Pro Python System
Administration

Rytis Sileika

Apress’

Pro Python System Administration
Copyright © 2010 by Rytis Sileika

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2605-5
ISBN-13 (electronic): 978-1-4302-2606-2
Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editors: Duncan Parkes and Michelle Lowman

Technical Reviewer: Patrick Engebretson

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editors: Mary Tobin and Jennifer L. Blackwell

Copy Editors: Jim Compton, Heather Lang and Marilyn Smith

Compositor: Lynn L'Heureux

Indexer: Julie Grady

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

I want to dedicate this book to my family—my wife Evelina and daughters Gabija and Milda

Contents at a Glance

About the AUNOF ... ————————————"= Xvi
About the Technical REVIEWETccvrmsmsmsmsmsmsmmmsmmssssssssssss s Xvii
Acknowledgements ... ———————_—_-—_., xviii
INtrOdUCHION......c it ———————_————_— Xix
Chapter 1: Reading and Collecting Performance Data Using SNMP.............cccurrenmnsnsnsesnnns 1
Chapter 2: Managing Devices Using the SOAP APL...........ccocorrererereresesesesessssssssssssssssasasens 4
Chapter 3: Creating a Web Application for IP Address Accountancycooeverereresesens 75
Chapter 4: Integrating the IP Address Application with DHCP............cocevererereresesesesesesns 107
Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File.............. 137
Chapter 6: Gathering and Presenting Statistical Data from Apache Log Filesc.c..... 159
Chapter 7: Performing Complex Searches and Reporting on Application Log Files........181
Chapter 8: A Web Site Availability Check Script for Nagios.........coeormmsrereresesesesesesesesesss 211
Chapter 9: Management and Monitoring Subsystem..........ccccvvrerereresesesesesssssssssssssanens 231
Chapter 10: Remote Monitoring Agents...........coereresmsmsmsmsmmsmsssssssssssssssesesesesesesesesessseseses 269
Chapter 11: Statistics Gathering and Reporting..........counmrrenesmsesesesssessssssssssssssssasssasans 297
Chapter 12: Automatic MySQL Database Performance Tuning..........coceeresesesesesssnsssnssanns 329
Chapter 13: Using Amazon EC2/S3 as a Data Warehouse Solutionccccverereresesesenns 349

Contents

About the AUNOF.......ccccmnmsmimsms s ————————————; Xvi
About the Technical REVIEWETccvsmsmsmsmsmsmsmmmsmmsssssssssss s Xvii
Acknowledgements ... ————————_—-___—_., Xviii
INtrOdUCHION......c i ——————————=—————— Xix
Chapter 1: Reading and Collecting Performance Data Using SNMP.............cccuerenmnnsnsesnnns 1
Application Requirements and DESIGN ..ot 1
Specifying the REQUIFEMENTSc.cvvveieeiececeeeeee e 1
High-Level Design SPeCifiCation...........cccocueeeiiieeeiieieieeeeeee e 2
INtrodUCEION 10 SNIMIP ...t 2
The System SNIMP Variables NOGEcccvevererrireiriieceeeeeee et 4
The Interfaces SNMP Variables NOGEcccevrecriiceeceee e 5
Authentication in SNIMP ..o 7
Querying SNMP from the Command LiNecccoveuevviieereceeseeee et 7
Querying SNMP Devices from PYINONcccoevceiicescee s 1
Configuring the APPIICALIONccvivereierccc e 11
USING the PYSNIMP LIDFArYcccoviiieieicceese e b et 13
Implementing the SNMP Read FUNCLIONalityccccoveviicecreeeeeee e 18
Storing Data With RRDTOOcceuereeeieiesessre et 18
INtroduction 10 RRDTOO ..ot 18
Using RRDTool from @ Python Programccceeeeeveieneieeceeeee e 20
Creating @ RoundRobin DAtADASE.........c.ccveveveieiriiiieceeeeee e 20
Writing and Reading Data from the RoundRobin Databasecccccvvveveveecvecccrevennnn, 22
Plotting Graphs With RRDTOOIccceeueuereieeeeesseeee et 25
Integrating RRDTool with the Monitoring SOIUtION..............ccoeviiiceieeeee e 28
Creating Web Pages with the Jinja2 Templating SyStem...........ccocoeevveveeeeeeseeecrrereeenas 31
Loading Template Files With JiNja2..........c.ccooeeivreceiecesse s 32
The Jinja2 Template LangUAQEccvoverereiiriieeseeeee et 33
Generating Web Site PAQES.........ccccvereereiecessss sttt 35
SUMMAIY .ottt ettt sttt e b e e e st e b et e be s sttt ebebeae s e tatabenin 39

vii

CONTENTS

Chapter 2: Managing Devices Using the SOAP APL...........c.cconnnmmmnnmnsssss 4
What IS the SOAP API?........oceceeeecce ettt vy
The Structure of @ SOAP MESSAQE.........c.coveueveiriciesscete e 42
Requesting Services With SOAP ... 42
Finding Information about Available Services With WSDL............ccccoocvevvicenerceeccnen, 44
SOAP SUPPOIE N PYENON ...ttt 45
Converting WSDL Schema to Python Helper Modulec.oovvevreicicnirccecece e, 46
Defining Requirements for Our Load Balancer TOOL............ccccvvecrerevcenccce e 47
BaSiC REQUINBMENTS ..ot 48
COUR SITUCIUIB......ee ettt 48
CONTIGUIALION ...t 49
Accessing Citrix Netscaler Load Balancer with the SOAP APlccccooviveevveceveceee 20
Fixing Issues with Gitrix Netscaler WSDL............cccocerieceisiceseecesese e, 50
Creating @ Connection ODJECT...........ccovceveieccese e 51
Logging In: Our First SOAP Callccoeuevevereeisieieieeee et 54
Gathering Performance StatiStics Datacccceeveveieriiciceceeceeeee e 59
SOAP Methods for Reading Statistical Data and Their Return Valuesccccoevvvveennnee 59
Reading System Health Data.............ccccoevereveiisccccceeeeee e 60
Reading Service Status Data.............ccceuererereeicics et 62
Automating AdmINIStration TASKScccveueiiiiiiireceeese s 65
Device Configuration SOAP MEtNOUScceueveveierereeeeee et 66
Setting @ SErviCe STALE........c.ccvvviciceeeeee s 66
A Word About Logging and Error HaNAINgcccoeevveeieriiiiierseeceeeecs e 68
Using the Python 1ogging MOTUIE. ..o 68
Handling EXCEPLIONSc.cviieccee e 72
SUMMAIY .ttt ettt bbb ettt e b e e et st ebebebe sttt et e b e an s e tababenan 73
Chapter 3: Creating a Web Application for IP Address Accountancyooumeresesesenens 75
Designing the APPlICALIONccccveeieccceei e 75
Setting Out the REQUIFEMENTScoovvieeeeceeee e 75
Making Design DECISIONS............cereeriririeieeeese sttt e nee 76
Defining the Database SChEMAccccvcveieivieiiecccce s 77
Creating the Application WOrKFIOWcccceeieiiiisiis et 79

viii

CONTENTS

The Basic Concepts of the Django FrameworK..........ccceeueerrvsnirisiiessee e 80
What IS DJANG07?.......ooeeeieieecee e 81
The Model/View/Controller PAtternccoovceveeceieceese e 81
Installing the Django FrameWOIK..........ccccueeeeiniisiriieecccee et 82
The Structure of @ Django APPIICALIONcccevvicreeicice s 83
Using Django with Apache Web SEIVer ... 85

Implementing Basic FUNCLIONAIILYcovviiiiiicee s 88
Defining the Database MOGELccveeeeeiiecsc e 88
URL CONFIQUILION.......cocueviieceeisiccte ettt 91
Using the Management INTErfaceccceeeiiciscce e 93
VIBWING RECOMTS ...t 96
USING TEMPIALES ...t 99
DeltiNg RECOMTScvveiiececccice e 102
Adding NEW RECOTTS........c.cvoeeeviiiicceeee e 103
Modifying EXiSting RECOMTScvuiieriieieiccsrisi e 105

SUMMAY 1.ttt b bbbttt n s ae bbb bans 106

Chapter 4: Integrating the IP Address Application with DHCP............ccocoverererereresesesesenns 107

Extending the Design and REQUINEMENTS ... e 107
Extending the Database SChema...........cccceveeiiiiecceceeceee e 109
Additions 10 the WOrKFIOWccoveveueiiiecccee e 110

Adding DHCP NEtWOrk Data.............cccoviieerireiereieieeicsss e 110
Defining Data MOGEIS...........ccooveverecieeee e 110
Additional WOrKFIOWSccoveiieiceiceieiee et 111
The Add FUNCHION.......oeeeccee e 111
The MOdify FUNCHONcocveeiiececteceeceseee ettt 113
The Delete FUNCHION..........c.ciiiee e 113

Extending DHCP Configuration with Address POOISccccceeveirvsvc s 113
The Address Pool Data MOGEIcccccvvreeieeiireseeeeece e 114
Displaying DHCP Network DetailS..........cccouevveeeviieeicciereeiee s 114
The Add and Delete FUNCLIONS...........ccccovvveieiciieisse e 116

Reworking the URL STFUCTUIEcveviieeeceeeceeececee e 116
Generating URLS in the Model ClaSS..........ccccvveveieveeiececeeeieere s 117
Reverse ReSOIUION OF URLScccociiecicieiceese e 117
Assigning Names t0 URL Patternscoeeeueiieiesseccee e 118

Using URL References in the TEMPIALES...........ccovvvvvvveieececeeee e, 118

CONTENTS

Adding Client ClasSIfiCationcccvecueuriiiciersece e 120
Additions to the Data MOAEIcceieeceere e 120
Using Template INNEILANCE..........ccccvereeicicseeee s 121
Class RuIeS ManagemeNt...........cccvuiucuriiceeriecre et 122

Generating the DHCP Configuration File............ccceueiiieeriicesece e, 127

Other MOGIfICAtIONScvveceeieiccce e 131
Resolving IPS 10 HOSINAMES ..ot 131
Checking Whether the Address IS INUSEc.cevvvecirveciescecesee e 132

SUMMANY <.ttt a b s b b s s nn s 135

Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File.............. 137

Specifying the Design and Requirements for the Application.............ccocoevvccvcsccsiicnennn, 137
Functional REQUIFEMENTScccvuiuiiiicceres s 138
HIGN-LEVEI DESIGN ...ttt 138

Setting Up the ENVIFONMENToooiiicceeee et 138
Apache CONIGUIALION...........cevveeeieceeeceee et 139
Creating a Django Project and AppliCation.............ccceveeeeeerereressssesese e, 139
Configuring the APPIICALIONccveviveiice e 140
Defining the URL SITUCKUFE.........c.ovevieeeeceecceeete et 141

THe Data MOGEL........c.ceuereieiiecc e 142
The Basic MOE! STTUCTUTEc.ve e 143

Modifying the Administration INtErface ... 147
Improving the Class and ODJECE LISESccevevveeeveeiceceeceeee e 147
Adding Custom ODJECT ACHIONSovevieeccceee e 152

Generating the Configuration File.............ccovvviieeeeceeee s 154

SUMMETY .ttt s bbb e b e e e st et et e be s et bebebese s ettt 157

Chapter 6: Gathering and Presenting Statistical Data from Apache Log Filesccc..... 159

Application Structure and FUNCHONAIITY............cceveieiiiceccecc s 159
Application REQUIFEMENTScecviviiircecceece e 160
ApPIICALION DESIGNcveveeceee e 160

Plug-in Framework Implementation in PYthon ..., 160
The Mechanics of a Plug-in FrameWOrKccoceeeeeeeeerssees e 161

Creating the Plug-in FrameEWOrKccceeieieiisi et 163

CONTENTS

L0g-Parsing ApPlCALIONc.cucvereieieee s 167
Format of Apache LOg FilES.........cciuiuieeeeesss e 167
LOQ Filg REAUETcoeeeeeecce ettt 169
Calling the Plug-in MEthOdSccccueiieieiriice et 173

PIUG-IN MOGUIES ...ttt 177
Installing the Required LIDIaries.........cccoceeecviiiiciceeese e 177
Writing the PIUG-iN COUEc.ceveceeeeccecece e 179

SUMMANY <.ttt a bbbt s et b s s s s s 180

Chapter 7: Performing Complex Searches and Reporting on Application Log Files.......181

Defining the PrODIBM ..o 181
Why WE USE EXCEPLIONS.......cceieivercieieieieieietesi s 184
Are Exceptions Always @ Bad Sign?..........cccceviceniecesseeesesse s 184
Why We Should Analyze EXCEPLIONSccvvveereriiereiriseceseeete et 184

Parsing CompleX LOG FlEScoveveeiiceeeeeceeete e bs 186
What Can We Find in @ Typical LOG File?cvovveeerceeeeeee e 186
The Structure of an Exception Stack Trace LOgcocvvevvvveveeeereereeessese e 187

Handling MUHIPIE FIIEScveueeeeeeeecteeeees et 189
Handling MUHRIPIE FIlES........cvcvoveeeeeee e 189
Using the Built In BZIP2 LIDFArYcccveeieieenssscsssisesesces s 193
Traversing Through Large Data Files...........cccooeeiecciiccseeeee e 193
What Are Generators, And How Do We Use ThEM?........ccoviecrvicenseeesesceseeiees 193

DeteCting EXCEPLIONS........ccveveececece e s 195
Detecting Potential Candidatesccceveriieieiiiiiieeeceeeeeee e 195
Filtering Legitimate EXCEPLioN TraCes.........cccovvvvvvivreecee e 196

Storing Data in Data STrUCTUTEScvcvveeeece e 197
The Structure of Exception Stack Trace Dataccocevevvevieeciiiiccceecee e 198
Generating an Exception Fingerprint for Unknown EXCEptionscccoevevevevveceveicnenenns 198
Detecting KNOWN EXCEPLIONS.........cviuerrreieieiriniriririsescseesseis et 201

ProduUCING REPOMS.....vcveieiieieicieissesi e 206
GrOUPING EXCEPLIONSvvevececeeiicteteseee ettt 207
Producing Differently Formatted Output for the Same Dataset............cccccevvvevvvccrcrennene, 208
Calculating Group SEALISTICSc.oveeerericiercce e 208

SUMMANY <.ttt n s s s sn s 210

xi

xii

CONTENTS

Chapter 8: A Web Site Availability Check Script for Nagios.........cocommmmnmsmnmnmmsssssmssssssnas 211
Requirements for the Check SYSTEM..........ccvicericce e 211
The Nagios Monitoring SYSTEMcceeiceiece s 212
Nagios Plug-In ArChItECIUNEccvevereeeecee s 212
The Site Navigation ChECK...........ccccvceueiicceece et 213
Installing the Beautiful Soup HTML Parsing Librarycccceevcenvcessincesseceeenee, 214
Retrieving @ WED Page ... 214
Parsing the HTML Pages with Beautiful SOUDcccccevvvvcerericcesece e 216
Adding the New Check to the Nagios SYStemccccceveerieicenscce s 222
Emulating the USer LOgin PrOCESS........ccceueuiueiririsiriririicseseie et 224
SUMMANY <.ttt bbb b s s nn s 229
Chapter 9: Management and Monitoring Subsystem..........conmm——— 231
DBSIGN <ottt ettt 231
THE COMPONENTS.......cuiverirerereeter ettt b bans 231
The Data ODJECEScecveeececeecce e 233
THe Data STTUCKUIEScecveeeccescce e 234
Introduction to Data NOrmalizationcccervrviniicniceceeee e 235
ConfigUration DALA..........cccevevereriririiic e 237
Performance Data............cccoevieeiiiinnes s 240
SCNBAUNNG ...ttt bbb bbbt s 241
Site CONTIGUIATIONevececeee e 242
COMMUNICALION FIOWScvviiicreieiccte ettt 243
XML-RPC for Information EXChANQEecccovvvvveevvereicereeeeee e 244
CRBITYPY ..ot 246
TRE SEIVE PIOCESScecvvviiicieisicie ettt 247
Storing Data in @ SQLite3 DAtabASEccoevvvvererrireeesecee e 247
ACHIONS ..ttt 252
THE SCRBAUIET ..o 255
ACLIONS ..t 255
RUNNING MUILIPIE PrOCESSESvvvviiririririiecee et 295
Running Methods at Equal INtErvalscccovveeeeieccse s 260
A Cron-LiKe SCBAUIETc.cvveeeeriicie sttt 263
TICKET DISPALCNETceceieeiieieieie et 264
SUMMATY .ttt ettt es sttt e b e e s st e b et e be s se sttt ebesn s ettt 267

CONTENTS

Chapter 10: Remote Monitoring Agents.........coummmmsmnssmnssssss s 269
DBSIGN <ottt ettt nens 269
The Passive COMPONENT..........ccovcueriicce e 269
ArCHITECIUNE ... 269
ACLIONS ..o 269
The SECUILY MOTELo.evveicecie et 271
CONTIGUIALION. ..ottt bbbt n s 271
The ConfigParser LIDIary...........occcceriiceiecceseee et nsns 271
The Configuration Class WIaPPETceveeeesicerssee ettt 277
THE SENSOE DESIGN ...ttt e 281
RUNNING EXTEINAI PrOCESSEScvveviiiiiriise ettt 282
Using the SUDProCesS LiDrary........ccccvevvviviniieeeceeeee s 282
Controlling the RUNNING PrOCESSES.........ccucvriiecieirisce ettt 286
Communicating with EXternal PrOCESSES.........ccvvvrererrieieresicresesesee e 289
Automatically Updating SENSOr COUEccuvuevviveeiieeieeeeeeeere et 292
Sending and Receiving Binary Data with XML-RPC............cccccovvvvirrieiieeceeeere e 292
Working with Files and Archives (TAR and BZIp2)...........ccccoeevvrveeecirene e, 293
SUMMAIY 1.t b bbb bbb es s e s s aeae bbbt ans 296
Chapter 11: Statistics Gathering and Reporting..........couvrereresereresesesesesesssssssessssssasssanans 297
Application Requirements and DESIQNccciveviiricccecise s 297
Using the NUMPY LIDIary ..o 297
INSEANING NUMPY ... 298
NUMPY EXAMPIES ...t 298
Representing Data with matplothiD ..o 309
Installing MatPIOhDc.oveeeeeeee s 309
Understanding the Library StrUCIUFE. ... 310
PIOTEING GraPNS ...t bbb 311
SaVING PIOTS 10 @ File.......cocveveeeceeccccccee et 316
Graphing Statistical DAtA.............cccvvveeiieeiieeieee e 317
Collating Data from the Database............ccccveveviveieiccccee e, 317
Drawing TImESCale GIraphSccccvevevererereeerisse e neees 318
SUMMAIY ottt bbbttt bese e st et et e b e ss et st et et ese s e seatanas 328

xiii

xiv

CONTENTS

Chapter 12: Automatic MySQL Database Performance Tuning..........cueeverereresesesesesesesesss 329
Requirements Specification and DESIgN..........cccvvcuereiriceeriicces e 329
Basic Application REQUIrEMENTS.........cceereicsieiceccee e 330
SYSLEM DESIGN.....cocvevicceesecc ettt 330
Modifying the Plug-in FrameworK..............ccovviiimeeceeesess s 332
Changes to the Host APPlICALION............ccccuriicescce e 332
Modifying the PIUg-in MaNAGETcceueiereiiiissiesisccee et 333
Writing the ProduCer PIUG-iNS.........cccueiiiiiiiiiiccseee e 334
Accessing the MySQL Database from Python Applications............c.ccccvvveerreceiircncnnn. 334
Querying the Configuration Variablesccccereereriicesseee s 339
Querying the Server Status Variablesccccevieevececesece e, 341
Collecting the Host Configuration Data.............ccccoueeerrriceesiiccesseee e 342
Writing the CONSUMET PIUG-INSc.cvoveuereieceecce st 343
Checking the MYSQL VEISIONccevviceeeiiicessiee ettt 344
Checking the Key Buffer Size SENGccovvevveeiveeeeeieececeee e 346
Checking the Slow QUErieS COUNTENcccvueverreiireieieeetsesee e 347
SUMMAIY 1.ttt bbb a bbbt baes 348
Chapter 13: Using Amazon EC2/S3 as a Data Warehouse Solutionccceverererereseseans 349
Specifying the Problem and the SOIULION..........cccveeeirceccceceee e 349
TRE PIODIBM ...t 349
QU SOIUTION....ee ettt 350
DeSigN SPECIFICALIONS........cvevevererererites st 350
The Amazon EC2 and S3 Crash COUISE..........ccceueicerrrecerseee et 351
Authentication and SECUMLYccveeiieiiccecee e 351
The Simple Storage System CONCEPLS.........covevieeeereeeree s 352
The Elastic Computing Cloud CONCEPLSc.cvevevveveereeeeeeeiere et 354
USEI INTEITACES ...ttt 358
Creating @ CuStOM EC2 IMAQEccveverereieeierre ettt bne 359
Reusing EXIStiNg IMAQJESccviviiireececesess ettt 359
Making MOGIfICALIONS..........ccereiriceieieceeseee s 360
BUndling the NEW ANMI ..o 362

CONTENTS

Controlling the EC2 Using the Boto Python MOdUIEc.coviceeericeceeceeeecereeee 364
Setting Up the Configuration Variables ..o eeseeenes 364
Initializing the EC2 Instance Programmaticallyccccocoeueverccniecesseceseeeeinas 365
Transferring the Data............ccccceeeiccc s 369
Destroying the EC2 Instance ProgrammatiCallyccccooeriernieenieensensnenseessieeneenns 369

SUMMANY <.ttt a bbb bbb s s s sn s 372

INOEX 1ucrcscssmsmsmsssssisssis s ——————— 373

XV

About the Author

Rytis Sileika has over twelve years of experience in the system
administration field. Since obtaining his bachelor of science degree in
computer science from Kaunas University of Technology, he’s been
specializing in system integration and deployment automation. His areas of
interest and expertise are UNIX-based operating system management and
automation tool development. Rytis is also a RedHat Certified Engineer. He
lives with his wife and two daughters in London, United Kingdom. His
nonprofessional interests are traveling, hiking, and photography.

Xvi

About the Technical Reviewer

Dr. Patrick Engebreston obtained his doctor of science degree with a
specialization in information assurance from Dakota State University.
He currently serves as an assistant professor of computer and network
security and works as a senior penetration tester for security firm in the
Midwest. His research interests include penetration testing, intrusion
detection, exploitation, malware, and programming. He teaches
courses in security, C programming, and Python. When not hacking or
teaching, Dr. Engebretson spends every waking minute with his wife
Lori and his two beautiful girls Maggie and Molly.

xvii

xviii

Acknowledgments

I'd like to express my gratitude to everyone at Apress involved in the development and production of this
book. First, I want to thank Duncan Parkes, who helped a lot with the initial proposal, set the general
shape and structure of the book, and got the whole project moving forward.

Many thanks go to Michelle Lowman and Dr. Patrick Engebretson for correcting all technical and
logical mistakes as well as providing valuable tips.

I'would also like to thank Jennifer Blackwell and Mary Tobin for keeping the project and my writing
on schedule and gently reminding me about the approaching deadlines.

Last but not least, I'd like to thank the Python development community and Guido van Rossum for
creating such a nice and elegant programming language.

Introduction

The scope of the system administrator role has changed dramatically over the years. The number of
systems supported by a single engineer has also increased. As such, it is impractical to handcraft each
installation, and there is a need to automate as many tasks as possible. The structure of systems varies
from organization to organization, therefore system administrators must be able to create their own
management tools. Historically, the most popular programming languages for these tasks were UNIX
shell and Perl. They served their purpose well, and I doubt they will ever cease to exist. However, the
complexity of current systems requires new tools, and the Python programming language is one of them.

Python is an object oriented programming language suitable for developing large-scale
applications. Its syntax and structure make is very easy to read, so much so that the language is
sometimes referred to as “executable pseudocode.” The Python interpreter allows for interactive
execution, so in some situations, you can use it instead of a standard UNIX shell. Although Python is
primarily an object-oriented language, you can easily adopt it for procedural and functional styles of
programming. Given all that, Python makes a perfect fit as a new language for implementing system
administration applications. There are a large number of Linux system utilities already written in
Python, such as the Yum package manager and Anaconda, the Linux installation program.

Prerequusites for This Book

This book is about using the Python programming language to solve specific system administration
tasks. We will look at the four distinctive system administration areas: network management, web server
and web application management, database system management, and system monitoring. Although I
will explain most of the technologies used in this book in detail, bear in mind that the main goal of this
book is to show you the practical application of the Python libraries to solve rather specific issues.
Therefore, I'm assuming that you are a seasoned system administrator.

As we go along with the examples, you will be asked to install additional packages and libraries. In
most cases, I provide the commands and instructions to perform these tasks on a Fedora system, but
you should be ready to adopt these instructions to the Linux distribution that you are going to use. Most
of the examples work without many modifications on a recent OS X release (10.6.X) too.

I also assume that you have a background in the Python programming language. I will be focusing
on introducing the specific libraries that are used in system administration tasks as well as some lesser
known or less-often-discussed language functionality, such as the generator functions or the class
internal methods, but the basic language syntax is not explained. If you want to refresh your Python
skills I would recommend Beginning Python: From Novice to Professional, Second Edition by Magnus
Lie Hetland (Apress, 2008).

All examples presented in this book assume the Python version 2.6 and will not work correctly with
the latest Python 3 without additional modifications. Most of the examples rely on additional modules
that have not yet been ported to this version of Python.

INTRODUCTION

Note Because of the line length limitations of the printed page, some lines of the code had to be split into two
lines. This is indicated by the backslash character (\) at the end of the split line. When you use the code examples,
you can either leave the structure as it is (i.e., with the wrapped lines), or you can join the two lines together, in
which case you'll have to remove the backslash character from the code.

Structure of This Book

This book contains 13 chapters, and each chapter solves a distinctive problem. Some examples span
multiple chapters, but even then, each chapter deals with a specific aspect of the particular problem.

In addition to the chapters, several other organizational layers span this book. First, I grouped the
chapters by the problem type. Chapters 1 to 4 deal with network management issues; Chapters 5 to 7 talk
about the Apache web server and web application management; Chapters 8 to 11 are dedicated to
monitoring and statistical calculations; and finally, Chapters 12 and 13 focus on database management
issues.

Second, I am maintaining a common pattern in all chapters. I start with the problem statement and
then move on to gather requirements and through the design phase before going into the
implementation section.

Third, each chapter focuses on one or more technologies and the Python libraries that provide the
language interface to the particular technology. Examples of such technologies could be the SOAP
protocol, application plug-in architecture, or cloud computing concepts.

Chapter 1: Reading and Collecting Performance Data Using SNMP

Most network attached devices expose the internal counters via the Simple Network Management
Protocol (SNMP). This chapter explains basic SNMP principles and the data structure. We then look at
the Python libraries that provide the interface to SNMP-enabled devices. We also investigate the Round
Robin database, which is the de facto standard for storing the statistical data. Finally, we’ll look at the
Jinja2 template framework, which allows us to generate simple web pages.

Chapter 2: Managing Devices Using the SOAP API

Complicated tasks, such as managing the device configuration, cannot be easily done by using SNMP,
because the protocol is too simplistic. Therefore, advanced devices, such as the Citrix Netscaler load
balanacers, provide the SOAP API interface to the device management system. In this chapter, we’ll
investigate the SOAP API structure and the libraries that enable the SOAP-based communication from
the Python programming language. We’ll also look at the basic logging functionality using the built-in
libraries.

Chapter 3: Creating a Web Application for IP Address Accountancy

In this chapter, we will build a web application that maintains the list of the assigned IP addresses and
the address ranges. We will learn how to create web application using the Django framework. I'll show
you the way Django application should be structured, how to create and configure the application
settings and the URL structure. We'll also investigate how to deploy the Django application using the
Apache web server.

INTRODUCTION

Chapter 4: Integrating the IP Address Application with DHCP

This chapter expands on the previous chapter, and we will implement the DHCP address range support.
We will also look at some advanced Django programming techniques such as customizing the response
MIME type as well as serving AJAX calls.

Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File

This is another Django application that we are going to develop, but this time, our focus will be the
Django administration interface. While building the Apache configuration management application,
you’ll learn how to customize the default Django administration interface with your own views and
functions.

Chapter 6: Gathering and Presenting Statistical Data from Apache Log Files

In this chapter, our goal is to build an application that parses and analyses the Apache web server log
files. Instead of taking the straightforward but inflexible approach of building a monolithic application,
we’ll look at the design principles of building plug-in based applications. You will learn how to use the
object and class type discovery functions and how to perform a dynamic module loading.

Chapter 7: Performing Complex Searches and Reporting on Application Log Files

This chapter also deals with the log file parsing, but this time I'll show you how to parse complex,
multiline log file entries. We are going to investigate the functionality of the open source log file parser
tool called Exctractor, which you can download from http://exctractor.sourceforge.net/.

Chapter 8: A Web Site Availability Check Script for Nagios

Nagios is one of the most popular open source monitoring systems, because its modular structure allows
users to implement their own check scripts and thus customize the monitoring tool to their needs. In
this chapter, we are going to create two scripts that check the functionality of a web site. We’re going to
investigate how to use the Beautiful Soup HTML parsing library to extract the information from the
HTML web pages.

Chapter 9: Management and Monitoring Subsystem

This chapter starts a three chapter series in which we’ll build a complete monitoring system. The goal of
this chapter is not to replace mature monitoring systems such as Nagios or Zenoss but to show you the
basic principles of the distributed application programming. We’ll look at database design principles
such as data normalization. We're also going to investigate how to implement the communication
mechanisms between network services using the RPC calls.

Chapter 10: Remote Monitoring Agents

This is the second chapter in the series where we’ll implement the remote monitoring agent
components. In this chapter, I also describe how to decouple the application from its configuration
using the ConfigParser module.

xxii

INTRODUCTION

Chapter 11: Statistics Gathering and Reporting

This is the last part of the monitoring series, where I'll show you how to perform basic statistical analysis
on the collected performance data. We're going to use scientific libraries—NumPy to perform the
calculations and matplotlib to create the graphs. You'll learn how to find which performance readings
fall into the comfort zone and how to calculate the boundaries of that zone. We'll also do the basic trend
detection, which provides a good insight for the capacity planning.

Chapter 12: Automatic MySQL Database Performance Tuning

In this chapter, I'll show you how to obtain the MySQL database configuration variables and the internal
status indicators. We’ll build an application that makes a suggestion on how to improve the database
engine performance based on the obtained data.

Chapter 13: Amazon EC2/S3 as a Data Warehouse Solution

This chapter shows you how to utilize the Amazon Elastic Compute Cloud (EC2) and offload the
infrequent computation tasks to it. We're going to build an application that automatically creates a
database server where you can transfer data for further analysis. You can use this example as a basis to
build an on-demand data warehouse solution.

The Example Source Code

The source code of all the examples in this book, along with any applicable sample data, can be
downloaded from the Apress web site at http://apress.com/book/view/1430226056. The source
code stored at this location contains the same code that is described in the book.

Most of the prototypes described in this book are also available as open source projects. You can
find these projects at the author’s web site http://www.sysadminpy.com/.

CHAPTER 1

Reading and Collecting
Performance Data Using SNMP

Most devices that are connected to a network report their status using SNMP (the Simple Network
Management Protocol). This protocol was designed primarily for managing and monitoring network-
attached hardware devices, but some applications also expose their statistical data using this protocol.
In this chapter we will look at how to access this information from your Python applications. We are
going to store the obtained data in an RRD (round robin database), using RRDTool—a widely known
and popular application and library, which is used to store and plot the performance data. Finally we’ll
investigate the Jinja2 template system, which we’ll use to generate simple web pages for our
application.

Application Requirements and Design

The topic of system monitoring is very broad and usually encompasses many different areas. A
complete monitoring system is a rather complex system and often is made up of multiple components
working together. We are not going to develop a complete, self sufficient system here, but we’ll look
into two important areas of a typical monitoring system: information gathering and representation.
In this chapter we’ll implement a system that queries devices using an SNMP protocol and then stores
the data using the RRDTool library, which is also used to generate the graphs for visual data
representation. All this is tied together into simple web pages using the Jinja2 templating library.
We’ll look at each of these components in more detail as we go along through the chapter.

Specifying the Requirements

Before we start designing our application we need to come up with some requirements for our system.
First of all we need to understand the functionality we expect our system to provide. This will help us to
create an effective (and we hope easy-to-implement) system design. In this chapter we are going to
create a system that monitors network-attached devices, such as network switches and routers, using
the SNMP protocol. So the first requirement is that the system needs to be able to query any device
using SNMP.

The information gathered from the devices needs to be stored for future reference and analysis.
Let’s make some assumptions about the use of this information. First, we don’t need to store it
indefinitely. (I'll talk more about permanent information storage in Chapters 9-11). This means that
the information is stored only for a predefined period of time, and once it becomes obsolete it will be
erased. This defines our second requirement: the information needs to be deleted after it’s “expired.”

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

Second, the information needs to be stored so that graphs can be produced. We are not going to use
it for anything else, and therefore the data store should be optimized for the data representation tasks.

Finally, we need to generate the graphs and represent this information on easily accessible web
pages. The information needs to be structured by the device names only. For example, if we are
monitoring several devices for CPU and network interface utilization, this information needs to be
presented on a single page. We don’t need to present this information on multiple time scales; by
default the graphs should show the performance indicators for the last 24 hours.

High-Level Design Specification

Now that we have some ideas about the functionality of our system, let’s create a simple design, which
we’ll use as a guide in the development phase. The basic approach is that each of the requirements we
specified earlier should be covered by one or more design decisions.

The first requirement is that we need to monitor the network-attached devices, and we need to do
so using the SNMP protocol. This means that we have to use appropriate Python library that deals with
the SNMP objects. The SNMP module is not included in the default Python installation, so we’ll have to
use one of the external modules. I recommend using the PySNMP library (available at
http://pysnmp.sourceforge.net/), whichis readily available on most of the popular Linux
distributions.

The perfect candidate for the data store engine is RRDTool (available at http://oss.oetiker.ch/
rrdtool/index.en.html). The Round Robin Database means that the database is structured in such a
way that each “table” has a limited length, and once the limit is reached, the oldest entries are dropped. In
fact they are not dropped; the new ones are simply written into their position.

The RRDTool library provides two distinct functionalities: the database service and the graph-
generation toolkit. There is no native support for RRD databases in Python, but there is an external
library available that provides an interface to the RRDTool library.

Finally, to generate the web page we will use the Jinja2 templating library (available at http://
jinja.pocoo.org/2/), which lets us create sophisticated templates and decouple the design and
development tasks.

We are going to use a simple Windows INI-style configuration file to store the information about
the devices we will be monitoring. This information will include details such as the device address,
SNMP object reference, and access control details.

The application will be split into two parts: the first part is the information-gathering tool that
queries all configured devices and stores the data in the RRDTool database, and the second part is the
report generator, which generates the web site structure along with all required images. Both
components will be instantiated from the standard UNIX scheduler application—cron. These two
scripts will be named snmp-manager.py and snmp-pages.py respectively.

Introduction to SNMP

SNMP (Simple Network Management Protocol) is a UDP-based protocol used mostly for managing
network-attached devices, such as routers, switches, computers, printers, video cameras, and so on.
Some applications also allow access to internal counters via the SNMP protocol.

SNMP not only allows you to read performance statistics from the devices, it can also send control
messages to instruct a device to perform some action—for example, you can restart a router remotely
by using SNMP commands.

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

There are three main components in a system managed by SNMP:
e The management system, which is responsible for managing all devices
* The managed devices, which are all devices managed by the management system

e The SNMP agent, which is an application that runs on each of the managed devices and
interacts with the management system

This relationship is illustrated in Figure 1-1.

The Management
System

SNMP Agent SNMP Agent SNMP Agent

software software software

Manged device 1 Manged device 2 Manged device X

Figure 1-1. The SNMP network components

This approach is rather generic. The protocol defines seven basic commands, of which the most
interesting to us are get, get bulk, and response. As you may have guessed, the former two are the
commands that the management system issues to the agent, and the latter is a response from the agent
software.

How does the management system know what to look for? The protocol does not define a way of
exchanging this information, and therefore the management system has no way to interrogate the
agents to obtain the list of available variables.

The issue is resolved by using a Management Information Base (or MIB). Each device usually has
an associated MIB, which describes the structure of the management data on that system. Such a MIB
would list in hierarchical order all object identifiers (OIDs) that are available on the managed device.
The OID effectively represents a node in the object tree. It contains numerical identifiers of all nodes
leading to the current OID starting from the node at the top of the tree. The node IDs are assigned and
regulated by the IANA (Internet Assigned Numbers Authority). An organization can apply for an OID
node and when assigned is responsible for managing the OID structure below the allocated node.

Figure 1-2 illustrates a portion of the OID tree.

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

ROOT

(come) (C wso) (corT-soE)
v

(oirectory()) (mgmt@) (CExperimental(3)) “(C Private(d))
SA Y
(Cisco (9)) Novell (23))

Interfaces (2)

(ifNumber (1))

sysDescr (1)

sysUpTime (3)

sysObjectlD (2)

iable (2))

ifEntry (1)

(ifndext)) (iesc@) (iflype@®)

Figure 1-2. The SNMP OID tree

Let’s look at some example OIDs. The OID tree node that is assigned to the Cisco organization has
avalue of 1.3.6.1.4.1.9, which means that all proprietary OIDs that are associated with the Cisco
manufactured devices will start with these numbers. Similarly, the Novell devices will have their OIDs
starting with 1.3.6.1.4.1.23.

I deliberately emphasized proprietary OIDs because some properties are expected to be present (if
and where available) on all devices. These are under the 1.3.6.1.2.1.1 (System SNMP Variables) node,
which is defined by RFC1213. For more details on the OID tree and its elements, please visit
http://www.alvestrand.no/objectid/top.html. This web site allows you to browse the OID tree
and contains quite a large collection of the various OIDs.

The System SNMP Variables Node

In most cases the basic information about a device will be available under the System SNMP Variables
OID node subtree. Therefore let’s have a close look at what you can find there.

This OID node contains several additional OID nodes. Table 1-1 provides a description for most of
the sub nodes.

Table 1-1. System SNMP OIDs

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

OID String OID Name

Description

1.3.6.1.2.1.1.1 sysDescr

1.3.6.1.2.1.1.2 sysObjectID

1.3.6.1.2.1.1.3 sysUpTime

1.3.6.1.2.1.1.4 sysContact

1.3.6.1.2.1.1.5 sysName

1.3.6.1.2.1.1.6 syslLocation

1.3.6.1.2.1.1.7 sysServices

1.3.6.1.2.1.1.8 syslastChange

1.3.6.1.2.1.1.9 sysTable

A string containing a short description of the system or device. Usually
contains the hardware type and operating system details.

A string containing the vendor-specific device OID node. For example, if
the organization has been assigned an OID node 1.3.6.1.4.1.8888 and this
specific device hasbeen assigned a.1.1 OID space under the
organization’s space, this field would contain a value of 1.3.6.1.4.1.8888.1.1.

A number representing the time in hundreds of a second from the time
when the system was initialized.

An arbitrary string containing information about the contact person
who is responsible for this system.

A name that has been assigned to the system. Usually this field
contains a fully qualified domain name.

A string describing the physical location of the system.

A number that indicates which services are offered by this system. The
number is a bitmap representation of all OSI protocols, with the lowest
bit representing the first OSI layer. For example, a switching device
(operating on layer 2) would have this number set to 22 = 4. This field is
rarely used now.

A number containing the value of sysUpTime at the time of a change to
any of the system SNMP objects.

A node containing multiple sysEntry elements. Each element
represents a distinct capability and the corresponding OID node value.

The Interfaces SNMP Variables Node

Similarly, the basic interface statistics can be obtained from the Interfaces SNMP Variables OID node
subtree. The OID for the interfaces variables is 1.3.6.1.2.1.2 and contains two subnodes:

* An OID containing the total number of network interfaces. The OID value for this entry is
1.3.6.1.2.1.2.1; and it is usually referenced as ifNumber. There are no subnodes available

under this OID.

* An OID node that contains all interface entries. Its OID is 1.3.6.1.2.1.2.2 and it is usually
referenced as ifTable. This node contains one or more entry nodes. An entry node
(1.3.6.1.2.1.2.2.1, also known as ifEntry) contains the detailed information about that
particular interface. The number of entries in the list is defined by the 1fNumber node value.

CHAPTER 1

READING AND COLLECTING PERFORMANCE DATA USING SNMP

You can find detailed information about all ifEntry subnodes in Table 1-2.

Table 1-2. Interface entry SNMP OIDs

OID String OID Name Description

1.3.6.1.2.1.2.2.1.1 ifIndex A unique sequence number assigned to the interface.

1.3.6.1.2.1.2.2.1.2 ifDescr A string containing the interface name and other available
information, such as the hardware manufacturer’s name.

1.3.6.1.21.2.213 ifType A number representing the interface type, depending on the
interface’s physical link and protocol.

1.3.6.1.2.1.2.2.14 ifMtu The largest network datagram that this interface can
transmit.

1.3.6.1.21.2.2.1.5 ifSpeed The estimated current bandwidth of the interface. If the
current bandwidth cannot be calculated, this number should
contain the maximum possible bandwidth for the interface.

1.3.6.1.2.1.2.2.1.6 ifPhysAddress The physical address of the interface, usually a MAC address
on Ethernet interfaces.

1.3.6.1.2.1.2.2.1.7 ifAdminStatus This OID allows setting the new state of the interface. Usually
limited to the following values: 1 (Up), 2 (Down), 3 (Testing).

1.3.6.1.21.2.2.1.8 ifOperStatus The current state of the interface. Usually limited to the
following values: 1 (Up), 2 (Down), 3 (Testing).

1.3.6.1.2.1.2.2.1.9 iflLastChange The value containing the system uptime (sysUpTime)
reading when this interface entered its current state. May
be set to zero if the interface entered this state before the
last system reinitialization.

1.3.6.1.2.1.2.2.1.10 ifInOctets The total number of bytes (octets) received on the interface.

1.3.6.1.2.1.2.2.1.11 ifInUcastPkts The number of unicast packets forwarded to the device’s
network stack.

1.3.6.1.2.1.2.2.1.12 ifInNUcastPkts The number of non-unicast packets delivered to the device’s
network stack. Non-unicast packets are usually either
broadcast or multicast packets.

1.3.6.1.2.1.2.2.1.13 ifInDiscards The number of dropped packets. This does not indicate a

packet error, but may indicate that the receive buffer was too
small to accept the packets.

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

OID String OID Name Description

1.3.6.1.2.1.2.2.1.14 ifInErrors The number of received invalid packets.

1.3.6.1.2.1.2.2.1.15 ifInUnknownProtos The number of packets that were dropped because the
protocol is not supported on the device interface.

1.3.6.1.2.1.2.2.1.16 ifOutOctets The number of bytes (octets) transmitted out of the
interface.
1.3.6.1.2.1.2.2.1.17 ifOutUcastPkts The number of unicast packets received from the device’s

network stack. This number also includes the packets that
were discarded or not sent.

1.3.6.1.2.1.2.2.1.18 ifNUcastPkts The number of non-unicast - packets received from the
device’s network stack. This number also includes the
packets that were discarded or not sent.

1.3.6.1.2.1.2.2.1.19 ifOutDiscards The number of valid packets that were discarded. It’s not an
error but may indicate that the send buffer is too small to
accept all packets.

1.3.6.1.2.1.2.2.1.20 ifOutErrors The number of outgoing packets that couldn’t be
transmitted because of the errors.

1.3.6.1.2.1.2.2.1.21 ifOutQLen The length of the outbound packet queue.

1.3.6.1.2.1.2.2.1.22 ifSpecific Usually contains a reference to the vendor-specific OID

describing this interface. If such information is not available
the value is set to an OID 0.0, which is syntactically valid,
but is not pointing to anything.

Authentication in SNMP

Authentication in earlier SNMP implementations is somewhat primitive and is prone to attacks. An
SNMP agent defines two community strings—one for read-only access and the other for read/write
access. When the management system connects to the agent, it must authenticate with one of those two
strings. The agent accepts commands only from a management system that has authenticated with valid
community strings.

Querying SNMP from the Command Line

Before we start writing our application, let’s quickly look at how to query SNMP from the command line.
This is particularly useful if you want to check whether the information returned by the SNMP agent is
correctly accepted by your application.

The command-line tools are provided by the Net-SNMP-Utils package, which is available for most
Linux distributions. This package includes the tools to query and set SNMP objects. Consult your Linux
distribution documentation for the details on installing this package.

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

The command-line tools are provided by the Net-SNMP-Utils package, which is available for most
Linux distributions. This package includes the tools to query and set SNMP objects. Consult your Linux
distribution documentation for the details on installing this package.

The most useful command from this package is snmpwalk, which takes an OID node as an
argument and tries to discover all subnode OIDs. This command uses the SNMP operation getnext,
which returns the next node in the tree and effectively allows you to traverse the whole subtree from
the indicated node. If no OID has been specified, snmpwalk will use the default SNMP system OID
(1.3.6.1.2.1) as the starting point. Listing 1-1 demonstrates the snmpwalk command issued against a
laptop running Fedora Linux.

Listing 1-1. An example of the snmpwalk command

$ snmpwalk -c public -On 192.168.1.68
.1.3.6.1.2.1.1.1.0 = STRING: Linux fedolin.example.com 2.6.32.11-99.fc12.1686 #1+~
SMP Mon Apr 5 16:32:08 EDT 2010 i686

.1.3.6.1.2.1.1.2.0 = 0ID: .1.3.6.1.4.1.8072.3.2.10

.1.3.6.1.2.1.1.3.0 = Timeticks: (110723) 0:18:27.23

.1.3.6.1.2.1.1.4.0 = STRING: Administrator (admin@example.com)
.1.3.6.1.2.1.1.5.0 = STRING: fedolin.example.com

.1.3.6.1.2.1.1.6.0 = STRING: MylLocation, MyOrganization, MyStreet, MyCity, MyCountry
.1.3.6.1.2.1.1.8.0 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.2.1 = 0ID: .1.3.6.1.6.3.10.3.1.1

.1.3.6.1.2.1.1.9.1.2.2 = 0ID: .1.3.6.1.6.3.11.3.1.1

.1.3.6.1.2.1.1.9.1.2.3 = 0ID: .1.3.6.1.6.3.15.2.1.1

.1.3.6.1.2.1.1.9.1.2.4 = 0ID: .1.3.6.1.6.3.1

.1.3.6.1.2.1.1.9.1.2.5 = 0ID: .1.3.6.1.2.1.49

.1.3.6.1.2.1.1.9.1.2.6 = 0ID: .1.3.6.1.2.1.4

.1.3.6.1.2.1.1.9.1.2.7 = 0ID: .1.3.6.1.2.1.50

.1.3.6.1.2.1.1.9.1.2.8 = 0ID: .1.3.6.1.6.3.16.2.2.1

.1.3.6.1.2.1.1.9.1.3.1 = STRING: The SNMP Management Architecture MIB.
.1.3.6.1.2.1.1.9.1.3.2 = STRING: The MIB for Message Processing and Dispatching.
.1.3.6.1.2.1.1.9.1.3.3 = STRING: The management information definitions for the«
SNMP User-based Security Model.

.1.3.6.1.2.1.1.9.1.3.4 = STRING: The MIB module for SNMPv2 entities
.1.3.6.1.2.1.1.9.1.3.5 = STRING: The MIB module for managing TCP implementations
.1.3.6.1.2.1.1.9.1.3.6 = STRING: The MIB module for managing IP and ICMP«
implementations

.1.3.6.1.2.1.1.9.1.3.7 = STRING: The MIB module for managing UDP implementations
.1.3.6.1.2.1.1.9.1.3.8 = STRING: View-based Access Control Model for SNMP.
.1.3.6.1.2.1.1.9.1.4.1 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.2 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.3 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.4 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.5 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.6 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.7 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.1.9.1.4.8 = Timeticks: (3) 0:00:00.03

.1.3.6.1.2.1.2.1.0 = INTEGER: 5

T N
DLW LWL LW LWL LWL LWL LWL L LWL L L LD L L bhhwnw
L - - e N N I - - N N - - N e N N N - T - - N - NP N NpC)
T
NN NNNNNNNNNONNNNONNNNRONN NN N NN NN NN NN NN NN RN NN NN
QPG QPN QN QN N QN QT 0 N
NN NN NNNMNNNONNNONNNNONNNONNNON MO NN N OO DN NN NN DD RN
NN NN NNNNNNONNNRONNN NN NN NN NN NN NN NN NN DN DN
T
B OO WOWOW®NMPNPPPAAA A AP NPNA NN NN NEDERREERRWODWOWNNNNN R B B BB

LHrbnirbirborbrborbrbvepbirbourbbrborbrbvpbrbouerbarboe

INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:

STRING:
STRING:
STRING:
STRING:
STRING:

INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
Gauge32:
Gauge32:
Gauge32:
Gauge32:
Gauge32:

STRING:
STRING:
STRING:
STRING:
STRING:

INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGER:
Timeticks:
Timeticks:
Timeticks:
Timeticks:
Timeticks:

Counter32:

CHAPTER 1 READING AND COLLECTING PERFORMANCE DATA USING SNMP

B w N R

5

lo

etho

wlani

pano

virbro
softwareLoopback(24)
ethernetCsmacd(6)
ethernetCsmacd(6)
ethernetCsmacd(6)
ethernetCsmacd(6)
16436
1500
1500
1500
1500
10000000
0
10000000
10000000
10000000

0:d:56:7d:68:b0
0:90:4b:64:7b:4d
4e:e:b8:9:81:3b
d6:f9:7c:2c:17:28

up(1)

up(1)

up(1)
n(2)
n(2)

do
do
do (2)
:00:00.00
:00:00.00
:00:00.00
:00:00.00
:00:00.00
275

o O O O O

W
up(1)
up(1)
W

up(1)
W

up(1)
(0)
(0)
(0)
(0)
(0)
9

n
1
0
0
0
0
0
8

= Counter32: 0

READING AND COLLECTING PERFORMANCE DATA USING SNMP

CHAPTER 1

11649462

0
0

.1.3.6.1.2.1.2.2.1.10.3 = Counter32:

.1.3.6.1.2.1.2.2.1.10.4

Counter32:

.1.3.6.1.2.1.2.2.1.10.5 = Counter32:
.1.3.6.1.2.1.2.2.1.11.1 = Counter32:
.1.3.6.1.2.1.2.2.1.11.2 = Counter32:

.1.3.6.1.2.1.2.2.1.11.3

1092
0

49636

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Counter32:

.1.3.6.1.2.1.2.2.1.11.4 = Counter32:
.1.3.6.1.2.1.2.2.1.11.5 = Counter32:

.1.3.6.1.2.1.2.2.1.12.1

Counter32:

.1.3.6.1.2.1.2.2.1.12.2 = Counter32:
.1.3.6.1.2.1.2.2.1.12.3 = Counter32:
.1.3.6.1.2.1.2.2.1.12.4 = Counter32:

.1.3.6.1.2.1.2.2.1.12.5

Counter32:

.1.3.6.1.2.1.2.2.1.13.1 = Counter32:
.1.3.6.1.2.1.2.2.1.13.2 = Counter32:

.1.3.6.1.2.1.2.2.1.13.3

Counter32:

Counter32:

.1.3.6.1.2.1.2.2.1.13.4

.1.3.6.1.2.1.2.2.1.13.5 = Counter32:
.1.3.6.1.2.1.2.2.1.14.1 = Counter32:

.1.3.6.1.2.1.2.2.1.14.2

Counter32:

.1.3.6.1.2.1.2.2.1.14.3 = Counter32:
.1.3.6.1.2.1.2.2.1.14.4 = Counter32:
.1.3.6.1.2.1.2.2.1.14.5 = Counter32:

.1.3.6.1.2.1.2.2.1.15.1

Counter32:

.1.3.6.1.2.1.2.2.1.15.2 = Counter32:
.1.3.6.1.2.1.2.2.1.15.3 = Counter32:

.1.3.6.1.2.1.2.2.1.15.4
.1.3.6.1.2.1.2.2.1.15.5

Counter32:

Counter32:

89275
0

Counter32:

.1.3.6.1.2.1.2.2.1.16.1

.1.3.6.1.2.1.2.2.1.16.2 = Counter32:

.1.3.6.1.2.1.2.2.1.16.3

922277

Counter32:
0

Counter32:

.1.3.6.1.2.1.2.2.1.16.4

3648
1092
0

.1.3.6.1.2.1.2.2.1.16.5 = Counter32:

.1.3.6.1.2.1.2.2.1.17.1

.1.3.6.1.2.1.2.2.1.17.2
.1.3.6.1.2.1.2.2.1.17.3

Counter32:

Counter32:

7540
0

Counter32:

.1.3.6.1.2.1.2.2.1.17.4 = Counter32:

.1.3.6.1.2.1.2.2.1.17.5

17
0
0
0
0
0
0
0
0
0

Counter32:

Counter32:

.1.3.6.1.2.1.2.2.1.18.1

.1.3.6.1.2.1.2.2.1.18.2 = Counter32:
.1.3.6.1.2.1.2.2.1.18.3 = Counter32:

.1.3.6.1.2.1.2.2.1.18.4
.1.3.6.1.2.1.2.2.1.18.5

Counter32:

Counter32:

.1.3.6.1.2.1.2.2.1.19.1 = Counter32:

.1.3.6.1.2.1.2.2.1.19.2
.1.3.6.1.2.1.2.2.1.19.3

Counter32:

Counter32:

Counter32:

.1.3.6.1.2.1.2.2.1.19.4

10

