Sonja Herres-Pawlis und Peter Klüfers

Bioanorganische Chemie

Metalloproteine, Methoden und Modelle

Sonja Herres-Pawlis und Peter Klüfers

Bioanorganische Chemie

Sonja Herres-Pawlis und Peter Klüfers

Bioanorganische Chemie

Metalloproteine, Methoden und Konzepte

Autoren

Sonja Herres-Pawlis

RWTH Aachen Institut für Anorganische Chemie Lehrstuhl für Bioanorganische Chemie Landoltweg 1 52074 Aachen Deutschland

Peter Klüfers

LMU München Lehrstuhl für Bioanorganische Chemie und Koordinationschemie Butenandtstr. 5–13, Haus D 81377 München Deutschland

Ttelbild

Metalloproteine erschließen sich durch koordinationschemische Konzepte: Orbitalbetrachtungen wie im oktaedrischen Lowspin-Komplex [Fe(CN)₅(NO)]^{2–}, dessen Natriumsalz ein Wirkstoff der WHO-essentialmedicines-Liste ist, erhellen auch die O₂-Bindung in Myoglobin. Alle Bücher von Wiley-VCH werden sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag in keinem Fall, einschließlich des vorliegenden Werkes, für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler irgendeine Haftung.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

©2017 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form - durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren - reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

 Print ISBN
 978-3-527-33615-9

 ePDF ISBN
 978-3-527-67549-4

 ePub ISBN
 978-3-527-67548-7

 Mobi ISBN
 978-3-527-67547-0

Umschlaggestaltung Grafik-Design Schulz, Fußgönheim, Deutschland Satz le-tex publishing services GmbH, Leipzig, Deutschland

Gedruckt auf säurefreiem Papier.

Inhaltsverzeichnis

Vorwort XIII

Teil I Die Koordinationschemie von Metalloenzymzentren 1

- 1 Säure-Base-Katalyse bei physiologischem pH-Wert: Zink(II) in Carboanhydrase und hydrolytischen Zinkenzymen 3
- 1.1 Carboanhydrasen 4
- 1.1.1 Molekülbau von humaner Carboanhydrase II (hCA II) 4
- 1.1.2 CA-Katalysezyklus 6
- 1.1.3 Cadmium als Zentralmetall in einer ζ -CA 7
- 1.2 Alkoholdehydrogenase 8
- 1.3 Hydrolytische Zinkenzyme, Klasse-II-Aldolase 8
- 1.4 Nicht katalytische Zinkzentren 9
- 1.5 Literatur 11
- 2 Funktion und Inhibition katalytischer Zentren: Urease und Ureasehemmstoffe 15
- 2.1 Harnstoff im Stickstoffstoffwechsel 15
- 2.2 Molekülbau von Urease 16
- 2.3 Ureasekatalysezyklus 17
- 2.4 Ureasehemmung durch Diamidophosphat 18
- 2.5 Ureasebiosynthese: Nickeleinbau durch UreE 19
- 2.6 Elementaranalyse an kristalliner Urease: Sumners Irrtum 20
- 2.7 Literatur 22
- 3 Superoxidreduktion in Anaerobiern: Rubredoxin (Rd) und Superoxidreduktasen (SORs) 25
- 3.1 $O_2^{\bullet-}$ -Reduktion 25
- 3.2 Rubredoxin (Rd) 26
- 3.2.1 Aufbau von Rubredoxin 26
- 3.2.2 Das elektrochemische Potenzial von Rubredoxin: Thermodynamik der e⁻-Übertragung 27

VI Inhaltsverzeichnis

3.3	Desulforedoxin (Dx) 29
3.4	Reorganisationsenergie einkerniger Highspin-Eisenzentren:
	Kinetik der e^- -Übertragung 30
3.5	Superoxidreduktasen (SORs) 31
3.5.1	Molekülbau von SORs 31
3.5.2	SOR-Katalysezyklus 32
36	Literatur 33
0.00	
4	Anionische Liganden senken das elektrochemische Potenzial:
-	[2Fe-2S]-Ferredoxine und Rieske-Zentren 35
4.1	Zweikernige Eisen-Schwefel-Proteine 35
4.2	[2Fe-2S]-Ferredoxin 35
4.3	Rieske-Zentren 36
4.4	Oxidationsstufen und Redoxnotenziale 37
4.5	Biosynthese von Fe-S-Clustern 38
4.5 1.6	Literatur 30
1.0	
5	[4Fe-4S]-Cluster: Fin altes" Zentrum mit vielen Funktionen 41
51	Fin Blick in die Evolution 42
5.2	$[4E_{e_1}AS]$ -Ferredovine und HP-Proteine A^2
5.2	$[4\text{E}_{2},4\text{S}]$ Cluster als 10^{-1} Überträger A^{2}
5.2.1	Molekülben von [4Eo 45] Ferredovinon 42
5.2.2	$\frac{2}{45} = \frac{12}{2}$
5.2.5	$\begin{bmatrix} 2[4re-45] - Cluster & 42 \end{bmatrix}$
5.5 E 4	$\begin{bmatrix} 5Fe-45 \end{bmatrix} - Cluster = 43$
5.4 ГГ	[4re-55]-Cluster 44
5.5 5.5 1	Aconitase 45
5.5.1	Molekuldau von Aconitase 46
5.5.2	Aconitasekatalysezyklus 47
5.6	IspG und IspH 48
5.7	Radikal-SAM-Enzyme 49
5.7.1	Molekülbau von Radikal-SAM-Enzymen 49
5.7.2	Bildung von 5'-Adenosylradikalen 51
5.7.3	Eisen-Schwefel-Cluster als Schwefelquellen 51
5.8	Literatur 52
6	Katalyse einer Redoxreaktion: Mangan- und Eisensuperoxiddismutase
	(MnSOD, FeSOD) 55
6.1	O_2^{-} -Disproportionierung 55
6.2	Molekulbau von Fe-, Mn- und Fe/Mn-SODs 56
6.3	Mn/Fe-SOD-Katalysezyklus 57
6.4	Weitere SODs 59
6.5	Literatur 59
-	Managered Lageren Nightshifter Fischer Franzeller
/	Mononukieare Nichtham-Eisen-Enzyme 61
7.1	Isopenicillin-N-Synthase 63

- 7.2 Naphthalin-1,2-Dioxygenase, eine Rieske-Dioxygenase 65
- 7.3 Phenylalaninhydroxylase (PAH) 66
- 7.3.1 Monooxygenierung von Phenylalanin 67
- 7.3.2 Aufbau von PAH 68
- 7.3.3 O₂-Aktivierung und Regulierung 69
- 7.3.4 Bio-Anorganisches: Die Elektronenstruktur eines Highspin-Fe^{IV}=O-Zentrums 69
- 7.3.5 Reaktionen der transienten Fe^{IV}=O-Spezies 72
- 7.4 Literatur 73

8 O-Atom-Transfer: Der Molybdopterin-Kofaktor 75

- 8.1 Einkernige Molybdän-Enzyme 75
- 8.2 Sulfitoxidase 76
- 8.2.1 Katalyse 77
- 8.3 MoCu-CO-Dehydrogenase 80
- 8.4 Literatur 81

9 Ein Strukturelement – viele Funktionen: Oxidodieisenzentren 83

- 9.1 Hämerythrin (Hr) 84
- 9.1.1 Molekülbau von Hämerythrin 84
- 9.1.2 Sauerstofftransport in Hr 84
- 9.2 Lösliche Methanmonooxygenase (sMMO) 85
- 9.2.1 Methanotrophe Bakterien 85
- 9.2.2 Die Hydroxylasekomponente (sMMOH) der löslichen
- Methanmonooxygenase 86
- 9.2.3 sMMO-Katalyse 87
- 9.3 Ribonukleotidreduktase 88
- 9.4 Flavodieisenenzyme 89

10 Bioliganden und Bindungsmodelle 93

- 10.1 Histidin 94
- 10.2 Aspartat und Glutamat 95
- 10.3 Cysteinat 95
- 10.4 Tyrosinat 96
- 10.5 Methionin 96
- 10.6 Porphyrinliganden 96
- 10.7 Literatur 98

11 High- und Lowspin-Eisen: Myoglobin und Hämoglobin 101

- 11.1 O₂-Transport 101
- 11.2 deoxyMb 102
- 11.3 oxyMb 103
- 11.4 MbCO 104
- 11.5 ${}^{1}\text{Fe}^{II}-{}^{1}\text{O}_{2}, {}^{2}\text{Fe}^{III}-{}^{2}\text{O}_{2}^{\bullet-} \text{ oder } {}^{3}\text{Fe}^{II}-{}^{3}\text{O}_{2}?$ 106
- 11.6 metMb 109

- 11.7 Dynamik der Be- und Entladung von Mb 110
- 11.8 Literatur 110
- 12 Häm-NO-Komplexe: P450nor, Nitrophorine, MbNO, lösliche Guanylatcyclase (sGC) 113
- 12.1 Cytochrom P450nor, eine fungale NO-Reduktase 116
- 12.2 Die Fe–NO-Bindung in Häm-{FeNO}⁶-Zentren 117
- 12.3 Nitrophorine 119
- 12.4 NO-beladenes Mb, ein {FeNO}⁷-Zentrum 120
- 12.5 Die Fe–NO-Bindung in Häm-{FeNO}⁷-Zentren *120*
- 12.6 Lösliche Guanylatcyclase (sGC) 121
- 12.7 Literatur 122
- 13 Redoxkatalyse mit Hämzentren: Cytochrom *c*, Katalase, Cytochrom P450 125
- 13.1 Cytochrom *c* 125
- 13.2 Häm-Katalase 126
- 13.3 Cytochrom P450 127
- 13.4 NO-Synthasen 130
- 13.5 Literatur 131

14 Redoxchemie bei hohem Potenzial: blaue Kupferproteine und Cu_A-Zentren 133

- 14.1 Blaue Kupferzentren 136
- 14.2 Plastocyanin 136
- 14.2.1 Molekülbau von Plastocyanin 136
- 14.2.2 Das Modell vom entatischen Zustand 137
- 14.2.3 Der elektronische Grundzustand des Plastocyaninzentrums 137
- 14.2.4 Die Bedeutung kovalenter Bindungen in Kupferzentren 139
- 14.3 Cu_A-Zentren 140
- Aktivierung von O₂-Spezies in Kupfer-Redox-Zentren: O₂-Transport,
 Oxygenase-, Oxidase- und SOD-Aktivität 143
- 15.1 Hämocyanin (Hc) 143
- 15.1.1 Molekülbau von Hämocyanin 143
- 15.1.2 TS-3-Cu^{II}(His)₃ ein starkes Oxidationsmittel 144
- 15.2 Tyrosinase 146
- 15.2.1 Molekülbau von Tyrosinase 146
- 15.2.2 Oxidationszustände und Reaktionsschritte 147
- 15.3 Partikuläre Methanmonooxygenase (pMMO) 148
- 15.4 CuZnSOD 149
- 15.4.1 Der Molekülbau von CuZnSOD 149
- 15.4.2 Katalysezyklus 150
- 15.5 Mononukleare Cu-Monooxygenasen 151
- 15.6 Kupfer(III) in der Biochemie? 152
- 15.7 Literatur 153

- 16 Proteinogene Radikale als Liganden: Galactose-Oxidase (GO) und Cvtochrom-c-Oxidase (CcO) 155
- 16.1 Galactose-Oxidase 155
- 16.1.1 Molekülbau von GO 156
- 16.1.2 Katalyse 157
- 16.2 Cytochrom-c-Oxidase (CcO) 158
- 16.2.1 Struktur des Häm-a3-CuB-Zentrums in Cytochrom-c-Oxidase 159
- 16.2.2 Katalysezyklus 160
- 16.3 Literatur 161
- 17 Vierelektronen-Katalyse, zweiter Teil: Der O₂-freisetzende Komplex in Photosystem II 163
- 17.1 Die fünf Zustände 163
- 17.2 Die Struktur des Photosystems II 164
- 17.3 Oxidationszustände des OEC und Katalysezyklus 166
- 17.4 Synthetische Katalysatoren für die Wasseroxidation 168
- 17.4.1 Redoxkatalyse mit Manganoxiden 169
- 17.5 Literatur 169
- 18 Hydrogenasen 171
- 18.1 H₂-Aktivierung 171
- 18.2 [NiFe]-Hydrogenasen 172
- 18.2.1 Katalysezyklus 173
- 18.2.2 Der μ-Hydrido-Zustand 174
- 18.2.3 Die Biosynthese des aktiven Zentrums 174
- 18.3 [FeFe]-Hydrogenase 175
- 18.4 [Fe]-Hydrogenase (Hmd) 177
- 18.5 Literatur 178

19 Nitrogenase 181

- 19.1 N₂-Reduktion 181
- 19.2 Molekülbau von Nitrogenase 182
- 19.3 Katalysezyklus 183
- 19.4 Biosynthese von P- und M-Cluster 184
- 19.5 Literatur 185

20 Organometallchemie in Organismen I: cobalaminabhängige Methioninsynthase 187

- 20.1 Vitamin-B₁₂-Derivate 187
- 20.2 Methioninsynthase 188
- 20.2.1 Methioninsynthase: Molekülbau und Oxidationsstufen 188
- 20.2.2 Katalysezyklus 189
- 20.3 Literatur 191

X Inhaltsverzeichnis

21	Organometallchemie in Organismen II: CO-Dehydrogenase/Acetyl-CoA-Synthase 193
21.1	CO ₂ -Reduktion: anaerobe CO-Dehydrogenasen und bifunktionelle CODH/ACSs <i>193</i>
21.2	Der C-Cluster in NiCODHs 194
21.3	Der A-Cluster in NiCODHs 196
21.3.1	Die Struktur des A-Clusters in CODH/ACS 196
21.3.2	A-Cluster-Katalyse 197
21.4	Literatur 197
22	Ein technisch genutztes Metallenzym: Xylose-Isomerase ("Glucose-Isomerase") 201
22.1	Xylose-Isomerase 201
22.1.1	Molekülbau von Xylose-Isomerase 202
22.1.2	Katalyse 204
22.2	Literatur 205
23	Eisenstoffwechsel 207
23.1	Metallstoffwechsel 207
23.2	Transferrin 210
23.3	Bakterielle Siderophore 212
24	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215
24 25	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219
24 25	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221
24 25 26	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223
24 25 26 26.1	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223
24 25 26 26.1 26.2	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224
24 25 26 26.1 26.2 26.3	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227
24 25 26 26.1 26.2 26.3 26.3.1	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228
24 25 26 26.1 26.2 26.3 26.3.1 26.3.2	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228 MAD-Methode (<i>Multiwavelength Anomalous Dispersion</i>) 229
24 25 26 26.1 26.2 26.3 26.3.1 26.3.2 26.3.3	 Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228 MAD-Methode (<i>Multiwavelength Anomalous Dispersion</i>) 229 Methode des molekularen Ersatzes (MR) 230
24 25 26.1 26.2 26.3 26.3.1 26.3.2 26.3.3 26.4	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228 MAD-Methode (<i>Multiwavelength Anomalous Dispersion</i>) 229 Methode des molekularen Ersatzes (MR) 230 Die Strukturverfeinerung 230
24 25 26.1 26.2 26.3 26.3.1 26.3.2 26.3.3 26.4 26.5	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228 MAD-Methode (<i>Multiwavelength Anomalous Dispersion</i>) 229 Methode des molekularen Ersatzes (MR) 230 Die Strukturverfeinerung 230 Literatur 232
 24 25 26.1 26.2 26.3 26.3.1 26.3.2 26.3.3 26.4 26.5 27 	Koordinationschemische "Steckbriefe" einiger Zentralmetalle 215 Elektrochemische Potenziale von Sauerstoffspezies bei pH 7 219 Teil II Der Blick aufs Metall: Grundlegende und spezielle Methoden 221 Strukturanalyse von Proteinen 223 Kristallisation der Proteine 223 Röntgenbeugung 224 Röntgenstrukturanalyse 227 Methode des isomorphen Ersatzes 228 MAD-Methode (<i>Multiwavelength Anomalous Dispersion</i>) 229 Methode des molekularen Ersatzes (MR) 230 Die Strukturverfeinerung 230 Literatur 232

- 27.2 Technisches 238
- 27.3 Allgemeine Grundlagen der Fluoreszenzspektroskopie 239
- 27.4 Technisches 242
- 27.5 Fluoreszenzlöschung 243
- 27.6 Förster-Energie-Transfer 244
- 27.7 Allgemeine Grundlagen der CD-Spektroskopie 245
- 27.8 Zusammenfassung 248
- 27.9 Literatur 248

28 Elektrochemie 249

- 28.1 Allgemeine Grundlagen 249
- 28.2 Cyclovoltammetrie 250
- 28.3 Einfluss der Diffusion 253
- 28.4 Reversible Systeme 254
- 28.5 Quasireversible und irreversible Systeme 256
- 28.6 Wichtige Kenngrößen 256
- 28.7 Technische Details 257
- 28.8 Pulsvoltammetrie 259
- 28.9 Differenzielle Pulsvoltammetrie 260
- 28.10 Square Wave Voltammetrie 261
- 28.11 Theorie des Elektronentransfers 262
- 28.12 Zusammenfassung 265
- 28.13 Literatur 265

29 Theoretische Methoden 267

- 29.1 Allgemeine Grundlagen 267
- 29.2 Dichtefunktionaltheorie 270
- 29.3 Beschreibung des Lösungsmittels 274
- 29.4 Optimierung der Geometrie 276
- 29.5 Berechnung thermodynamischer und optischer Eigenschaften 278
- 29.5.1 Frequenzen, Energien 278
- 29.5.2 UV/Vis-Spektren 280
- 29.5.3 NMR- und EPR-Spektren 281
- 29.5.4 Molekülorbitale und Ladungsverteilungen 282
- 29.6 Zusammenfassung 284
- 29.7 Literatur 284

30 Resonanz-Raman-Spektroskopie 285

- 30.1 Der Raman-Effekt 285
- 30.2 Resonanz-Raman-Spektroskopie 287
- 30.3 Technisches 289
- 30.4 Anwendung 291
- 30.5 Zusammenfassung 292
- 30.6 Literatur 292

- XII Inhaltsverzeichnis
 - 31 Röntgenabsorptionsspektroskopie 293
 - 31.1 Allgemeine Grundlagen 293
 - 31.2 Technisches 295
 - 31.3 Auswertung 296
 - 31.4 Anwendung 298
 - 31.5 Zusammenfassung 300
 - 31.6 Literatur 300

32 Mößbauer-Spektroskopie 301

- 32.1 Allgemeine Grundlagen 301
- 32.2 Technisches 302
- 32.3 Mößbauer-Spektren und ihre Parameter 303
- 32.4 Anwendung: Rieske-Proteine 305
- 32.5 Zusammenfassung 306
- 32.6 Literatur 306

33 Elektronenspinresonanzspektroskopie 307

- 33.1 Allgemeine Grundlagen 307
- 33.2 Technisches 309
- 33.3 Spin-Bahn-Kopplung 310
- 33.4 Hyperfeinkopplung 311
- 33.5 Systeme mit einem Spin > 1/2 313
- 33.6 Anwendung I: Blaue Kupferproteine 314
- 33.7 Anwendung II: Eisen-Porphyrin-Systeme 315
- 33.8 Moderne Entwicklungen 316
- 33.9 Zusammenfassung 317
- 33.10 Literatur 318

34 Magnetische Messungen mit SQUID 319

- 34.1 Allgemeine Grundlagen 319
- 34.2 Technisches 321
- 34.3 Anwendung 322
- 34.4 Zusammenfassung 322
- 34.5 Literatur 323

Sachverzeichnis 325

Vorwort

Dieses Buch geht auf Vorlesungen zurück, die wir in den vergangenen Jahren an der LMU München gelesen haben, und zwar auf die Vorlesung *Bioanorganische Chemie* des Bachelor-Studiengangs *Chemie und Biochemie* und auf die Spezialvorlesung des Chemie-Masterstudiengangs *Spektroskopische Methoden der Bioanorganischen Chemie*.

Teil I: Die Koordinationschemie von Metalloenzymzentren

Der erste Teil dieses Buches entspricht in seinem didaktischen Ziel in etwa einer zweistündigen Vorlesung "Bioanorganische Chemie", die im Curriculum der LMU München für das sechste Semester des Bachelorstudienganges vorgesehen ist. Das Hauptziel besteht darin, die koordinationschemischen Regeln, welche die Studierenden in einer ebenfalls zweistündigen Vorlesung im vierten Fachsemester kennenlernen, in den Strukturen und Reaktionen der aktiven Zentren von Metalloproteinen wiederzufinden. Die Beschränkung der Bioanorganischen Chemie auf Metalloproteine ergab sich im Laufe der Jahre als geeignetes didaktisches Hilfsmittel, um das genannte Hauptziel zu erreichen. (Therapeutika wie Cisplatin werden an der LMU im Rahmen der einführenden koordinationschemischen Vorlesung behandelt, nicht in der Bioanorganischen Chemie.) Diese Einteilung wurde beibehalten, der Stoff wurde lediglich so vermehrt, dass ein "rundes" Bild dieses interessanten und sich schnell entwickelnden Faches entsteht. Würde man jetzt umgekehrt den ersten Teil des Buches als Vorlesung halten, so wäre diese näherungsweise vierstündig.

Die Gliederung zeichnet nicht, wie in Biochemie-Lehrbüchern sinnvollerweise üblich, Stoffwechsel- oder Signaltransduktionswege nach. Die Abfolge der behandelten Enzymzentren richtet sich vielmehr nach der koordinationschemischen Komplexität. Auf die einfache Säure-Base-Katalyse (Zinkenzyme, Nicht-Redox-Nickelenzyme) folgt daher die Redoxchemie an Highspin-Zentren (Eisen-Schwefel-Enzyme) und Reaktionen mit Sauerstoffspezies ohne Spinwechsel am Zentralmetall (Mangan-SOD, Nichthäm-Eisenenzyme, Molybdopterin, Oxodieisenzentren), dann folgen die Koordination und die Redoxkatalyse an Lowspin-Zentren oder unter Wechsel des Gesamtspins (Hämenzyme), um schließlich mit den Kupferenzymen aktive Zentren zu behandeln, bei denen die Modulierung der Orbitalenergien des Zentralmetalls reaktionssteuernd ist. (Bei den Redoxenzymen geht die so gewählte Abfolge mit einem Ansteigen des elektrochemischen Potentials einher.) Es folgen größere, eigenständige Themen, die viel Aufmerksamkeit auf sich gezogen haben, zum Teil seit Jahrzehnten: Photosystem II, Hydrogenasen, Nitrogenase. Am Schluss kommen dann mit Cobalamin und CO-Dehydrogenase/Acetyl-CoA-Synthase organometallchemische Aspekte hinzu, ferner wird mit Xylose-Isomerase auf großtechnische Aspekte eingegangen. (In diesem Abschnitt und auch im Text wird der Begriff *Enzym* auch für Elektronen- und O_2 -Transportproteine verwendet, also nicht nur für Enzyme im Sinn der *International Union of Biochemistry and Molecular Biology*, IUBMB, die eine EC-Nummer tragen.)

Das Lernziel des ersten Teils lässt sich konkreter darin sehen, einen sinnvollen Zusammenhang zwischen den koordinationschemischen Charakteristika eines Zentralmetalls und seinem Verhalten im aktiven Zentrum eines Enzyms herzustellen. Um eine Hilfestellung bei der Einschätzung zu geben, wie sich ein Zentralmetall außerhalb einer Proteinumgebung, also unter "Reagenzglasbedingungen" verhält, sind in Kapitel 24 "koordinationschemische Steckbriefe" für jedes Zentrum dieses Textes zusammengestellt.

Der didaktische Bezug zur Koordinationschemie wird weiter vertieft, indem spezielle Themen – meist "Handwerkszeug" oder Konzeptionelles – in eigenen Abschnitten dargestellt werden, die mit "Bio-*Anorganisches*" eingeleitet werden. Hier finden die Leserin und der Leser Lehrinhalte dargestellt, die Studierende nach unserer Erfahrung gerne im Zusammenhang vermittelt bekommen.

Teil II: Der Blick aufs Metall: Grundlegende und spezielle Methoden

Der zweite Teil dieses Buches basiert auf der einstündigen Vorlesung "Spektroskopische Methoden in der Bioanorganischen Chemie", die von SHP als Wahlvorlesung an der LMU München in den Masterstudiengängen Chemie und Biochemie angeboten wurde. Das Hauptziel besteht darin, die Grundlagen, Möglichkeiten und potentiellen Anwendungsfälle der wichtigsten Methoden für die bioanorganische Chemie für Studierende ab dem 5. Semester ohne spezielle analytische Vorbildung zusammenzufassen. Die Auswahl der Methoden bildet viele wichtige Techniken ab, wobei die Auswahl in künftigen Auflagen ergänzt werden wird. Die bioanorganische Chemie ist ein sehr dynamisches Feld und neue Methoden ermöglichen immer wieder neue Erkenntnisse zur elektronischen Struktur und Funktion von Enzymzentren. In allen methodischen Kapiteln ist weiterführende Literatur zu Spezialwerken angegeben. Da diese Werke häufig nicht für Einsteiger verfasst sind, sollen die Kapitel in Teil II einen verständlichen Zugang für Bachelorstudierende bieten. Nach dem Lesen der Kapitel soll der Leser in der Lage sein, eine potentielle (bioanorganische) Anwendung zu erkennen aber auch die Grenzen der jeweiligen Methode zu erfassen.

Die Kapitel sind so gestaltet, dass sie einzeln gelesen werden können und nicht als ganzer Block verstanden werden müssen. Sie dienen auch als methodische Erläuterung zu den spezielleren Ausführungen in Teil I. Für das Verständnis der Anwendungsfälle in Teil II sind Hinweise auf die jeweiligen Kapitel in Teil I gegeben. Die Abfolge der Kapitel in Teil II verläuft von den allgemeineren Methoden zu den spezielleren. Wir starten daher Teil II mit der weit verbreiteten Strukturanalyse von Proteinen, über die UV/Vis-, Fluoreszenz- und CD-Spektroskopie zur Elektrochemie und den theoretischen Methoden. Diese Methoden sind den meisten Studierenden bereits aus früheren Vorlesungen vertraut und werden hier noch einmal aufgefrischt bzw. vertieft. Anschließend folgen die Methoden, die deutlich spezifischere Einblicke auf die Oxidationsstufe und Elektronenkonfiguration des Metalls, ausgewählte Metall-Ligand-Schwingungen und auch die koordinative Metall-Umgebung in Lösung und nicht-kristallinen Phasen ermöglichen (Resonanz-Raman-Spektroskopie, Röntgenabsorptionsspektroskopie, Mößbauer-Spektroskopie, Elektronenspinresonanzspektroskopie und SQUID-Magnetometrie).

Das Lernziel ist das bessere Verständnis der Originalliteratur, die ja meist schon vor dem Bachelorabschluss gelesen werden sollte, und ein Abbau der Hürde zum Selbststudium und Verständnis der Methoden. Letztendlich sollen die Leser und Leserinnen nach Lektüre des Buches in die Lage versetzt werden, selbst zu erkennen, welche Methode bei einem gegebenen bioanorganischen Problem anwendbar ist.

Für die Unterstützung bei der Erstellung der zahlreichen Graphiken in Teil II ist SHP Herrn Dr. Alexander Hoffmann zu größtem Dank verpflichtet. Des weiteren möchte SHP sich auch bei Herrn Dr. Gerhard Herres, Herrn PD Dr. Alexander Pawlis und Herrn Dr. Benjamin Dicke für die Hilfe bei einigen Bildern bedanken. Für die zahlreichen Diskussionen und das Korrekturlesen vieler Kapitel dankt SHP Herrn Prof. Dr. Michael Rübhausen, Frau Prof. Dr. Birgit Weber und Herr Prof. Dr. Biprajit Sarkar sowie dem Arbeitskreis Herres-Pawlis sehr herzlich.

Abschließend möchten wir uns auch beim Verlag Wiley-VCH und speziell bei Frau Moosdorf und ihrem Team für die Betreuung dieses Buchprojekts bedanken.

Die bioanorganische Chemie und ihre Methoden sind ein sehr vitales Feld, daher freuen wir uns sehr über Anregungen, Hinweise und Ergänzungen der interessierten Leser und Leserinnen (Hinweise zu Teil I bitte an PK, zu Teil II an SHP). Wir wünschen Ihnen viel Freude beim Lesen!

Technisches

Werden quantenchemische Rechnungen herangezogen, um z. B. Orbitalwechselwirkungen zu veranschaulichen, wird das theoretische Niveau in Kurzform vermerkt. Es bedeutet:

xDFT1: Rechnung mit Orca, BP86/def2-TZVP, van-der-Waals-Korrektur nach Grimme (*keyword* D3), COSMO mit den Standardparametern für Wasser; x = u: unrestricted, x = r: restricted, x = bs: broken-symmetry; Orbitalbilder mit Gabedit.

Die Abbildungen von Proteinen und deren aktiven Zentren wurden mit Pymol auf der Grundlage von Strukturanalysen angefertigt, die in der Protein-Datenbank (PDB) hinterlegt sind. Über die Datenbankeinträge hinaus enthält die PDB nützliche Informationen methodischer Art. So werden viele Einzelheiten (was ist die bei jeder Struktur genannte "Auflösung", etc.?) anschaulich bei den Educational Ressources behandelt (die Auflösung unter *resolution*).

Zur Notation von Konzentrationsangaben: IUPACs *Green Book* lässt für die molare Konzentration zwei gleichbedeutende Notierungen zu, zum Beispiel $c(H_3O^+) = [H_3O^+] = 10^{-7} \text{ mol } \text{L}^{-1}$. In diesem Text wird [A] als $c(A)/c^{\circ}(A)$ benutzt, so dass zum Beispiel gilt: $pH = -\lg[H_3O^+]$. Löslicheitsprodukte [A][B] sind analog definiert und daher als bloße Zahl angegeben.

Aachen und München, Februar 2016

Sonja Herres-Pawlis und Peter Klüfers Teil I Die Koordinationschemie von Metalloenzymzentren

1 Säure-Base-Katalyse bei physiologischem pH-Wert: Zink(II) in Carboanhydrase und hydrolytischen Zinkenzymen

Die schwache Brønsted-Säure Wasser wird deutlich saurer, wenn sie an die Lewis-Säure Zn²⁺ koordiniert. Die konjugierte Base OH⁻ steht im aktiven Zentrum des Enzyms in hoher Konzentration als zinkgebundenes Nukleophil zur Verfügung. Im aktiven Zentrum des Enzyms findet so Säure-Base-Katalyse bei konstantem pH-Wert statt.

Zinkenzyme

Für den Menschen sind nur wenige Übergangsmetalle essenziell. Wird die bloße Menge an Metall betrachtet, so finden sich im Grammbereich lediglich Eisen mit $\approx 3-5$ g und Zink mit 2 g, im 100-mg-Bereich Kupfer. Cobalt, Mangan und Molybdän treten hinter diese drei wichtigsten Elemente zurück – vor allem, wenn die Zahl an Enzymen betrachtet wird, die das jeweilige Metall enthalten. Gerade bei Zink zeigt sich dabei der Zusammenhang zwischen den verfügbaren Detektionsmethoden und dem Erkennen eines Proteins als Zinkenzym. Als diamagnetisches, farbloses d¹⁰-Ion ohne Redoxchemie fallen nämlich einige Detektionsmöglichkeiten aus. So bleiben, von der Röntgenstrukturanalyse an Einkristallen abgesehen, die Atomabsorptionsspektroskopie und – als Methode zur Detektion nicht zu fest gebundenen Zinks - die Fluoreszenzspektroskopie an Zinkchelaten, die ihre fluoreszierenden Eigenschaften nur im zinkgebundenen Zustand zeigen, nicht für den freien Ligand. Ein Motiv für die intensive Suche nach weiteren Zinkproteinen ist ein genetischer Befund. Abhängig von den angewandten Kriterien zeigt die Sequenz der menschlichen DNA an, dass 3-10% des Genoms Zinkproteine codieren. Für den oberen Wert hieße dies, dass der Mensch ca. 3000 Zinkenzyme ausbilden könnte, von denen bislang nur ca. 200 bekannt sind.

1.1 Carboanhydrasen

Carboanhydrasen sind im Tier- und Pflanzenreich weit verbreitet. Eine Carboanhydrase (CA) war das erste der heute bekannten Enzyme, die als Zinkenzyme erkannt wurden. Genetisch werden verschiedene CA-Familien unterschieden (α -, β -, γ -, δ - und ζ -CAs). Im Menschen kommen α -CAs vor, die ihrerseits wieder in derzeit 15 verschiedene Formen ("Isozyme") zerfallen. Die Formenvielfalt spiegelt wider, dass CAs zahlreiche Aufgaben haben, so sind sie auch beim ständigen Umbau des Skeletts beteiligt (biologischer Apatit enthält Carbonat). Da sie außerdem bei vielen Krankheitsbildern eine Rolle spielen, sind CAs Ziel der Wirkstoffentwicklung.

Die von CA katalysierte Reaktion mutet fast primitiv an, da "nur" eine Gleichgewichtseinstellung zwischen Lösung und Gasraum vorbereitet wird – so katalysiert bei uns Menschen Carboanhydrase II die Reaktion zwischen dem Hydrogencarbonat des Blutplasmas und dem Kohlendioxid in den Lungenbläschen:

 $CO_2 + 2H_2O \Rightarrow HCO_3^- + H_3O^+$

Dass dieser einfache Vorgang kinetisch gehemmt ist und der Katalyse bedarf, erkennt man spätestens dann, wenn man im Biergarten vor einer frisch gezapften Maß sitzt. Auch nach längerer Zeit "bitzelt" ein Schluck auf der Zunge. Es wird also noch Kohlensäure freigesetzt, die (Gott sei Dank) eben nicht in den ersten Sekunden nach dem Zapfen die wässrige Phase verlassen hat, um so das thermodynamische Gleichgewicht einzustellen – wirksames Veratmen von CO_2 ist unkatalysiert also offensichtlich nicht möglich. (Auch das Prickeln auf der Zunge wird übrigens durch eine dort lokalisierte Carboanhydrase IV bewirkt [10].)

1.1.1

Molekülbau von humaner Carboanhydrase II (hCA II)

Die meisten CAs bestehen aus einem einzelnen Proteinstrang von ca. 260 Aminosäuren. Es sind mehr als 400 Strukturanalysen an CAs und CA-Hemmstoff-Komplexen in der PDB hinterlegt (abzufragen unter *carbonic anhydrase*). Die durch β -Faltblatt- und ungeordnete Abschnitte charakterisierte Molekülstruktur von humaner Carboanhydrase II ist in Abb. 1.1 gezeigt.

Im aktiven Zentrum binden drei Histidinreste ein vierfach koordiniertes Zinkion (Abb. 1.2). Die vierte Koordinationsstelle wird von einem Aqua/Hydroxido-Liganden belegt. Unter den Aminosäureseitenketten in der näheren Umgebung des aktiven Zentrums wird der Histidin-64-Rest in der Rolle eines Protonenüberträgers

4

1.1 Carboanhydrasen 5

Abb. 1.1 Humane Carboanhydrasell in 1,56 Å Auflösung (PDB-Eintrag 2VVA). Eine mit 0,9 Å hochaufgelöste Struktur wird in 3KS3 beschrieben.

gesehen. Es liegen Strukturanalysen vor, die sowohl CO2-beladene hCA II zeigen, als auch dasselbe Enzym in der Hydrogencarbonatform. Beide Zustände sind durch Wasserstoffbrückenbindungen charakterisiert, in die der Aqua/Hydroxido-Ligand, zwei Wassermoleküle im typischen 3-Å-Abstand und die Hydroxygruppe einer Threoninseitenkette eingebunden sind. In der CO2-beladenen Form ist das Kohlendioxidmolekül über weitere Wasserstoffbrückenbindungen für den Angriff eines OH--Nukleophils räumlich korrekt positioniert (in zinkfreier CA führt die Beladung mit CO₂ zu derselben räumlichen Anordnung des Substrats). Abbildung 1.2 zeigt das Ergebnis der Strukturanalyse; zur besseren Übersicht ist der über eine "In"- und eine "Out"-Konformation fehlgeordnete His64-Protonenüberträger nicht dargestellt (His64 liegt links vom aktiven Zentrum). Das Wassermolekül oberhalb des Aqualiganden ("deep water") nimmt in der substrat- und produktfreien Form des Enzyms ungefähr den Platz des oberen O-Atoms des CO2-Moleküls Abb. 1.2 Das aktive Zentrum ein. Bei der Bindung des Substrats wird dieses Wassermolekül aus seiner Ruhelage gedrängt.

Die in Abb. 1.3 gezeigte Struktur mit der hydrogencarbonatbeladenen Form suggeriert einen einfachen Ablauf der Katalyse. Das korrekt positionierte Elektrophil CO₂ und der Aqua/Hydroxido-Ligand scheinen ohne nennenswerte Bewegung der Umgebung einen HCO₃⁻-Liganden gebildet zu haben. Es sollte jedoch beachtet werden, dass das Proton des Hydroxidoliganden (das in der Röntgenstrukturanalyse nicht sichtbar ist) im Produktkomplex nicht am zinkgebundenen O-Atom gebunden ist. Der im folgenden gezeigte Katalysezyklus berücksichtigt dies.

der in Abb. 1.1 dargestellten CO₂-beladenen hCA II.

1.1.2 CA-Katalysezyklus

Abb. 1.3 Das aktive Zentrum von hydrogencarbonatbeladener hCA II in 1,66 Å Auflösung (PDB-Eintrag 2VVB).

Der Zyklus (Abb. 1.4) ist wie üblich als Umwandlung von CO₂ in Hydrogencarbonat dargestellt, wie er bei der CO₂-Aufnahme durch photosynthetisierende grüne Pflanzen abläuft. Man beachte, dass er im Gegenuhrzeigersinn abläuft, wenn CO₂ ausgeschieden wird. Der Zyklus beginnt mit dem Enzym in der Ruheform, bei der wegen des p K_a -Wertes des Aqualiganden von ca. 7 dieser vor allem in der Hydroxidoform vorliegt (pH-Wert des Blutplasmas: 7,4). Das vom Aqualiganden abgespaltete Proton wird über Wasserstoffbrückenbindungen letztlich der His64-Seitenkette zugeführt. Da es im weiteren Verlauf der Katalyse auf umgekehrtem Weg wieder in den Kreislauf zurückfließt, dient His64 als Protonenüberträger ("proton shuttle"). Man beachte, dass eine wichtige Einzelheit einer wirksamen Katalyse darin besteht, dass alle während der Reaktion bewegten Fragmente einen definierten Bindungspartner vorfinden. Es ist also nicht nebensächlich, dass das Proton nicht in die Umgebung entlassen wird und dieser bei Bedarf wieder entzogen wird.

Der Hydroxidoligand ist das eigentliche Agens, das nun das Elektrophil CO_2 angreift. Im nächsten Schritt entsteht ein Hydrogencarbonatoligand. Die blau eingezeichneten Pfeile entsprechen den Vorstellungen, die in der Literatur als "Lindskog-Mechanismus" bezeichnet werden. Dieser ist in den letzten Jahren bei computer-

Abb. 1.4 Katalysezyklus für das Carboanhydrasezentrum.

chemischen Rechnungen gegenüber einem konkurrierenden, hier nicht diskutierten "Lipscomb-Mechanismus" wahrscheinlicher geworden. Die Formulierung der Kohlensäure im letzten Reaktionsschritt als Hydrogencarbonat spiegelt deren Säurestärke ($pK_a = 6.5$) wider.

Was ist nun der "Trick" der Natur, ein Zinkzentrum mit CA-Aktivität auszustatten? Eine Prise Zinksulfat führt schließlich nicht dazu, dass aus kohlensäurehaltigen Lösungen sofort CO2 entweicht – und es ist auch nicht zu erwarten: der pK_a -Wert des Aqua-Zink-Komplexes, der sich beim Lösen eines Zinksalzes bildet, liegt bei 9,0 (Tab. 24.8). Am Neutralpunkt und darunter liegt also nur wenig der konjugierten Base des Aquaions vor, also nur wenig zinkgebundenes Hydroxid. Die gegenüber dem hydratisierten Ion höhere Acidität der aktiven Zentren der CAs ist mit deren kleinerer Koordinationszahl im Einklang, und zwar im Sinne einer geringeren Kompensation der Lewis-Acidität eines freien Zn²⁺-Ions durch weniger Liganden. Diese Auffassung wird durch experimentelle (Punktmutationen) und computerchemische Arbeiten unterstützt, die den Verlust der CA-Aktivität beim Austausch des neutralen N-Donorliganden Histidin gegen den anionischen Carboxylat-O-Donor Aspartat zeigen. Mit dem Anstieg des pK_a -Wertes nimmt die Konzentration an Hydroxidnukleophil beim physiologischen pH-Wert ab und damit die CA-Aktivität [5].

1.1.3

Cadmium als Zentralmetall in einer ζ-CA

Das Zn(His)₃-Muster der humanen CAs ist keine notwendige Voraussetzung für eine aktive CA, nicht einmal das Zinkatom ist für die Funktion unersetzbar. So enthalten Kieselalgen eine sogenannte "kambialistische" Carboanhydrase vom ζ-CA-Typ, deren Funktion nicht von einem einzigen Zentralmetall abhängt. Das aktive Zentrum ist ein M(Cys)₂(His)-Fragment, in dem M sowohl Zink als auch Cadmium sein kann. Für beide Fälle liegen Strukturanalysen vor. Abbildung 1.5 zeigt das aktive Zentrum einer CA aus der Diatomee Thalassiosira weissflogii mit einem fünffach koordinierten Cadmiumzentralatom (mit dem kleineren Zinkatom zeigt die Analyse ein vierfach koordiniertes Zn(Cys)₂(His)(H₂O)-Zentrum mit dem zweiten Wassermolekül in Wasserstoffbrückenbindung zum Aqualigand). Gegenüber den meisten anderen CAs sind im 3BOB, 1.45 Å Auflösung). üblichen Zn(His)₃-Muster zwei Histidin-Neutralliganden durch Cysteinatanionen ersetzt.

Die CA-Aktivität dieses aktiven Zentrums verschiebt den Fokus der oben vorgestellten Interpretation, dass die Acidität des Aqualiganden entscheidend sei. Amata et al. [7] betrachten die Acidi-

Abb. 1.5 Das aktive Zentrum einer Cadmium-CA (PDB-Eintrag

8 1 Säure-Base-Katalyse bei physiologischem pH-Wert

tät des metallgebundenen Wassermoleküls nicht als entscheidende Größe, sondern fragen nach der Nukleophilie des Hydroxidoliganden, wenn dieser erst einmal entstanden ist. Hier wäre dann natürlich in umgekehrter Weise zu schließen: Ein weicher, anionischer Thiolatoliganden dämpft die Lewis-Acidität des Zentralmetallatoms und erhöht damit die Beladung des Hydroxidoliganden.

Es wird deutlich, dass im funktionsfähigen Enzym gegenläufige Einflüsse ausbalanciert sind. Einheitlich bewertet wird die Bedeutung einer für das jeweilige Zentralmetall eher kleinen Koordinationszahl und deren Variation im Katalysezyklus. Der in Abb. 1.4 gezeigte Reaktionsablauf beinhaltet für das mit blauen Pfeilen angedeutete Intermediat eine fünffache Koordination des Zentralmetallatoms. Dieser Schritt errechnet sich für Zink und Cadmium als Übergangszustand, der beim größeren Cadmiumzentralmetall eine geringere Barriere darstellt [7]. Die aus Rechnungen an ζ-CA gewonnenen mechanistischen Aussagen sind nicht im Detail auf die verbreiteteren α -CAs zu übertragen, da nicht nur der Weg des HCO₃-Protons durch unterschiedliche Wasserstoffbrückenbindungssysteme bestimmt ist, sondern auch die steuernden Parameter selbst, die Acidität des Aqualiganden und die Nukleophilie des Hydroxidoliganden zu Beginn der Kaskade von den umgebenden Wasserstoffbrückenbindungsdonoren und -akzeptoren beeinflusst wird.

1.2 Alkoholdehydrogenase

Das $Zn(Cys)_2(His)$ -Motiv der ζ -CA kommt, ebenso wie andere Muster mit drei Liganden aus der Gruppe Histidin, Aspartat/Glutamat und Cysteinat, auch bei der Alkoholdehydrogenase vor. Die katalysierte Reaktion ist hier die Hydridübertragung vom Kohlenstoffatom einer –CH₂OH-Funktion auf NAD⁺, wobei der Alkohol zum Aldehyd oxidiert wird (Abb. 1.6).

1.3

Hydrolytische Zinkenzyme, Klasse-II-Aldolase

Viele andere Zinkenzyme katalysieren die Hydrolyse polarer Bindungen. So enthalten Proteasen und Esterasen oft Zink in ihrem aktiven Zentrum. Das Reaktionsprinzip ist das gleiche wie bei CA. Das eigentliche Agens ist ein Hydroxidoligand, der als Nukleophil das Kohlenstoffatom polarer C–N- oder C–O-Bindungen angreift (Abb. 1.7).

Abb. 1.6 Das aktive Zentrum von Pferdeleber-Alkoholdehydrogenase mit Pentafluorbenzylalkohol und NAD (PDB-Eintrag 4NFH, 1,20 Å Auflösung).

Zn(His)₃-Zentren haben weitere Reaktionsmöglichkeiten. Ein für die Medizin wichtiges Zielenzym ist Klasse-II-Fructose-1,6bisphosphat-Aldolase. Fructose-1,6-bisphosphat-Aldolasen spielen eine Rolle in wichtigen Biosynthesewegen: in der Glykolyse, der Gluconeogenese und im Calvin-Zyklus. Während die auch vom Menschen verwendete Klasse-I-Aldolase kein Metalloenzym ist, enthält das aktive Zentrum von Klasse-II-Aldolase ein Zn(His)3-Motiv. Klasse-II-Aldolase, die in kritischen pathogenen Keimen wie den Tuberkulosebakterien (Mycobacterium tuberculosis) vorkommt, wird aufgrund dieses Unterschieds zum möglichen Ziel von Antibiotika [6]. Die katalysierte Reaktion ist im Gegensatz zu den hydrolytischen Enzymen nicht die Spaltung einer polaren Bindung durch ein Nukleophil, sondern eine C-C-Bindungsspaltung, bei der die C₆-Kette von Fructose-1,6-bisphosphat in Dihydroxyacetonphosphat und Glycerinaldehyd-3-phosphat, also in zwei C₃-Bruchstücke gespalten wird. Bei der Gluconeogenese findet die Reaktion in umgekehrter Richtung statt.

Abbildung 1.7 zeigt das aktive Zentrum einer Klasse-II-Aldolase aus der Gattung *Mycobacterium*. Das Zentrum ist mit Fructose-1,6-bisphosphat beladen, das bereits einen ersten Schritt zur Spaltung erfahren hat. In einer wässrigen Lösung liegt Fructose-1,6bisphosphat nämlich nur zu einem Anteil von ca. 1 % in der offenkettigen Form vor, die es im Enzym einnimmt, die Hauptmenge entfällt auf α - (16 %) und β -Fructofuranose-1,6-bisphosphat (82 %). Die an C3 und C4, zwischen denen die Bindung gespalten werden wird, gebundenen O-Atome koordinieren an das Zinkatom.

Klasse-II-Aldolase ist ein weiteres Beispiel für biochemische Säure-Base-Katalyse. Anders als die CAs, die das OH⁻-Nukleophil durch Wasserdeprotonierung bereitstellen, bindet hier ein komplexeres Substrat mit Hydroxyfunktionen an das Zentralmetall. Die Acidität der OH-Funktionen wird, wie beim Aqualigand der CAs, erhöht und die konjugierte Base wird verfügbar. Bei Pegan *et al.* [3] wird die Deprotonierung von OH-4 formuliert, das O4-Alkoxid bildet dann eine Ketofunktion mit C4 unter Bruch der C3–C4-Bindung.

1.4 Nicht katalytische Zinkzentren

Katalytisch aktiven Zinkzentren ist eine kleine Koordinationszahl bezüglich der proteinogenen Liganden gemeinsam. So erlauben die dreifach koordinierten Zn(His)₃- und Zn(Cys)₂(His)-Zentren entweder die Bindung eines reaktiven Hydroxidoliganden oder eines Substrats wie Fructose-1,6-bisphosphat, das unmittelbar an das

Abb. 1.7 Das aktive Zentrum von substratbeladener Klasse-II-Fructose-1,6-bisphosphat-Aldolase von *M. tuberculosis* (PDB-Eintrag 3ELF, 1.31 Å Auflösung). Das rechte C-Atom des Fructosegerüsts ist C1, das linke C6; die Ketofunktion mit C2 ist das anomere Zentrum der Ketose.

Zentralmetallatom eines $Zn(His)_3$ -Zentrums koordiniert. Dieser Aspekt wird von katalytisch inaktiven Zinkproteinen unterstrichen, in denen das Zentralmetall tetraedrisch von vier proteinogenen Liganden koordiniert ist, in denen also keine freie Koordinationsstelle oder kein leicht substituierbarer Ligand eine Substratbindung ermöglicht.

Diese Situation liegt in Zinkfingerdomänen vor, in denen ein Zinkatom in eine $(His)_2(Cys)_2$ -Umgebung eingebunden ist (Abb. 1.8). Die strukturelle Ähnlichkeit mit der Zinkform einer ζ -CA ist offensichtlich: Bei beiden ist ein Zn(His)(Cys)_2-Fragment durch einen vierten Liganden ergänzt. Ist dies ein Histidinligand wie bei der Zinkfingerdomäne, entsteht ein katalytisch inaktives Zentrum, ist dies ein Aqualigand wie bei der ζ -CA, steht ein reaktives OH⁻-Nukleophil zur Verfügung. Zinkfingerdomänen haben Bedeutung in Transkriptionsfaktoren, das sind Proteine, die in Wechselwirkung mit Nukleinsäuren treten. Die Zinkatome tragen hier zum Aufbau von Strukturelementen bei, die wirksam an Wasserstoffbrückenbindungen zwischen Protein und DNA/RNA teilnehmen können.

Weitere nicht katalytische Zinkzentren, die C1-Domänen, zeigen dasselbe Grundprinzip (Abb. 1.9). Mit zwei $Zn(Cys)_3$ (His)-Zentren pro Domäne weisen diese Proteinabschnitte keine freie Koordinationsstelle oder einen leicht substituierbaren Liganden auf – und tatsächlich findet die Substratbindung entfernt von den Zinkzentralatomen statt.

Eine weitere Gruppe nicht katalytischer Zinkzentren spiegelt in besonders instruktiver Weise koordinationschemische Regeln wider. Abbildung 1.10 zeigt drei Zinkzentren in einem zinkspezifischen Metallsensorprotein, mit dem Streptomyces coelicolor seinen Zinkstoffwechsel reguliert. In [8] wird gezeigt, dass die Detektion freien Zinks in der Zelle durch die beiden rechts im Bild gezeigten - hier beladenen - Bindetaschen erfolgt, während die links dargestellt Zn(S_{Cvs})₄-Einheit mit einem ständig gebundenen Zinkatom nur strukturelle Aufgaben hat - im Einklang mit der hohen Stabilität eines Tetrathiolatokomplexes, der nur eine besonders geringe Gleichgewichtskonzentration an freiem Zink zulässt. Die beiden übrigen Zentren, Zn(O_{Asp})(S_{Cys})(N_{His})₂ und Zn(O_{Asp})(N_{His})₃, sind etwas weniger stabil; entsprechend den kleinen zu detektierenden Zinkkonzentrationen stellen sie aber immer noch Komplexe mit beachtlicher Stabilitätskonstante dar, die sich ab einer Konzentration von etwas mehr als 10^{-16} mol L⁻¹ Zn²⁺ mit dem Metall beladen.

Abb. 1.8 Die typische Zn(His)₂(Cys)₂-Baueinheit einer Zinkfingerdomäne (PDB-Eintrag 4LJO, 1,56 Å Auflösung).

Abb. 1.9 Die Zn(Cys)₃(His)-Baueinheit einer C1-Domäne (PDB-Eintrag 4FKD, 1,63 Å Auflösung).

1.5 Literatur

Eine Übersicht über die CA-Klassen und die therapeutische Bedeutung von CA-Hemmern finden Sie bei Alterio et al. [4]. Der Einfluss einer starken Wasserstoffbrückenbindung vom Typ Zn-(H)O...HOH auf den p K_a -Wert des zinkgebundenen Aqualiganden und auf den Protonenfluss wird bei Avvaru et al. [11] anhand der hochaufgelösten Strukturanalyse 3KS3 diskutiert. Der Einfluss unterschiedlicher Liganden auf die Acidität des Aqualiganden wird in [5] untersucht. Die Abhängigkeit der Reaktivität des aktiven Zentrums vom Metall (Zn oder Cd) und vom Austausch His/Cys wird bei Amata et al. [7] berechnet. Maret [2] gibt einen allgemeinen Überblick über die Bedeutung von Zink für den menschlichen Organismus; über die unmittelbar als Zinkenzyme bekannten Proteine hinaus wird aus der Sequenz des humanen Genoms auf ca. 3000 Zinkenzyme geschlossen. In dieser Arbeit wird ein weiterer Aspekt angesprochen, nämlich dass Zinksensorproteine nicht nur als Regulatoren im Zinkstoffwechsel Bedeutung haben, sondern dass Zinkionen auch in der Signaltransduktion eine Rolle spielen. Dołęga [9] gibt einen Überblick über Alkoholdehydrogenase, Pegan et al. [3] formulieren einen Katalysezyklus für Klasse-II-Fructose-

Abb. 1.10 Drei Bindungsmodi in Zinkzentren eines Zinksensorproteins von *S. coelicolor* in 2,4 Å Auflösung (PDP-Eintrag: 3MWM) Nur die beiden Zinkatome rechts verlassen den Sensor bei Zinkmangel, die Zn(S_{Cys})₄-Einheit links bleibt immer intakt.

12 1 Säure-Base-Katalyse bei physiologischem pH-Wert

1,6-bisphosphat-Aldolase, deren Hemmung [6] gewidmet ist. Das und Rahman [1] geben eine Übersicht über C1-Domänen.

- Das, J. und Rahman, G.M. (2014) C1 domains: Structure and ligand-binding properties. *Chem. Rev.*, **114**, 12108–12131, doi:10.1021/cr300481j.
- 2 Maret, W. (2013) Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. Int. Rev. J., 4, 82–91, doi:10.3945/an.112.003038.
- 3 Pegan, S.D. et al. (2013) Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from *Mycobacterium tuberculosis*. *Biochemistry*, 52, 912–925, doi:10.1021/bi300928u.
- 4 Alterio, V. *et al.* (2012) Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? *Chem. Rev.*, **112**, 4421–4468, doi:10.1021/cr200176r.
- 5 Jiao, D. und Rempe, S.B. (2012) Combined density functional theory (DFT) and continuum calculations of pK_a in carbonic anhydrase. *Biochemistry*, **51**, 5979–5989, doi:10.1021/bi201771q.
- 6 Labbé, G. *et al.* (2012) Development of metal-chelating inhibitors for the Class II fructose 1,6-bisphosphate (FBP) aldolase. *J. Inorg. Biochem.*, 112, 49–58, doi:10.1016/j.jinorgbio.2012.02.032.
- 7 Amata, O., Marino, T., Russo, N. und Toscano, M. (2011) Catalytic activity of a ζ-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms. *Phys. Chem. Chem. Phys.*, **13**, 3468–3477, doi:10.1039/C0CP01053G.
- 8 Shin, J.-H. *et al.* (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. *Proc. Natl. Acad. Sci. USA*, **108**, 5045–5050, doi:10.1073/pnas.1017744108.
- 9 Dołęga, A. (2010) Alcohol dehydrogenase and its simple inorganic models. *Coord. Chem. Rev.*, 254, 916–937, doi:10.1016/j.ccr.2009.12.039.
- 10 Dunkel, A. und Hofmann, T. (2010) Carboanhydrase IV vermittelt das Prickeln der Kohlensäure in Getränken. *Angew. Chem.*, **122**, 3037–3039, doi:10.1002/ange.200906978.
- 11 Avvaru, B.S. *et al.* (2010) A short, strong hydrogen bond in the active site of human carbonic anhydrase II. *Biochemistry*, **49**, 249–251, doi:10.1021/bi902007b.

weiter geht's mit ...

... Nickelproteinen. Wenn die IUPAC in IR-3.5 ihres *Red Book* formuliert "..., the elements of groups 3–12 are the d-block elements. These elements are also commonly referred to as the transition elements, though the elements of group 12 are not always included", deutet sie an, dass eine vollständig gefüllte d-Unterschale in der wichtigsten Oxidationsstufe nicht zu einem richtigen Übergangsmetall passt. Ein Vergleich der koordinationschemischen Steckbriefe von Highspin-Nickel (Tab. 24.7) und Zink (Tab. 24.8) zeigt eine erste Konsequenz: Die recht hohe Ligandenfeldstabilisierungsenergie (LFSE) der Nickelkomplexe wird in voller Höhe nur bei oktaedrischer Koordination wirksam – die