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Introduction

This book gives an introduction to functional data structures. Many 

traditional data structures rely on the structures being mutable. We can 

update search trees, change links in linked lists, and rearrange values in a 

vector. In functional languages, and as a general rule in the R programming 

language, data is not mutable. You cannot alter existing data. The 

techniques used to modify data structures to give us efficient building 

blocks for algorithmic programming cannot be used.

There are workarounds for this. R is not a pure functional language, 

and we can change variable-value bindings by modifying environments. 

We can exploit this to emulate pointers and implement traditional 

data structures this way; or we can abandon pure R programming and 

implement data structures in C/C++ with some wrapper code so we can 

use them in our R programs. Both solutions allow us to use traditional data 

structures, but the former gives us very untraditional R code, and the latter 

has no use for those not familiar with other languages than R.

The good news, though, is that we don’t have to reject R when 

implementing data structures if we are willing to abandon the traditional 

data structures instead. There are data structures that we can manipulate 

by building new versions of them rather than modifying them. These data 

structures, so-called functional data structures, are different from the 

traditional data structures you might know, but they are worth knowing if 

you plan to do serious algorithmic programming in a functional language 

such as R.

There are not necessarily drop-in replacements for all the data 

structures you are used to, at least not with the same runtime performance 

for their operations, but there are likely to be implementations for most 
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abstract data structures you regularly use. In cases where you might have 

to lose a bit of efficiency by using a functional data structures instead of a 

traditional one, however, you have to consider whether the extra speed is 

worth the extra time you have to spend implementing a data structure in 

exotic R or in an entirely different language.

There is always a trade-off when it comes to speed. How much 

programming time is a speed-up worth? If you are programming in R, 

chances are you value programmer-time over computer-time. R is a high- 

level language and relatively slow compared to most other languages. 

There is a price to providing higher levels of expressiveness. You accept 

this when you choose to work with R. You might have to make the same 

choice when it comes to selecting a functional data structure over a 

traditional one, or you might conclude that you really do need the extra 

speed and choose to spend more time programming to save time when 

doing an analysis. Only you can make the right choice based on your 

situation. You need to find out the available choices to enable you to work 

data structures when you cannot modify them.

InTroduCTIonInTroduCTIon
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CHAPTER 1

Introduction
This book gives an introduction to functional data structures. Many 

traditional data structures rely on the structures being mutable. We 

can update search trees, change links in linked lists, and rearrange 

values in a vector. In functional languages, and as a general rule in the R 

programming language, data is not mutable. You cannot alter existing data. 

The techniques used to modify data structures to give us efficient building 

blocks for algorithmic programming cannot be used.

There are workarounds for this. R is not a pure functional language, 

and we can change variable-value bindings by modifying environments. 

We can exploit this to emulate pointers and implement traditional 

data structures this way; or we can abandon pure R programming and 

implement data structures in C/C++ with some wrapper code so we can 

use them in our R programs. Both solutions allow us to use traditional data 

structures, but the former gives us very untraditional R code, and the latter 

has no use for those not familiar with other languages than R.

The good news, however, is that we don’t have to reject R when 

implementing data structures if we are willing to abandon the traditional 

data structures instead. There are data structures we can manipulate by 

building new versions of them rather than modifying them. These data 

structures, so-called functional data structures, are different from the 

traditional data structures you might know, but they are worth knowing if 

you plan to do serious algorithmic programming in a functional language 

such as R.
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There are not necessarily drop-in replacements for all the data 

structures you are used to, at least not with the same runtime performance 

for their operations—but there are likely to be implementations for most 

abstract data structures you regularly use. In cases where you might have 

to lose a bit of efficiency by using a functional data structure instead of a 

traditional one, you have to consider whether the extra speed is worth the 

extra time you have to spend implementing a data structure in exotic R or 

in an entirely different language.

There is always a trade-off when it comes to speed. How much 

programming time is a speed-up worth? If you are programming in R, 

the chances are that you value programmer time over computer time. R 

is a high-level language that is relatively slow compared to most other 

languages. There is a price to providing higher levels of expressiveness. 

You accept this when you choose to work with R. You might have to make 

the same choice when it comes to selecting a functional data structure 

over a traditional one, or you might conclude that you really do need the 

extra speed and choose to spend more time programming to save time 

when doing an analysis. Only you can make the right choice based on your 

situation. You need to find out the available choices to enable you to work 

data structures when you cannot modify them.

Chapter 1  IntroduCtIon
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CHAPTER 2

Abstract Data 
Structures
Before we get started with the actual data structures, we need to get 

some terminologies and notations in place. We need to agree on what an 

abstract data structure is—in contrast to a concrete one—and we need to 

agree on how to reason with runtime complexity in an abstract way.

If you are at all familiar with algorithms and data structures, you can 

skim quickly through this chapter. There won’t be any theory you are not 

already familiar with. Do at least skim through it, though, just to make sure 

we agree on the notation I will use in the remainder of the book.

If you are not familiar with the material in this chapter, I urge you to 

find a text book on algorithms and read it. The material I cover in this 

chapter should suffice for the theory we will need in this book, but there 

is a lot more to data structures and complexity than I can possibly cover 

in a single chapter. Most good textbooks on algorithms will teach you a lot 

more, so if this book is of interest, you should not find any difficulties in 

continuing your studies.
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 Structure on Data
As the name implies, data structures have something to do with structured 

data. By data, we can just think of elements from some arbitrary set. There 

might be some more structure to the data than the individual data points, 

and when there is we keep that in mind and will probably want to exploit 

that somehow. However, in the most general terms, we just have some 

large set of data points.

So, a simple example of working with data would be imagining we 

have this set of possible values—say, all possible names of students at a 

university—and I am interested in a subset—for example, the students 

that are taking one of my classes. A class would be a subset of students, 

and I could represent it as the subset of student names. When I get an 

email from a student, I might be interested in figuring out if it is from one 

of my students, and in that case, in which class. So, already we have some 

structure on the data. Different classes are different subsets of student 

names. We also have an operation we would like to be able to perform on 

these classes: checking membership.

There might be some inherent structure to the data we work with, which 

could be properties such as lexicographical orders on names—it enables us to 

sort student names, for example. Other structure we add on top of this. We add 

structure by defining classes as subsets of student names. There is even a third 

level of structure: how we represent the classes on our computer.

The first level of structure—inherent in the data we work with—is not 

something we have much control over. We might be able to exploit it in 

various ways, but otherwise, it is just there. When it comes to designing 

algorithms and data structures, this structure is often simple information; 

if there is order in our data, we can sort it, for example. Different 

algorithms and different data structures make various assumptions about 

the underlying data, but most general algorithms and data structures make 

few assumptions. When I make assumptions in this book, I will make those 

assumptions explicit.

Chapter 2  abstraCt Data struCtures
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The second level of structure—the structure we add on top of the 

universe of possible data points—is information in addition to what just 

exists out there in the wild; this can be something as simple as defining 

classes as subsets of student names. It is structure we add to data for 

a purpose, of course. We want to manipulate this structure and use it 

to answer questions while we evaluate our programs. When it comes 

to algorithmic theory, what we are mainly interested in at this level is 

which operations are possible on the data. If we represent classes as sets 

of student names, we are interested in testing membership to a set. To 

construct the classes, we might also want to be able to add elements to an 

existing set. That might be all we are interested in, or we might also want to 

be able to remove elements from a set, get the intersection or union of two 

sets, or do any other operation on sets.

What we can do with data in a program is largely defined by the 

operations we can do on structured data; how we implement the 

operations is less important. That might affect the efficiency of the 

operations and thus the program, but when it comes to what is possible to 

program and what is not—or what is easy to program and what is hard, at 

least—it is the possible operations that are important.

Because it is the operations we can do on data, and now how we 

represent the data—the third level of structure we have—that is most 

important, we distinguish between the possible operations and how they 

are implemented. We define abstract data structures by the operations 

we can do and call different implementations of them concrete data 

structures. Abstract data structures are defined by which operations we can 

do on data; concrete data structures, by how we represent the data and 

implement these operations.

Chapter 2  abstraCt Data struCtures
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 Abstract Data Structures in R
If we define abstract data structures by the operations they provide, it is 

natural to represent them in R by a set of generic functions. In this book,  

I will use the S3 object system for this.1

Let’s say we want a data structure that represents sets, and we need 

two operations on it: we want to be able to insert elements into the set, and 

we want to be able to check if an element is found in the set. The generic 

interface for such a data structure could look like this:

insert <- function(set, elem) UseMethod("insert")

member <- function(set, elem) UseMethod("member")

Using generic functions, we can replace one implementation with 

another with little hassle. We just need one place to specify which 

concrete implementation we will use for an object we will otherwise only 

access through the abstract interface. Each implementation we write will 

have one function for constructing an empty data structure. This empty 

structure sets the class for the concrete implementation, and from here on 

we can access the data structure through generic functions. We can write a 

simple list-based implementation of the set data structure like this:

empty_list_set <- function() {

  structure(c(), class = "list_set")

}

insert.list_set <- function(set, elem) {

  structure(c(elem, set), class = "list_set")

}

1 If you are unfamiliar with generic functions and the S3 system, you can check out 
my book Advanced Object-Oriented Programming in R book (Apress, 2017), where 
I explain all this.

Chapter 2  abstraCt Data struCtures
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member.list_set <- function(set, elem) {

  elem %in% set

}

The empty_list_set function is how we create our first set of the 

concrete type. When we insert elements into a set, we also get the right 

type back, but we shouldn’t call insert.list_set directly. We should 

just use insert and let the generic function mechanism pick the right 

implementation. If we make sure to make the only point where we refer 

to the concrete implementation be the creation of the empty set, then we 

make it easier to replace one implementation with another:

s <- empty_list_set()

member(s, 1)

## [1] FALSE

s <- insert(s, 1)

member(s, 1)

## [1] TRUE

When we implement data structures in R, there are a few rules of 

thumb we should follow, and some are more important than others. 

Using a single “empty data structure” constructor and otherwise generic 

interfaces is one such rule. It isn’t essential, but it does make it easier to 

work with abstract interfaces.

More important is this rule: keep modifying and querying a data 

structure as separate functions. Take an operation such as popping the 

top element of a stack. You might think of this as a function that removes 

the first element of a stack and then returns the element to you. There 

is nothing wrong with accessing a stack this way in most languages, but 

in functional languages, it is much better to split this into two different 

operations: one for getting the top element and another for removing it 

from the stack.

Chapter 2  abstraCt Data struCtures
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The reason for this is simple: our functions can’t have side effects. If a 

“pop” function takes a stack as an argument, it cannot modify this stack. It 

can give you the top element of the stack, and it can give you a new stack 

where the top element is removed, but it cannot give you the top element 

and then modify the stack as a side effect. Whenever we want to modify 

a data structure, what we have to do in a functional language, is to create 

a new structure instead. And we need to return this new structure to the 

caller. Instead of wrapping query answers and new (or “modified”) data 

structures in lists so we can return multiple values, it is much easier to 

keep the two operations separate.

Another rule of thumb for interfaces that I will stick to in this book, 

with one exception, is that I will always have my functions take the data 

structure as the first argument. This isn’t something absolutely necessary, 

but it fits the convention for generic functions, so it makes it easier to work 

with abstract interfaces, and even when a function is not abstract—when 

I need some helper functions—remembering that the first argument is 

always the data structure is easier. The one exception to this rule is the 

construction of linked lists, where tradition is to have a construction 

function, cons, that takes an element as its first argument and a list as its 

second argument and construct a new list where the element is put at the 

head of the list. This construction is too much of a tradition for me to mess 

with, and I won’t write a generic function of it, so it doesn’t come into 

conflict with how we handle polymorphism.

Other than that, there isn’t much more language mechanics to creating 

abstract data structures. All operations we define on an abstract data 

structure have some intended semantics to them, but we cannot enforce 

this through the language; we just have to make sure that the operations 

we implement actually do what they are supposed to do.

Chapter 2  abstraCt Data struCtures
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 Implementing Concrete Data Structures in R
When it comes to concrete implementations of data structures, there 

are a few techniques we need in order to translate the data structure 

designs into R code. In particular, we need to be able to represent what 

are essentially pointers, and we need to be able to represent empty 

data structures. Different programming languages will have different 

approaches to these two issues. Some allow the definition of recursive data 

types that naturally handle empty data structures and pointers, others have 

unique values that always represent “empty,” and some have static type 

systems to help. We are programming in R, though, so we have to make it 

work here.

For efficient data structures in functional programming, we need 

recursive data types, which essentially boils down to representing pointers. 

R doesn’t have pointers, so we need a workaround. That workaround is 

using lists to define data structures and using named elements in lists as 

our pointers.

Consider one of the simplest data structures known to man: the linked 

list. If you are not familiar with linked lists, you can read about them in the 

next chapter, where I consider them in some detail. In short, linked lists 

consist of a head—an element we store in the list—and a tail—another list, 

one item shorter. It is a recursive definition that we can write like this:

LIST = EMPTY | CONS(HEAD, LIST)

Here EMPTY is a special symbol representing the empty list, and 

CONS—a traditional name for this, from the Lisp programming language—a 

symbol that constructs a list from a HEAD element and a tail that is another 

LIST. The definition is recursive—it defines LIST in terms of a tail that 

is also a LIST—and this in principle allows lists to be infinitely long. In 

practice, a list will eventually end up at EMPTY.
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We can construct linked lists in R using R’s built-in list data structure. 

That structure is not a linked list; it is a fixed-size collection of elements 

that are possibly named. We exploit named elements to build pointers. We 

can implement the CONS construction like this:

linked_list_cons <- function(head, tail) {

  structure(list(head = head, tail = tail),

            class = "linked_list_set")

}

We just construct a list with two elements, head and tail. These will 

be references to other objects—head to the element we store in the list, and 

tail to the rest of the list—so we are in effect using them as pointers. We 

then add a class to the list to make linked lists work as an implementation 

of an abstract data structure.

Using classes and generic functions to implement polymorphic 

abstract data structures leads us to the second issue we need to deal with 

in R. We need to be able to represent empty lists. The natural choice for 

an empty list would be NULL, which represents “nothing” for the built-in 

list objects, but we can’t get polymorphism to work with NULL. We can’t 

give NULL a class. We could, of course, still work with NULL as the empty list 

and just have classes for non-empty lists, but this clashes with our desire 

to have the empty data structures being the one point where we decide 

concrete data structures instead of just accessing them through an abstract 

interface. If we didn’t give empty data structures a type, we would need 

to use concrete update functions instead. That could make switching 

between different implementations cumbersome. We really do want to 

have empty data structures with classes.

The trick is to use a sentinel object to represent empty structures. 

Sentinel objects have the same structure as non-empty data structure 

objects—which has the added benefit of making some implementations 

easier to write—but they are recognized as representing “empty.” We 

construct a sentinel as we would any other object, but we remember it 
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for future reference. When we create an empty data structure, we always 

return the same sentinel object, and we have a function for checking 

emptiness that examines whether its input is identical to the sentinel 

object. For linked lists, this sentinel trick would look like this:

linked_list_nil <- linked_list_cons(NA, NULL)

empty_linked_list_set <- function() linked_list_nil

is_empty.linked_list_set <- function(x)

  identical(x, linked_list_nil)

The is_empty function is a generic function that we will use for all data 

structures.

The identical test isn’t perfect. It will consider any list element 

containing NA as the last item in a list as the sentinel. Because we don’t 

expect anyone to store NA in a linked list—it makes sense to have missing 

data in a lot of analysis, but rarely does it make sense to store it in data 

structures—it will have to do.

Using a sentinel for empty data structures can also occasionally be 

useful for more than dispatching on generic functions. Sometimes, we 

actually want to use sentinels as proper objects, because it simplifies certain 

functions. In those cases, we can end up with associating meta- data with 

“empty” sentinel objects. We will see examples of this when we implement 

red-black search trees. If we do this, then checking for emptiness 

using identical will not work. If we modify a sentinel to change meta-

information, it will no longer be identical to the reference empty object. In 

those cases, we will use other approaches to testing for emptiness.

 Asymptotic Running Time
Although the operations we define in the interface of an abstract data 

type determine how we can use these in our programs, the efficiency of 

our programs depends on how efficient the data structure operations are. 
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Because of this, we often consider the time efficiency part of the interface 

of a data structure—if not part of the abstract data structure, we very much 

care about it when we have to pick concrete implementations of data 

structures for our algorithms.

When it comes to algorithmic performance, the end goal is always to 

reduce wall time—the actual time we have to wait for a program to finish. 

But this depends on many factors that cannot necessarily know about 

when we design our algorithms. The computer the code will run on might 

not be available to us when we develop our software, and both its memory 

and CPU capabilities are likely to affect the running time significantly. The 

running time is also likely to depend intimately on the data we will run the 

algorithm on. If we want to know exactly how long it will take to analyze a 

particular set of data, we have to run the algorithm on this data. Once we 

have done this, we know exactly how long it took to analyze the data, but 

by then it is too late to explore different solutions to do the analysis faster.

Because we cannot practically evaluate the efficiency of our algorithms 

and data structures by measuring the running time on the actual data we 

want to analyze, we use different techniques to judge the quality of various 

possible solutions to our problems.

One such technique is the use of asymptotic complexity, also known as 

big-O notation. Simply put, we abstract away some details of the running 

time of different algorithms or data structure operations and classify their 

runtime complexity according to upper bounds known up to a constant.

First, we reduce our data to its size. We might have a set with n 

elements, or a string of length n. Although our data structures and 

algorithms might use very different actual wall time to work on different 

data of the same size, we care only about the number n and not the details 

of the data. Of course, data of the same size is not all equal, so when 

we reduce all our information about it to a single size, we have to be a 

little careful about what we mean when we talk about the algorithmic 

complexity of a problem. Here, we usually use one of two approaches: we 

speak of the worst-case or the average/expected complexity. The worst-case 
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runtime complexity of an algorithm is the longest running time we can 

expect from it on any data of size n. The expected runtime complexity of 

an algorithm is the mean running time for data of size n, assuming some 

distribution over the possible data.

Second, we do not consider the actual running time for data of size  

n—where we would need to know exactly how many operations of 

different kinds would be executed by an algorithm, and how long each 

kind of operation takes to execute. We just count the number of operations 

and consider them equal. This gives us some function of n that tells us how 

many operations an algorithm or operation will execute, but not how long 

each operation takes. We don’t care about the details when comparing 

most algorithms because we only care about asymptotic behavior when 

doing most of our algorithmic analysis.

By asymptotic behavior, I mean the behavior of functions when 

the input numbers grow large. A function f (n) is an asymptotic upper 

bound for another function g(n) if there exists some number N such 

that g(n) ≤ f (n) whenever n > N. We write this in big-O notation as 

g(n) ∈ O( f (n)) or g(n) = O( f (n)) (the choice of notation is a little arbitrary 

and depends on which textbook or reference you use).

The rationale behind using asymptotic complexity is that we can use 

it to reason about how algorithms will perform when we give them larger 

data sets. If we need to process data with millions of data points, we might 

be about to get a feeling for their running time through experiments 

with tens or hundreds of data points, and we might conclude that one 

algorithm outperforms another in this range. But that does not necessarily 

reflect how the two algorithms will compare for much larger data. If 

one algorithm is asymptotically faster than another, it will eventually 

outperform the other—we just have to get to the point where n gets large 

enough.

A third abstraction we often use is to not be too concerned with getting 

the exact number of operations as a function of n correct. We just want 

an upper bound. The big-O notation allows us to say that an algorithm 
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runs in any big-O complexity that is an upper bound for the actual 

runtime complexity. We want to get this upper bound as exact as we can, 

to properly evaluate different choices of algorithms, but if we have upper 

and lower bounds for various algorithms, we can still compare them. 

Even if the bounds are not tight, if we can see that the upper bound of one 

algorithm is better than the lower bound of another, we can reason about 

the asymptotic running time of solutions based on the two.

To see the asymptotic reasoning in action, consider the set 

implementation we wrote earlier:

empty_list_set <- function() {

  structure(c(), class = "list_set")

}

insert.list_set <- function(set, elem) {

  structure(c(elem, set), class = "list_set")

}

member.list_set <- function(set, elem) {

  elem %in% set

}

It represents the set as a vector, and when we add elements to the 

set, we simply concatenate the new element to the front of the existing 

set. Vectors, in R, are represented as contiguous memory, so when we 

construct new vectors this way, we need to allocate a block of memory to 

contain the new vector, copy the first element into the first position, and 

then copy the entire old vector into the remaining positions of the new 

vector. Inserting an element into a set of size n, with this implementation, 

will take time O(n)—we need to insert n+1 set elements into newly 

allocated blocks of memory. Growing a set from size 0 to size n by 

repeatedly inserting elements will take time O(n2).

The membership test, elem %in% set, runs through the vector until it 

either sees the value elem or reaches the end of the vector. The best case 
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would be to see elem at the beginning of the vector, but if we consider 

worst-case complexity, this is another O(n) runtime operation.

As an alternative implementation, consider linked lists. We insert 

elements in the list using the cons operation, and we check membership 

by comparing elem with the head of the list. If the two are equal, the set 

contains the element. If not, we check whether elem is found in the rest 

of the list. In a pure functional language, we would use recursion for this 

search, but here I have just implemented it using a while loop:

insert.linked_list_set <- function(set, elem) {

  linked_list_cons(elem, set)

}

member.linked_list_set <- function(set, elem) {

  while (!is_empty(set)) {

    if (set$head == elem) return(TRUE)

    set <- set$tail

  }

  return(FALSE)

}

The insert operation in this implementation takes constant time. We 

create a new list node and set the head and tail in it, but unlike the vector 

implementation, we do not copy anything. For the linked list, inserting 

elements is an O(1) operation. The membership check, though, still runs 

in O(n) because we still do a linear search.

 Experimental Evaluation of Algorithms
Analyzing the asymptotic performance of algorithms and data structures 

is the only practical approach to designing programs that work on very 

large data, but it cannot stand alone when it comes to writing efficient 

code. Some experimental validation is also needed. We should always 
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perform experiments with implementations to 1) be informed about the 

performance constants hidden beneath the big-O notation, and 2) to 

validate that the performance is as we expect it to be.

For the first point, remember that just because two algorithms are in 

the same big-O category—say, both are in O(n2)—that doesn’t mean they 

have the same wall-time performance. It means that both algorithms are 

asymptotically bounded by some function c⋅n2 where c is a constant. Even 

if both are running in quadratic time, so that the upper bound is actually 

tight, they could be bounded by functions with very different constants. 

They may have the same asymptotic complexity, but in practice, one could 

be much faster than the other. By experimenting with the algorithms, we 

can get a feeling, at least, for how the algorithms perform in practice.

Experimentation also helps us when we have analyzed the worst case 

asymptotic performance of algorithms, but where the data we actually 

want to process is different from the worst possible data. If we can create 

samples of data that resemble the actual data we want to analyze, we can 

get a feeling for how close it is to the worst case, and perhaps find that an 

algorithm with worse worst case performance actually has better average 

case performance.

As for point number two for why we want to experiment with 

algorithms, it is very easy to write code with a different runtime 

complexity than we expected, either because of simple bugs or because 

we are programming in R, a very high-level language, where language 

constructions potentially hide complex operations. Assigning to a vector, 

for example, is not a simple constant time operation if more than one 

variable refers to the vector. Assignment to vector elements potentially 

involves copying the entire vector. Sometimes it is a constant time 

operation; sometimes it is a linear time operation. We can deduce what 

it will be by carefully reading the code, but it is human to err, so it makes 

sense always to validate that we have the expected complexity by running 

experiments.
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In this book, I will use the microbenchmark package to run 

performance experiments. This package lets us run a number of 

executions of the same operation and get the time it takes back in 

nanoseconds. I don’t need that fine a resolution, but it is nice to be able to 

get a list of time measurements. I collect the results in a tibble data frame 

from which I can summarize the results and plot them later. The code I use 

for my experiments is as follows:

library(tibble)

library(microbenchmark)

get_performance_n <- function(

  algo

  , n

  , setup

  , evaluate

  , times

  , ...) {

  config <- setup(n)

  benchmarks <- microbenchmark(evaluate(n, config),

                               times = times)

  tibble(algo = algo, n = n,

         time = benchmarks$time / 1e9) # time in sec

}

get_performance <- function(

  algo

  , ns

  , setup

  , evaluate

  , times = 10

  , ...) {
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