
SpringerBriefs in Energy

Xianghao Zheng · Yuning Zhang · Yuning Zhang · Jinwei Li

Flow-Induced Instabilities of Reversible Pump Turbines

SpringerBriefs in Energy

SpringerBriefs in Energy presents concise summaries of cutting-edge research and practical applications in all aspects of Energy. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include:

- A snapshot of a hot or emerging topic
- A contextual literature review
- A timely report of state-of-the art analytical techniques
- An in-depth case study
- A presentation of core concepts that students must understand in order to make independent contributions.

Briefs allow authors to present their ideas and readers to absorb them with minimal time investment.

Briefs will be published as part of Springer's eBook collection, with millions of users worldwide. In addition, Briefs will be available for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance.

Both solicited and unsolicited manuscripts are considered for publication in this series. Briefs can also arise from the scale up of a planned chapter. Instead of simply contributing to an edited volume, the author gets an authored book with the space necessary to provide more data, fundamentals and background on the subject, methodology, future outlook, etc.

SpringerBriefs in Energy contains a distinct subseries focusing on Energy Analysis and edited by Charles Hall, State University of New York. Books for this subseries will emphasize quantitative accounting of energy use and availability, including the potential and limitations of new technologies in terms of energy returned on energy invested.

Xianghao Zheng · Yuning Zhang · Yuning Zhang · Jinwei Li

Flow-Induced Instabilities of Reversible Pump Turbines

Xianghao Zheng Key Laboratory of Power Station Energy Transfer Conversion and System (Ministry of Education), School of Energy, Power and Mechanical Engineering North China Electric Power University Beijing, China

Yuning Zhang Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering China University of Petroleum-Beijing Beijing, China Yuning Zhang (D)
Key Laboratory of Power Station Energy
Transfer Conversion and System (Ministry
of Education), School of Energy, Power
and Mechanical Engineering

North China Electric Power University Beijing, China

Jinwei Li China Institute of Water Resources and Hydropower Research Beijing, China

This work was supported by the National Natural Science Foundation of China (Project Nos.: U1965106, 51976056 and 52076215).

ISSN 2191-5520 ISSN 2191-5539 (electronic) SpringerBriefs in Energy ISBN 978-3-031-18056-9 ISBN 978-3-031-18057-6 (eBook) https://doi.org/10.1007/978-3-031-18057-6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book provides a comprehensive introduction of the flow-induced instabilities (e.g., the pressure fluctuations and the vibrations) of the prototype reversible pump turbines (RPTs) in the pumped hydro energy storage power stations (PHSEPSs) in China based on our long-term on-site experiments. In September 2021, the National Energy Administration of China released the medium- to long-term development plan for the PHSEPSs (2021–2035), in order to help achieve China's "dual carbon" target. In the modern grid, the operational conditions of the RPT need to be switched frequently to meet the requirements of peak shaving and valley filling. During the daily operation, the RPTs are significantly affected by the flow-induced instabilities. However, these instabilities have not been fully revealed and grasped, and need urgent attentions now. Therefore, in this book, the pressure fluctuation, the vibration, and the shaft displacement signals of several RPTs in China under different operational conditions will be analyzed in detail to reveal the generation mechanisms and the propagation characteristics of typical unstable flows. The advanced signal analysis methods will be employed to obtain the time-frequency information accurately and further find out the internal correlations between different types of signals. The advanced artificial intelligence algorithms will be adopted to recognize and diagnose different flow-induced vibration faults. This book will show some fundamentals of the RPTs, the suitable signal analysis methods, and the artificial intelligence algorithms, which may be useful for engineers and researchers in this field to carry out similar researches and improve the safe operational levels of the RPTs. In addition, the analysis results of the measured signals from the on-site experiments could be employed for calibrations of numerical simulations and comparisons of model tests.

Beijing, China June 2022 Xianghao Zheng Yuning Zhang Yuning Zhang Jinwei Li vi Preface

Acknowledgements This book was financially supported by the National Natural Science Foundation of China (Project Nos.: U1965106, 51976056, and 52076215).

Contents

I	Introduction				
	1.1	Background	1		
	1.2	Research Status	2		
	1.3	Description of the Book	3		
	Refe	erences	5		
2	Generation Mechanisms of Typical Unstable Flows				
	2.1	Rotor–Stator Interaction	7		
	2.2	Vortex Rope	9		
	2.3	Rotating Stall	9		
	2.4	Karman Vortex	9		
	2.5	Cavitation	10		
	References				
3	Flov	w-Induced Pressure Fluctuations and Vibrations in Generating			
	Mod		13		
	3.1	General Description	13		
	3.2	Experimental Setup	13		
		3.2.1 Structural Sketch and Essential Parameters of the RPT	13		
		3.2.2 Definitions of Dimensionless Parameters	14		
		3.2.3 Experimental Instruments and Procedures	15		
	3.3	Signal Analysis Methods	16		
		3.3.1 Peak-to-Peak Value	16		
		3.3.2 FFT Spectrum	16		
	3.4	Influences of Load Variations	16		
	3.5	Influences of Water Head Variations	23		
	Refe	erences	27		
4	Flov	v-Induced Transient Pressure Fluctuations During			
		t-up Process of Pumping Mode	29		
	4.1	General Description	29		
	4.2	Experimental Setup	29		

viii Contents

		4.2.1	Structural Sketch and Essential Parameters of the RPT	29
		4.2.2	Monitoring Points and Experimental Sensors	30
		4.2.3	Description of Start-up Process of Pumping Mode	31
		4.2.4	Definitions of Dimensionless Parameters	31
	4.3	Signal	Analysis Methods	32
		4.3.1	Savitzky-Golay Filter	32
		4.3.2	Peak-to-Peak Value	32
		4.3.3	STFT Spectrogram	33
	4.4	Transi	ent Pressure Fluctuations in First Stage	33
		4.4.1	Operational Details	33
		4.4.2	Time-Domain Analysis	34
		4.4.3	Time–Frequency Analysis	37
	4.5	Transi	ent Pressure Fluctuations in Second Stage	40
		4.5.1	Operational Details	40
		4.5.2	Time-Domain Analysis	41
		4.5.3	Time–Frequency Analysis	45
	Refe	rences		49
5	Evol	luction	of Operational Stability of Main Shaft	51
3	5.1		al Description	51
	5.2		Analysis Methods	52
	3.2	5.2.1	Wavelet Threshold De-noising Method	52
		5.2.2	Empirical Mode Decomposition	52
		5.2.3	Ensemble Empirical Mode Decomposition	53
		5.2.4	Variational Mode Decomposition	54
		5.2.5	Cross-Correlation Coefficient	55
		5.2.6	Permutation Entropy	56
		5.2.7	Flowchart of Proposed Signal Analysis Procedure	57
	5.3		etion of Simulated Shaft Displacement Signal	57
	3.3	5.3.1	Description of Simulated Shaft Displacement Signal	57
		5.3.2	Signal Analysis Results	59
	5.4		etion of Measured Shaft Displacement Signal	63
	5	5.4.1	Description of Measured Shaft Displacement Signal	63
		5.4.2	Signal Analysis Results	65
	5.5		nition of Shaft Orbit	69
	5.5	5.5.1	Pressure Fluctuations in Draft Tube	69
		5.5.2	Shape Evolution of Shaft Orbit	71
		5.5.3	Permutation Entropy of Shaft Orbit	71
	Refe		· · · · · · · · · · · · · · · · · · ·	73
6		_	Recognition of Flow-Induced Vibration Faults	75 75
	6.1		al Description	75
	6.2		e Extraction	76
		6.2.1	Time-Domain and Frequency-Domain Indexes	76
		6.2.2	Energy Indexes Based on VMD	78
		0.2.3	Permutation Entropies Based on VMD	79

Contents ix

		621	Multidimensional Eigenvector	70					
			· · · · · · · · · · · · · · · · · · ·						
	6.3	Intellig	gent Recognition Algorithms	79					
		6.3.1	Extreme Learning Machine	79					
		6.3.2	Restricted Boltzmann Machine	81					
		6.3.3	Deep Belief Network	83					
	6.4	ME-V	MD-DBN Fault Diagnostic Model	84					
	6.5	Recog	nition of Flow-Induced Vibration Faults of Top Cover	87					
		6.5.1	Description of Samples	87					
		6.5.2	Recognition Results	88					
	References		91						
7	Con	clusion		93					
In	Index								