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Chapter 1
Introduction

In recent years, fractional calculus has been increasingly applied in different
fields of science [40, 55, 60]. Physical phenomena related to electromagnetism,
propagation of energy in dissipative systems, thermal stresses, models of porous
electrodes, relaxation vibrations, viscoelasticity, and thermoelasticity are success-
fully described by fractional differential equations [32, 39, 42, 43]. Fractional
calculus allows for the investigation of the nonlocal response of mechanical systems,
and this is the main advantage when compared to the classical calculus.

Fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes. This is the
main advantage of fractional derivatives in comparison with classical integer-order
models, in which such effects are in fact neglected. The advantages of fractional
derivatives become apparent in modeling mechanical and electrical properties of
real materials, as well as in the description of rheological properties of rocks, and in
many other fields.

Fractional integrals and derivatives also appear in the theory of control of
dynamical systems, when the controlled system or/and the controller is described by
a fractional differential equation [3, 28, 52]. Integer-order derivatives and integrals
have clear physical interpretation and are used for describing different concepts in
classical physics. For example, the position of a moving object can be represented as
a function of time, the object velocity is then the first derivative of the function, and
the acceleration is the second derivative. Fractional derivatives and integrals, being
generalization of the classical derivative and integrals, are expected to have an even
broader meaning. Unfortunately, there is no such result in the literature until now.

Fractional calculus includes various extensions of the usual definition of deriva-
tive from integer to real order [31], including the Riemann–Liouville derivative, the
Caputo derivative, the Riesz derivative, the Weyl derivative, etc. In this book, we
only consider the Caputo derivative by Michele Caputo and Mauro Fabrizio in [25]
(which is most widely used [38] and has the same Laplace transform as the integer-
order one, so it is widely used in control theory) that leads to an initial condition
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