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CHAPTER 1

Introduction

Ris a functional programming language with a focus on statistical analysis. It has built-
in support for model specifications that can be manipulated as first-class objects, and
an extensive collection of functions for dealing with probability distributions and model
fitting, both built-in and through extension packages.

The language has a long history. It was created in 1992 and is based on an even
older language, S, from 1976. Many quirks and inconsistencies have entered the
language over the years. There are, for example, at least three partly incompatible ways
of implementing object orientation, and one of these is based on a naming convention
that clashes with some built-in functions. It can be challenging to navigate through the
many quirks of R, but this is alleviated by a suite of extensions, collectively known as the
“Tidyverse.”

While there are many data science applications that involve more complex data
structures, such as graphs and trees, most bread-and-butter analyses involve rectangular
data. That is, the analysis is of data that can be structured as a table of rows and columns
where, usually, the rows correspond to observations and the columns correspond to
explanatory variables and observations. The usual data sets are also of a size that can be
loaded into memory and analyzed on a single desktop or laptop. I will assume that both
are the case here. If this is not the case, then you need different, big data techniques that
go beyond the scope of this book.

The Tidyverse is a collection of extensions to R: packages that are primarily aimed at
analyzing tabular data that fits into your computer’s memory. Some of the packages go
beyond this, but since data science is predominately manipulation of tabular data, this is
the focus of this book.

The Tidyverse packages provide consistent naming conventions, consistent
programming interfaces, and more importantly a consistent notation that captures how
data analysis consists of different steps of data manipulation and model fitting.

© Thomas Mailund 2022
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CHAPTER 1  INTRODUCTION

The packages do not merely provide collections of functions for manipulating data
but rather small domain-specific languages for different aspects of your analysis. Almost
all of these small languages are based on the same overall “pipeline” syntax introduced
with the magrittr package. The package introduces a syntax for sending the output of
one function call into another function call. It provides various operators for this, but the
most frequently used is %>% that gives you an alternative syntax for writing function calls:

x%>%F()%>%g()
is equivalent to

g(f(x))

This syntax was deemed so useful that a similar operator was introduced into the

main R language in version 4.1, | >, so you will now also see syntax such as

x |>£() [> g()

I will, when it is convenient, use the built-in pipe operator | > in code examples, but I
will leave magrittr syntax until after Chapter 6 where I describe the magrittr package.

The two operators are not identical, and I will highlight a few differences in Chapter 6.
They differ in a few ways, but you can use either with the Tidyverse packages, and they
are usually designed with the assumption that you use the packages that way.

A noticeable exception is the plotting library ggplot2. It is slightly older than the
other extensions in the Tidyverse and because of this has a different syntax. The main
difference is the operator used for combining different operations. The data pipeline
notation uses the %>% or |> operator, while ggplot2 combines plotting instructions using +.
If you are like me, then you will often try to combine ggplot2 instructions using %>%—
just out of habit—but once you get an error from R, you will recognize your mistake and
can quickly fix it.

This book is a syntax reference for modern data science in R, which means that it is a
guide for using Tidyverse packages and it is a guide for programmers who want to use R’s
Tidyverse packages instead of basic R programming. I will assume that you are familiar
with base R and the functions there, or at least that you can read the documentation for
these, for example, when you want to know how the function read.table() behaves, you
type ?read.table into your R console. I will mention base R functions in the text when
they differ from similar functionality in the Tidyverse functions. This will warn you if you
are familiar with the base R functions and might have code that uses them that you want
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to port to Tidyverse code. If you are not familiar with base R and want a reference for the
core R language, you might wish to read the book R Quick Syntax Reference by Margot
Tollefson instead.

This guide does not explain each Tidyverse package exhaustively. The development
of Tidyverse packages progresses rapidly, and the book would not contain a complete
guide shortly after it is printed anyway. The structure of the extensions and the domain-
specific languages they provide are stable, however, and from examples with a subset of
the functionality in them, you should not have any difficulties with reading the package
documentation for each of them and find the features you need that are not covered in
the book.

To get started with the Tidyverse, install and load it:

install.packages("tidyverse")
library(tidyverse)

The Tidyverse consists of many packages that you can install and load
independently, but loading all through the tidyverse package is the easiest, so unless
you have good reasons to, for example, that you need a package that isn’t automatically
loaded, just load tidyverse when you start an analysis. In this book, I describe three
packages that are not loaded from tidyverse but are generally considered part of the
Tidyverse.!

'The Tidyverse I refer to here is the ecosystem of Tidyverse packages but not the package
tidyverse, which only loads the key packages.



CHAPTER 2

Importing Data: readr

Before we can analyze data, we need to load it into R. The main Tidyverse package for
this is called readr, and it is loaded when you load the tidyverse package:

library(tidyverse)
but you can also load it explicitly using
library(readr)

Tabular data is usually stored in text files or compressed text files with rows and
columns matching the table’s structure. Each line in the file is a row in the table, and
columns are separated by a known delimiter character. The readr package is made for
such data representation and contains functions for reading and writing variations of
files formatted in this way. It also provides functionality for determining the types of data
in each column, either by inferring types or through user specifications.

Functions for Reading Data

The readr package provides the following functions for reading tabular data:

Function File format

read _csv() Comma-separated values
read csv2() Semicolon-separated values

read tsv() Tab-separated values

© Thomas Mailund 2022
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Function File format

read _delim()  General column delimiters'

read table()  Space-separated values
(fixed-length columns)

read table2() Space-separated values
(variable-length columns)

The interface to these functions differs little. In the following text, I describe read
csv, but I highlight when the other functions differ. The read _csv function reads data
from a file with comma-separated values. Such a file could look like this:

A,B,C,D
1,a,a,1.2
2,b,b,2.1
3,c,C,13.0

Unlike the base R read. csv function, read_csv will also handle files with
spaces between the columns, so it will interpret the following data the same as the
preceding file:

A, B, C, D
1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0

If you use R’s read. csv function instead, the spaces before columns B and C will be
included as part of the data and the text columns will be interpreted as factors.

The first line in the file will be interpreted as a header, naming the columns, and the
remaining three lines as data rows.

Assuming the file is named data/data. csv, you read its data like this:

my data<-read csv(file ="data/data.csv")

IThe read_delim() can handle any file format that has a special character that delimits columns.
The read_csv(), read_csv2(), and read_tsv() functions are specializations of it. The first of
these uses commas for the delimiter, the second semicolons, and the third tabs.

6



CHAPTER 2  IMPORTING DATA: READR

## Rows: 3 Columns: 4

##---- Column specification ---------------coo---

## Delimiter: ","

## chr (2): B, C

#t dbl (2): A, D

it

## i Use 'spec()' to retrieve the full column specification for this data.
## 1 Specify the column types or set 'show col types = FALSE' to quiet this
message.

The message you get from read_csv() tells you that you can get information about
the type it has inferred for each column if you use the spec() function:

spec(my_data)

## cols(

## A = col double(),

## B = col character(),
## C = col character(),
## D = col double()

#H )

When reading the file, read_csv will infer that columns A and D are numbers and
columns B and C are strings.

If you are happy with that, and don’t want to be told about it in the future, you can
use the option

show_col types = FALSE:

my data<-read csv(file ="data/data.csv",
show_col types =FALSE)

If the file contains tab-separated values

Nn o 9 M
N 2 O

B
a
b
c

w N R >

=
w
o
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you should use read tsv() instead.

my data<-read tsv(file ="data/data.tsv",
show _col types =FALSE)

The file you read with read_csv can be compressed. If the suffix of the file name is
.82, .bz2, .xz, or . zip, it will be uncompressed before read csv loads the data.

my data<-read csv(file ="data/data.csv.gz",
show_col types =FALSE)

If the file name is a URL (i.e., has prefix http://, https://, ftp://, or ftps://, the
file will automatically be downloaded.
You can also provide a string as the file object:

read_csv(
"A, B, C, D
1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0
", show _col types = FALSE)

## # A tibble: 3 x 4

## A B C D
##  <dbl> <chr> <chr> <dbl>
# 1 1a a 1.2
#t 2 2 b b 2.1
## 3 3cC C 13

This is rarely useful in a data analysis project, but you can use it to create examples or
for debugging.

File Headers

The first line in a comma-separated file is not always the column names; that
information might be available from elsewhere outside the file. If you do not want to
interpret the first line as column names, you can use the option col_names = FALSE.
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read csv(
file ="data/data.csv",
col names =FALSE,
show_col types =FALSE

## # A tibble: 4 x 4
#tH X1 X2 X3 X4
##  <chr> <chr> <chr> <chr>

#H 1A B C D
# 2 1 a a 1.2
## 3 2 b b 2.1
## 4 3 d C 13.0

Since the data/data.csv file has a header, that is interpreted as part of the data,
and because the header consists of strings, read_csv infers that all the column types
are strings. If we did not have the header, for example, if we had the file data/data-no-
header.csv:

1, a, a, 1.2
2, b, b, 2.1
3, ¢, ¢, 13.0

then we would get the same data frame as before, except that the names would be
autogenerated:

read csv(
file ="data/data-no-header.csv",
col names =FALSE,
show_col types =FALSE

)

## # A tibble: 3 x 4

## X1 X2 X3 X4
#  <dbl> <chr> <chr> <dbl>

##H 1 1a a 1.2
## 2 2 b b 2.1
#i# 3 3cC C 13
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The autogenerated column names all start with X and are followed by the number
the columns have from left to right in the file.

If you have data in a file without a header, but you do not want the autogenerated
names, you can provide column names to the col_names option:

read csv(
file ="data/data-no-header.csv",
col names =c("X","Y","Z","W"),
show_col types =FALSE

)

# # A tibble: 3 x 4

Hit Xy Z W
#  <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2b b 2.1
# 3 3¢ C 13

If there is a header line, but you want to rename the columns, you cannot just
provide the names to read_csv using col _names. The first row will still be interpreted as
data. This gives you data you do not want in the first row, and it also affects the inferred
types of the columns.

You can, however, skip lines before read _csv parse rows as data. Since we have a
header line in data/data.csv, we can skip one line and set the column names.

read_csv(
file ="data/data.csv",
col names =c("X","Y","Z","W"),
skip =1,
show_col types =FALSE

)

# # A tibble: 3 x 4

Hit Xy Z W
#  <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2b b 2.1
# 3 3c C 13

10
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You can also put a limit on how many data rows you want to load using the
n_max option.

read csv(
file ="data/data.csv",
col names =c("X","Y","Z","W"),
skip =1,
n_max =2,
show_col_types =FALSE

If your input file has comment lines, identifiable by a character where the rest
of the line should be considered a comment, you can skip them if you provide the
comment option:

read csv(
"A, B, C, D # this is a comment
1, a, a, 1.2 # another comment

2, b, b, 2.1

3, ¢, ¢, 13.0",
comment ="#",
show_col_types =FALSE)

## # A tibble: 3 x 4

## A B C D
#  <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2 b b 2.1
## 3 3cC C 13

You can leave a whole line as a comment, but then you want the comment character

to start to the left of that line:

read csv(
"A, B, C, D # this is a comment
# whole line comment
1, a, a, 1.2 # another comment
2, b, b, 2.1

11



CHAPTER 2  IMPORTING DATA: READR

3, ¢, ¢, 13.0",
comment ="#",
show_col types =FALSE)

## # A tibble: 3 x 4

## A B C D
#  <dbl> <chr> <chr> <dbl>
##H 1 1a a 1.2
## 2 2 b b 2.1
#i# 3 3cC C 13

If you have space before the comment, the function can’t tell if there is an error—it
looks like a line with missing columns rather than a blank line—so you will get a warning
and a row with NA where the comment line was.

read csv(
"A, B, C, D # this is a comment
# the indentation is a potential problem; missing columns?
1, a, a, 1.2 # another comment
2, b, b, 2.1
3, ¢, ¢, 13.0",
comment ="#",
show_col types =FALSE

## Warning: One or more parsing issues, see
## 'problems()' for details

#i# # A tibble: 4 x 4
## AB C D
##  <dbl> <chr> <chr> <dbl>

## 1 NA <NA> <NA> NA
## 2 1a a 1.2
## 3 2b b 2.1
# 4 3c C 13

For more options affecting how input files are interpreted, read the function
documentation: ?read_csv.

12
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Column Types

When read_csv parses a file, it infers the type of each column. This inference can be
slow, or worse the inference can be incorrect. If you know a priori what the types should
be, you can specify this using the col _types option. If you do this, then read_csv will not
make a guess at the types. It will, however, replace values that it cannot parse as of the
right type into NA.2

String-Based Column Type Specification

In the simplest string specification format, you must provide a string with the same
length as you have columns and where each character in the string specifies the type of
one column. The characters specifying different types are this:

Character Type

C Character

i Integer

n Number

d Double

1 Logical

f Factor

D Date

T Datetime

t Time

? Guess (default)
/- Skip the column

>There is a gotcha here. The types are guessed at after a fixed number of lines are read (by default
1000). If you have 1000 lines of numbers in a column and line 1001 has a string, then the type will
be inferred as numeric and you lose the string. If you know the types, it is always better to tell the
functions what they are.
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By default, read_csv guesses, so we could make this explicit using the type

specification "??2?":

read csv(
file ="data/data.csv",
col types ="?22??"

)

# # A tibble: 3 x 4

Hit A B C D
#  <dbl> <chr> <chr> <dbl>
## 1 1a a 1.2
## 2 2b b 2.1
# 3 3c C 13

The results of the guesses are double for columns A and D and character for columns
B and C. If we wanted to make this explicit, we could use "dccd".

read csv(
file ="data/data.csv",
col types ="dccd"

)
## # A tibble: 3 x 4
it A B C D
##  <dbl> <chr> <chr> <dbl>
# 1 1a a 1.2
## 2 2 b b 2.1
## 3 3¢ ¢ 13
If you want an integer type for column A, you can use "iccd":
read csv(
file ="data/data.csv",
col types ="iccd"
)
# # A tibble: 3 x 4
# A B C D
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##  <int> <chr> <chr> <dbl>

##H 1 1 a a 1.2
#tH# 2 2 b b 2.1
## 3 3cC C 13

Ifyou try to interpret column D as integers as well, you will get a list of warning
messages, and the values in column D will all be NA; the numbers in column D cannot be
interpreted as integers, and read_csv will not round them to integers.

read _csv(
file ="data/data.csv",
col types ="icci"

)
## Warning: One or more parsing issues, see
## 'problems()' for details

## # A tibble: 3 x 4

#i# A B C D
##  <int> <chr> <chr> <int>
## 1 1 a a NA
#i# 2 2 b b NA
## 3 3cC C NA

If you specify that a column should have type d, the numbers in the column must be
integers or decimal numbers. If you use the type n (the default that read csv will guess),
you will also get doubles, but the latter type can handle strings that can be interpreted
as numbers such as dollar amounts, percentages, and group separators in numbers. The
column type n will ignore leading and trailing text and handle number separators:

With this function call

read csv(
‘A, B, C, D, E
$1,a,a,1.2%,"1,100,200"
$2,b,b,2.1%,"140,000"
$3,c,c,13.0%,"2,005,000" ",
col types ="nccnn"

)
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