
Functional Data
Structures in R

Advanced Statistical Programming in R
—
Thomas Mailund

Functional Data
Structures in R
Advanced Statistical
Programming in R

Thomas Mailund

Functional Data Structures in R: Advanced Statistical
Programming in R

ISBN-13 (pbk): 978-1-4842-3143-2 ISBN-13 (electronic): 978-1-4842-3144-9
https://doi.org/10.1007/978-1-4842-3144-9

Library of Congress Control Number: 2017960831

Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Karthik Ramasubramanian
Coordinating Editor: Mark Powers
Copy Editor: Corbin P Collins

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484231432. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Thomas Mailund
Aarhus N, Denmark

https://doi.org/10.1007/978-1-4842-3144-9

iii

Table of Contents

Chapter 1: Introduction���1

Chapter 2: Abstract Data Structures ��3

Structure on Data ��4

Abstract Data Structures in R ���6

Implementing Concrete Data Structures in R ��9

Asymptotic Running Time ���11

Experimental Evaluation of Algorithms ���15

Chapter 3: Immutable and Persistent Data ���25

Persistent Data Structures ��26

List Functions ��28

Trees ���37

Random Access Lists ��56

Chapter 4: Bags, Stacks, and Queues ���67

Bags ��68

Stacks ���73

Queues ��74

Side Effects Through Environments ��77

Side Effects Through Closures ���79

About the Author ��vii

About the Technical Reviewer ���ix

Introduction ���xi

iv

A Purely Functional Queue ��82

Time Comparisons ���84

Amortized Time Complexity and Persistent Data Structures �������������������������85

Double-Ended Queues ���87

Lazy Queues ��95

Implementing Lazy Evaluation ���96

Lazy Lists ���98

Amortized Constant Time, Logarithmic Worst-Case, Lazy Queues ���������������107

Constant Time Lazy Queues ��118

Explicit Rebuilding Queue ��124

Chapter 5: Heaps ��135

Leftist Heaps ���140

Binomial Heaps ���144

Splay Heaps ��157

Plotting Heaps ���178

Heaps and Sorting ���183

Chapter 6: Sets and Search Trees ���189

Search Trees ���190

Red-Black Search Trees ��192

Insertion ��195

Deletion ���203

Visualizing Red-Black Trees ��226

Splay Trees ��231

Table of ConTenTsTable of ConTenTs

v

 Conclusions ��247

 Acknowledgements���248

 Bibliography ���249

 Index ���251

Table of ConTenTsTable of ConTenTs

vii

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus

University, Denmark. He has a background in math and computer science.

For the last decade, his main focus has been on genetics and evolutionary

studies, particularly comparative genomics, speciation, and gene flow

between emerging species. He has published Beginning Data Science in R,

Functional Programming in R, and Metaprogramming in R with Apress, as

well as other books.

ix

About the Technical Reviewer

Karthik Ramasubramanian works for one

of the largest and fastest- growing technology

unicorns in India, Hike Messenger, where

he brings the best of business analytics

and data science experience to his role. In

his seven years of research and industry

experience, he has worked on cross- industry

data science problems in retail, e-commerce,

and technology, developing and prototyping

data-driven solutions. In his previous role at Snapdeal, one of the largest

e-commerce retailers in India, he was leading core statistical modeling

initiatives for customer growth and pricing analytics. Prior to Snapdeal,

he was part of the central database team, managing the data warehouses

for global business applications of Reckitt Benckiser (RB). He has vast

experience working with scalable machine learning solutions for industry,

including sophisticated graph network and self-learning neural networks.

He has a master’s degree in theoretical computer science from PSG College

of Technology, Anna University, and is a certified big data professional. He

is passionate about teaching and mentoring future data scientists through

different online and public forums. He enjoys writing poems in his leisure

time and is an avid traveler.

xi

Introduction

This book gives an introduction to functional data structures. Many

traditional data structures rely on the structures being mutable. We can

update search trees, change links in linked lists, and rearrange values in a

vector. In functional languages, and as a general rule in the R programming

language, data is not mutable. You cannot alter existing data. The

techniques used to modify data structures to give us efficient building

blocks for algorithmic programming cannot be used.

There are workarounds for this. R is not a pure functional language,

and we can change variable-value bindings by modifying environments.

We can exploit this to emulate pointers and implement traditional

data structures this way; or we can abandon pure R programming and

implement data structures in C/C++ with some wrapper code so we can

use them in our R programs. Both solutions allow us to use traditional data

structures, but the former gives us very untraditional R code, and the latter

has no use for those not familiar with other languages than R.

The good news, though, is that we don’t have to reject R when

implementing data structures if we are willing to abandon the traditional

data structures instead. There are data structures that we can manipulate

by building new versions of them rather than modifying them. These data

structures, so-called functional data structures, are different from the

traditional data structures you might know, but they are worth knowing if

you plan to do serious algorithmic programming in a functional language

such as R.

There are not necessarily drop-in replacements for all the data

structures you are used to, at least not with the same runtime performance

for their operations, but there are likely to be implementations for most

xii

abstract data structures you regularly use. In cases where you might have

to lose a bit of efficiency by using a functional data structures instead of a

traditional one, however, you have to consider whether the extra speed is

worth the extra time you have to spend implementing a data structure in

exotic R or in an entirely different language.

There is always a trade-off when it comes to speed. How much

programming time is a speed-up worth? If you are programming in R,

chances are you value programmer-time over computer-time. R is a high-

level language and relatively slow compared to most other languages.

There is a price to providing higher levels of expressiveness. You accept

this when you choose to work with R. You might have to make the same

choice when it comes to selecting a functional data structure over a

traditional one, or you might conclude that you really do need the extra

speed and choose to spend more time programming to save time when

doing an analysis. Only you can make the right choice based on your

situation. You need to find out the available choices to enable you to work

data structures when you cannot modify them.

InTroduCTIonInTroduCTIon

1© Thomas Mailund 2017
T. Mailund, Functional Data Structures in R, https://doi.org/10.1007/978-1-4842-3144-9_1

CHAPTER 1

Introduction
This book gives an introduction to functional data structures. Many

traditional data structures rely on the structures being mutable. We

can update search trees, change links in linked lists, and rearrange

values in a vector. In functional languages, and as a general rule in the R

programming language, data is not mutable. You cannot alter existing data.

The techniques used to modify data structures to give us efficient building

blocks for algorithmic programming cannot be used.

There are workarounds for this. R is not a pure functional language,

and we can change variable-value bindings by modifying environments.

We can exploit this to emulate pointers and implement traditional

data structures this way; or we can abandon pure R programming and

implement data structures in C/C++ with some wrapper code so we can

use them in our R programs. Both solutions allow us to use traditional data

structures, but the former gives us very untraditional R code, and the latter

has no use for those not familiar with other languages than R.

The good news, however, is that we don’t have to reject R when

implementing data structures if we are willing to abandon the traditional

data structures instead. There are data structures we can manipulate by

building new versions of them rather than modifying them. These data

structures, so-called functional data structures, are different from the

traditional data structures you might know, but they are worth knowing if

you plan to do serious algorithmic programming in a functional language

such as R.

2

There are not necessarily drop-in replacements for all the data

structures you are used to, at least not with the same runtime performance

for their operations—but there are likely to be implementations for most

abstract data structures you regularly use. In cases where you might have

to lose a bit of efficiency by using a functional data structure instead of a

traditional one, you have to consider whether the extra speed is worth the

extra time you have to spend implementing a data structure in exotic R or

in an entirely different language.

There is always a trade-off when it comes to speed. How much

programming time is a speed-up worth? If you are programming in R,

the chances are that you value programmer time over computer time. R

is a high-level language that is relatively slow compared to most other

languages. There is a price to providing higher levels of expressiveness.

You accept this when you choose to work with R. You might have to make

the same choice when it comes to selecting a functional data structure

over a traditional one, or you might conclude that you really do need the

extra speed and choose to spend more time programming to save time

when doing an analysis. Only you can make the right choice based on your

situation. You need to find out the available choices to enable you to work

data structures when you cannot modify them.

Chapter 1 IntroduCtIon

3© Thomas Mailund 2017
T. Mailund, Functional Data Structures in R, https://doi.org/10.1007/978-1-4842-3144-9_2

CHAPTER 2

Abstract Data
Structures
Before we get started with the actual data structures, we need to get

some terminologies and notations in place. We need to agree on what an

abstract data structure is—in contrast to a concrete one—and we need to

agree on how to reason with runtime complexity in an abstract way.

If you are at all familiar with algorithms and data structures, you can

skim quickly through this chapter. There won’t be any theory you are not

already familiar with. Do at least skim through it, though, just to make sure

we agree on the notation I will use in the remainder of the book.

If you are not familiar with the material in this chapter, I urge you to

find a text book on algorithms and read it. The material I cover in this

chapter should suffice for the theory we will need in this book, but there

is a lot more to data structures and complexity than I can possibly cover

in a single chapter. Most good textbooks on algorithms will teach you a lot

more, so if this book is of interest, you should not find any difficulties in

continuing your studies.

4

 Structure on Data
As the name implies, data structures have something to do with structured

data. By data, we can just think of elements from some arbitrary set. There

might be some more structure to the data than the individual data points,

and when there is we keep that in mind and will probably want to exploit

that somehow. However, in the most general terms, we just have some

large set of data points.

So, a simple example of working with data would be imagining we

have this set of possible values—say, all possible names of students at a

university—and I am interested in a subset—for example, the students

that are taking one of my classes. A class would be a subset of students,

and I could represent it as the subset of student names. When I get an

email from a student, I might be interested in figuring out if it is from one

of my students, and in that case, in which class. So, already we have some

structure on the data. Different classes are different subsets of student

names. We also have an operation we would like to be able to perform on

these classes: checking membership.

There might be some inherent structure to the data we work with, which

could be properties such as lexicographical orders on names—it enables us to

sort student names, for example. Other structure we add on top of this. We add

structure by defining classes as subsets of student names. There is even a third

level of structure: how we represent the classes on our computer.

The first level of structure—inherent in the data we work with—is not

something we have much control over. We might be able to exploit it in

various ways, but otherwise, it is just there. When it comes to designing

algorithms and data structures, this structure is often simple information;

if there is order in our data, we can sort it, for example. Different

algorithms and different data structures make various assumptions about

the underlying data, but most general algorithms and data structures make

few assumptions. When I make assumptions in this book, I will make those

assumptions explicit.

Chapter 2 abstraCt Data struCtures

5

The second level of structure—the structure we add on top of the

universe of possible data points—is information in addition to what just

exists out there in the wild; this can be something as simple as defining

classes as subsets of student names. It is structure we add to data for

a purpose, of course. We want to manipulate this structure and use it

to answer questions while we evaluate our programs. When it comes

to algorithmic theory, what we are mainly interested in at this level is

which operations are possible on the data. If we represent classes as sets

of student names, we are interested in testing membership to a set. To

construct the classes, we might also want to be able to add elements to an

existing set. That might be all we are interested in, or we might also want to

be able to remove elements from a set, get the intersection or union of two

sets, or do any other operation on sets.

What we can do with data in a program is largely defined by the

operations we can do on structured data; how we implement the

operations is less important. That might affect the efficiency of the

operations and thus the program, but when it comes to what is possible to

program and what is not—or what is easy to program and what is hard, at

least—it is the possible operations that are important.

Because it is the operations we can do on data, and now how we

represent the data—the third level of structure we have—that is most

important, we distinguish between the possible operations and how they

are implemented. We define abstract data structures by the operations

we can do and call different implementations of them concrete data

structures. Abstract data structures are defined by which operations we can

do on data; concrete data structures, by how we represent the data and

implement these operations.

Chapter 2 abstraCt Data struCtures

6

 Abstract Data Structures in R
If we define abstract data structures by the operations they provide, it is

natural to represent them in R by a set of generic functions. In this book,

I will use the S3 object system for this.1

Let’s say we want a data structure that represents sets, and we need

two operations on it: we want to be able to insert elements into the set, and

we want to be able to check if an element is found in the set. The generic

interface for such a data structure could look like this:

insert <- function(set, elem) UseMethod("insert")

member <- function(set, elem) UseMethod("member")

Using generic functions, we can replace one implementation with

another with little hassle. We just need one place to specify which

concrete implementation we will use for an object we will otherwise only

access through the abstract interface. Each implementation we write will

have one function for constructing an empty data structure. This empty

structure sets the class for the concrete implementation, and from here on

we can access the data structure through generic functions. We can write a

simple list-based implementation of the set data structure like this:

empty_list_set <- function() {

 structure(c(), class = "list_set")

}

insert.list_set <- function(set, elem) {

 structure(c(elem, set), class = "list_set")

}

1 If you are unfamiliar with generic functions and the S3 system, you can check out
my book Advanced Object-Oriented Programming in R book (Apress, 2017), where
I explain all this.

Chapter 2 abstraCt Data struCtures

7

member.list_set <- function(set, elem) {

 elem %in% set

}

The empty_list_set function is how we create our first set of the

concrete type. When we insert elements into a set, we also get the right

type back, but we shouldn’t call insert.list_set directly. We should

just use insert and let the generic function mechanism pick the right

implementation. If we make sure to make the only point where we refer

to the concrete implementation be the creation of the empty set, then we

make it easier to replace one implementation with another:

s <- empty_list_set()

member(s, 1)

[1] FALSE

s <- insert(s, 1)

member(s, 1)

[1] TRUE

When we implement data structures in R, there are a few rules of

thumb we should follow, and some are more important than others.

Using a single “empty data structure” constructor and otherwise generic

interfaces is one such rule. It isn’t essential, but it does make it easier to

work with abstract interfaces.

More important is this rule: keep modifying and querying a data

structure as separate functions. Take an operation such as popping the

top element of a stack. You might think of this as a function that removes

the first element of a stack and then returns the element to you. There

is nothing wrong with accessing a stack this way in most languages, but

in functional languages, it is much better to split this into two different

operations: one for getting the top element and another for removing it

from the stack.

Chapter 2 abstraCt Data struCtures

8

The reason for this is simple: our functions can’t have side effects. If a

“pop” function takes a stack as an argument, it cannot modify this stack. It

can give you the top element of the stack, and it can give you a new stack

where the top element is removed, but it cannot give you the top element

and then modify the stack as a side effect. Whenever we want to modify

a data structure, what we have to do in a functional language, is to create

a new structure instead. And we need to return this new structure to the

caller. Instead of wrapping query answers and new (or “modified”) data

structures in lists so we can return multiple values, it is much easier to

keep the two operations separate.

Another rule of thumb for interfaces that I will stick to in this book,

with one exception, is that I will always have my functions take the data

structure as the first argument. This isn’t something absolutely necessary,

but it fits the convention for generic functions, so it makes it easier to work

with abstract interfaces, and even when a function is not abstract—when

I need some helper functions—remembering that the first argument is

always the data structure is easier. The one exception to this rule is the

construction of linked lists, where tradition is to have a construction

function, cons, that takes an element as its first argument and a list as its

second argument and construct a new list where the element is put at the

head of the list. This construction is too much of a tradition for me to mess

with, and I won’t write a generic function of it, so it doesn’t come into

conflict with how we handle polymorphism.

Other than that, there isn’t much more language mechanics to creating

abstract data structures. All operations we define on an abstract data

structure have some intended semantics to them, but we cannot enforce

this through the language; we just have to make sure that the operations

we implement actually do what they are supposed to do.

Chapter 2 abstraCt Data struCtures

9

 Implementing Concrete Data Structures in R
When it comes to concrete implementations of data structures, there

are a few techniques we need in order to translate the data structure

designs into R code. In particular, we need to be able to represent what

are essentially pointers, and we need to be able to represent empty

data structures. Different programming languages will have different

approaches to these two issues. Some allow the definition of recursive data

types that naturally handle empty data structures and pointers, others have

unique values that always represent “empty,” and some have static type

systems to help. We are programming in R, though, so we have to make it

work here.

For efficient data structures in functional programming, we need

recursive data types, which essentially boils down to representing pointers.

R doesn’t have pointers, so we need a workaround. That workaround is

using lists to define data structures and using named elements in lists as

our pointers.

Consider one of the simplest data structures known to man: the linked

list. If you are not familiar with linked lists, you can read about them in the

next chapter, where I consider them in some detail. In short, linked lists

consist of a head—an element we store in the list—and a tail—another list,

one item shorter. It is a recursive definition that we can write like this:

LIST = EMPTY | CONS(HEAD, LIST)

Here EMPTY is a special symbol representing the empty list, and

CONS—a traditional name for this, from the Lisp programming language—a

symbol that constructs a list from a HEAD element and a tail that is another

LIST. The definition is recursive—it defines LIST in terms of a tail that

is also a LIST—and this in principle allows lists to be infinitely long. In

practice, a list will eventually end up at EMPTY.

Chapter 2 abstraCt Data struCtures

10

We can construct linked lists in R using R’s built-in list data structure.

That structure is not a linked list; it is a fixed-size collection of elements

that are possibly named. We exploit named elements to build pointers. We

can implement the CONS construction like this:

linked_list_cons <- function(head, tail) {

 structure(list(head = head, tail = tail),

 class = "linked_list_set")

}

We just construct a list with two elements, head and tail. These will

be references to other objects—head to the element we store in the list, and

tail to the rest of the list—so we are in effect using them as pointers. We

then add a class to the list to make linked lists work as an implementation

of an abstract data structure.

Using classes and generic functions to implement polymorphic

abstract data structures leads us to the second issue we need to deal with

in R. We need to be able to represent empty lists. The natural choice for

an empty list would be NULL, which represents “nothing” for the built-in

list objects, but we can’t get polymorphism to work with NULL. We can’t

give NULL a class. We could, of course, still work with NULL as the empty list

and just have classes for non-empty lists, but this clashes with our desire

to have the empty data structures being the one point where we decide

concrete data structures instead of just accessing them through an abstract

interface. If we didn’t give empty data structures a type, we would need

to use concrete update functions instead. That could make switching

between different implementations cumbersome. We really do want to

have empty data structures with classes.

The trick is to use a sentinel object to represent empty structures.

Sentinel objects have the same structure as non-empty data structure

objects—which has the added benefit of making some implementations

easier to write—but they are recognized as representing “empty.” We

construct a sentinel as we would any other object, but we remember it

Chapter 2 abstraCt Data struCtures

11

for future reference. When we create an empty data structure, we always

return the same sentinel object, and we have a function for checking

emptiness that examines whether its input is identical to the sentinel

object. For linked lists, this sentinel trick would look like this:

linked_list_nil <- linked_list_cons(NA, NULL)

empty_linked_list_set <- function() linked_list_nil

is_empty.linked_list_set <- function(x)

 identical(x, linked_list_nil)

The is_empty function is a generic function that we will use for all data

structures.

The identical test isn’t perfect. It will consider any list element

containing NA as the last item in a list as the sentinel. Because we don’t

expect anyone to store NA in a linked list—it makes sense to have missing

data in a lot of analysis, but rarely does it make sense to store it in data

structures—it will have to do.

Using a sentinel for empty data structures can also occasionally be

useful for more than dispatching on generic functions. Sometimes, we

actually want to use sentinels as proper objects, because it simplifies certain

functions. In those cases, we can end up with associating meta- data with

“empty” sentinel objects. We will see examples of this when we implement

red-black search trees. If we do this, then checking for emptiness

using identical will not work. If we modify a sentinel to change meta-

information, it will no longer be identical to the reference empty object. In

those cases, we will use other approaches to testing for emptiness.

 Asymptotic Running Time
Although the operations we define in the interface of an abstract data

type determine how we can use these in our programs, the efficiency of

our programs depends on how efficient the data structure operations are.

Chapter 2 abstraCt Data struCtures

12

Because of this, we often consider the time efficiency part of the interface

of a data structure—if not part of the abstract data structure, we very much

care about it when we have to pick concrete implementations of data

structures for our algorithms.

When it comes to algorithmic performance, the end goal is always to

reduce wall time—the actual time we have to wait for a program to finish.

But this depends on many factors that cannot necessarily know about

when we design our algorithms. The computer the code will run on might

not be available to us when we develop our software, and both its memory

and CPU capabilities are likely to affect the running time significantly. The

running time is also likely to depend intimately on the data we will run the

algorithm on. If we want to know exactly how long it will take to analyze a

particular set of data, we have to run the algorithm on this data. Once we

have done this, we know exactly how long it took to analyze the data, but

by then it is too late to explore different solutions to do the analysis faster.

Because we cannot practically evaluate the efficiency of our algorithms

and data structures by measuring the running time on the actual data we

want to analyze, we use different techniques to judge the quality of various

possible solutions to our problems.

One such technique is the use of asymptotic complexity, also known as

big-O notation. Simply put, we abstract away some details of the running

time of different algorithms or data structure operations and classify their

runtime complexity according to upper bounds known up to a constant.

First, we reduce our data to its size. We might have a set with n

elements, or a string of length n. Although our data structures and

algorithms might use very different actual wall time to work on different

data of the same size, we care only about the number n and not the details

of the data. Of course, data of the same size is not all equal, so when

we reduce all our information about it to a single size, we have to be a

little careful about what we mean when we talk about the algorithmic

complexity of a problem. Here, we usually use one of two approaches: we

speak of the worst-case or the average/expected complexity. The worst-case

Chapter 2 abstraCt Data struCtures

13

runtime complexity of an algorithm is the longest running time we can

expect from it on any data of size n. The expected runtime complexity of

an algorithm is the mean running time for data of size n, assuming some

distribution over the possible data.

Second, we do not consider the actual running time for data of size

n—where we would need to know exactly how many operations of

different kinds would be executed by an algorithm, and how long each

kind of operation takes to execute. We just count the number of operations

and consider them equal. This gives us some function of n that tells us how

many operations an algorithm or operation will execute, but not how long

each operation takes. We don’t care about the details when comparing

most algorithms because we only care about asymptotic behavior when

doing most of our algorithmic analysis.

By asymptotic behavior, I mean the behavior of functions when

the input numbers grow large. A function f (n) is an asymptotic upper

bound for another function g(n) if there exists some number N such

that g(n) ≤ f (n) whenever n > N. We write this in big-O notation as

g(n) ∈ O(f (n)) or g(n) = O(f (n)) (the choice of notation is a little arbitrary

and depends on which textbook or reference you use).

The rationale behind using asymptotic complexity is that we can use

it to reason about how algorithms will perform when we give them larger

data sets. If we need to process data with millions of data points, we might

be about to get a feeling for their running time through experiments

with tens or hundreds of data points, and we might conclude that one

algorithm outperforms another in this range. But that does not necessarily

reflect how the two algorithms will compare for much larger data. If

one algorithm is asymptotically faster than another, it will eventually

outperform the other—we just have to get to the point where n gets large

enough.

A third abstraction we often use is to not be too concerned with getting

the exact number of operations as a function of n correct. We just want

an upper bound. The big-O notation allows us to say that an algorithm

Chapter 2 abstraCt Data struCtures

14

runs in any big-O complexity that is an upper bound for the actual

runtime complexity. We want to get this upper bound as exact as we can,

to properly evaluate different choices of algorithms, but if we have upper

and lower bounds for various algorithms, we can still compare them.

Even if the bounds are not tight, if we can see that the upper bound of one

algorithm is better than the lower bound of another, we can reason about

the asymptotic running time of solutions based on the two.

To see the asymptotic reasoning in action, consider the set

implementation we wrote earlier:

empty_list_set <- function() {

 structure(c(), class = "list_set")

}

insert.list_set <- function(set, elem) {

 structure(c(elem, set), class = "list_set")

}

member.list_set <- function(set, elem) {

 elem %in% set

}

It represents the set as a vector, and when we add elements to the

set, we simply concatenate the new element to the front of the existing

set. Vectors, in R, are represented as contiguous memory, so when we

construct new vectors this way, we need to allocate a block of memory to

contain the new vector, copy the first element into the first position, and

then copy the entire old vector into the remaining positions of the new

vector. Inserting an element into a set of size n, with this implementation,

will take time O(n)—we need to insert n+1 set elements into newly

allocated blocks of memory. Growing a set from size 0 to size n by

repeatedly inserting elements will take time O(n2).

The membership test, elem %in% set, runs through the vector until it

either sees the value elem or reaches the end of the vector. The best case

Chapter 2 abstraCt Data struCtures

15

would be to see elem at the beginning of the vector, but if we consider

worst-case complexity, this is another O(n) runtime operation.

As an alternative implementation, consider linked lists. We insert

elements in the list using the cons operation, and we check membership

by comparing elem with the head of the list. If the two are equal, the set

contains the element. If not, we check whether elem is found in the rest

of the list. In a pure functional language, we would use recursion for this

search, but here I have just implemented it using a while loop:

insert.linked_list_set <- function(set, elem) {

 linked_list_cons(elem, set)

}

member.linked_list_set <- function(set, elem) {

 while (!is_empty(set)) {

 if (set$head == elem) return(TRUE)

 set <- set$tail

 }

 return(FALSE)

}

The insert operation in this implementation takes constant time. We

create a new list node and set the head and tail in it, but unlike the vector

implementation, we do not copy anything. For the linked list, inserting

elements is an O(1) operation. The membership check, though, still runs

in O(n) because we still do a linear search.

 Experimental Evaluation of Algorithms
Analyzing the asymptotic performance of algorithms and data structures

is the only practical approach to designing programs that work on very

large data, but it cannot stand alone when it comes to writing efficient

code. Some experimental validation is also needed. We should always

Chapter 2 abstraCt Data struCtures

16

perform experiments with implementations to 1) be informed about the

performance constants hidden beneath the big-O notation, and 2) to

validate that the performance is as we expect it to be.

For the first point, remember that just because two algorithms are in

the same big-O category—say, both are in O(n2)—that doesn’t mean they

have the same wall-time performance. It means that both algorithms are

asymptotically bounded by some function c⋅n2 where c is a constant. Even

if both are running in quadratic time, so that the upper bound is actually

tight, they could be bounded by functions with very different constants.

They may have the same asymptotic complexity, but in practice, one could

be much faster than the other. By experimenting with the algorithms, we

can get a feeling, at least, for how the algorithms perform in practice.

Experimentation also helps us when we have analyzed the worst case

asymptotic performance of algorithms, but where the data we actually

want to process is different from the worst possible data. If we can create

samples of data that resemble the actual data we want to analyze, we can

get a feeling for how close it is to the worst case, and perhaps find that an

algorithm with worse worst case performance actually has better average

case performance.

As for point number two for why we want to experiment with

algorithms, it is very easy to write code with a different runtime

complexity than we expected, either because of simple bugs or because

we are programming in R, a very high-level language, where language

constructions potentially hide complex operations. Assigning to a vector,

for example, is not a simple constant time operation if more than one

variable refers to the vector. Assignment to vector elements potentially

involves copying the entire vector. Sometimes it is a constant time

operation; sometimes it is a linear time operation. We can deduce what

it will be by carefully reading the code, but it is human to err, so it makes

sense always to validate that we have the expected complexity by running

experiments.

Chapter 2 abstraCt Data struCtures

17

In this book, I will use the microbenchmark package to run

performance experiments. This package lets us run a number of

executions of the same operation and get the time it takes back in

nanoseconds. I don’t need that fine a resolution, but it is nice to be able to

get a list of time measurements. I collect the results in a tibble data frame

from which I can summarize the results and plot them later. The code I use

for my experiments is as follows:

library(tibble)

library(microbenchmark)

get_performance_n <- function(

 algo

 , n

 , setup

 , evaluate

 , times

 , ...) {

 config <- setup(n)

 benchmarks <- microbenchmark(evaluate(n, config),

 times = times)

 tibble(algo = algo, n = n,

 time = benchmarks$time / 1e9) # time in sec

}

get_performance <- function(

 algo

 , ns

 , setup

 , evaluate

 , times = 10

 , ...) {

Chapter 2 abstraCt Data struCtures

