a couple of choices for installation
method. We can install it by (1) downloading a zipped file; (2) using SDKMAN if your OS
and tooling supports it; or (3) using HomeBrew or MacPorts if you are on macOS. You
only need to pick which one of these methods you are most comfortable with and go
with that.

HomeBrew or MacPort

If you are on macOS and already using either brew or port, see either Listing 1-5 or 1-6
for the terminal commands to get Kotlin.

Listing 1-5. Install Kotlin Using HomeBrew

$ brew update
$ brew install kotlin

10

