
Beginning C
From Novice to Professional,
Fourtli Edition

^h. ,^. m-

Ivor Norton

Apress'

Beginning C: From î iovice to Professional, Fourth Edition

Copyright O 2006 by Ivor Norton

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-59059-735-4

ISBN-10 (pbk): 1-59059-735-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie
Technical Reviewer: Stan Lippman
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole LeClerc
Copy Editor: Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Susan Glinert
Proofreader: Lori Bring
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mailorders-ny@springer-sbm.com, or
visit http: //www. springeronline. com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail inf o@apress. com, or visit http: //www. apress. com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any Uability to
any person or entity with respect to any loss or damage caused or alleged to be caused directiy or indirectly
by the information contained in this work.

The source code for this book is available to readers at http: //www. apress. com in the Source Code/Download
section.

This book is for the latest member of the family, Henry James Gilbey, who joined
us on July 14,2006. He hasn't shown much interest in programming so far,

but he did smile when I asked him about it so I expect he will

Contents at a Glance

About the Author xix

Acknowledgments xxi

Introduction xxiii

'CHAPTER 1 Programming in C i

CHAPTER 2 First Steps in Programming 21

CHAPTER 3 iVIalting Decisions 8I

CHAPTER 4 Loops 129

CHAPTER 5 Arrays 175

CHAPTER 6 Applications with Strings and Text 203

CHAPTER 7 Pointers 241

CHAPTER 8 Structuring Your Programs 295

CHAPTER 9 IVIore on Functions 329

CHAPTER 10 Essential Input and Output Operations 373

CHAPTER 11 Structuring Data 409

CHAPTER 12 Working with Flies 467

CHAPTER 13 Supporting Facilities 529

APPENDIX A Computer Arithmetic 557

APPENDIX B ASCII Character Code Definitions 565

APPENDIX G Reserved Words in C 571

APPENDIX D Input and Output Format Specifications 573

INDEX 579

Contents

About the Author xix
Acknowledgments xxi
Introduction xxiii

aCHAPTER 1 Programming in C 1

Creating C Programs 1
Editing 1
Compiling 2
Linking 3
Executing 3

Creating Your First Program 4
Editing Your First Program 5
Dealing with Errors 6
Dissecting a Simple Program 7

Comments 7
Preprocessing Directives 8
Defining the mainQ Function 9
Keywords 9
The Body of a Function 10
Outputting Information 10
Arguments 11
Control Characters ii

Developing Programs in C 13
Understanding the Problem 13
Detailed Design 14
Implementation 14
Testing 14

Functions and Modular Programming 14
Common Mistakes 18
Points to Remember 18
Summary 19
Exercises 20

vii

viii KONTENTS

KHAPTER 2 First Steps in Programming 21

Memory in Your Computer 21

What Is a Variable? 23
Variables That Store Numbers 24

Integer Variables 24
Naming Variables 27
Using Variables 29
Initializing Variables 30
Arithmetic Statements 31

Variables and Memory 37
Integer Variable Types 38

Unsigned Integer Types 38
Using Integer Types 39
Specifying Integer Constants 40

Floating-Point Values 41
Floating-Point Variables 42
Division Using Floating-Point Values 43

Controlling the Number of Decimal Places 44
Controlling the Output Field Width 44

More Complicated Expressions 45
Defining Constants 48

Knowing Your Limitations 50
Introducing the sizeof Operator 52

Choosing the Correct Type for the Job 54
Explicit Type Conversion 57

Automatic Conversion 57
Rules for Implicit Conversions 57
Implicit Conversions in Assignment Statements 58

More Numeric Data Types 59
The Character Type 59
Character Input and Character Output 60
The Wide Character Type 63
Enumerations 64
Variables to Store Boolean Values 66
The Complex Number Types 67

HCONTENTS

The op= Form of Assignment 70

Mathematical Functions 71
Designing a Program 72

The Problem 72
The Analysis 73
The Solution 75

Summary 79
Exercises 80

KHAPTER 3 Making Decisions 81

The Decision-Making Process 81
Arithmetic Comparisons 82
Expressions Involving Relational Operators 82
The Basic if Statement 82
Extending the if Statement: if-else 86
Using Blocks of Code in if Statements 88
Nested if Statements 89
More Relational Operators 92
Logical Operators 96
The Conditional Operator 99
Operator Precedence: Who Goes First? 102

Multiple-Choice Questions 106
Using else-if Statements for Multiple Choices 106
The switch Statement 107
The goto Statement 115

Bitwise Operators 116
The op= Use of Bitwise Operators 119
Using Bitwise Operators 119

Designing a Program 122
The Problem 122
The Analysis 122
The Solution 123

Summary 126
Exercises 126

•CONTENTS

•IHAPTER 4 Loops 129

How Loops Work 129
Introducing the Increment and Decrement Operators 130

The for Loop 131
General Syntax of the for Loop 135

More on the Increment and Decrement Operators 136

The Increment Operator 136

The Prefix and Postfix Forms of the Increment Operator 137

The Decrement Operator 137

The for Loop Revisited 138
Modifying the for Loop Variable 140
A for Loop with No Parameters 141

The break Statement in a Loop 141
Limiting Input Using a for Loop 144
Generating Pseudo-Random Integers 146
More for Loop Control Options 148

Floating-Point Loop Control Variables 149

The while Loop 149
Nested Loops 153
Nested Loops and the goto Statement 156
The do-while Loop 157
The continue Statement I60
Designing a Program I60

The Problem I60
The Analysis I60
The Solution 162

Summary 172
Exercises 173

•CHAPTERS Arrays 175

An Introduction to Arrays 175
Programming Without Arrays 175
What Is an Array? 177
Using Arrays 178

A Reminder About Memory I8I

KONTENTS

Arrays and Addresses 184
Initializing an Array 186
Finding the Size of an Array 186
Multidimensional Arrays 187
Initializing Multidimensional Arrays 189
Designing a Program 194

The Problem 194
The Analysis 194
The Solution 195

Summary 202
Exercises 202

CHAPTER 6 Applications with Strings and Text 203

What Is a String? 203
String- and Text-Handling Methods 205
Operations with Strings 208

Appending a String 208
Arrays of Strings 210

String Library Functions 212
Copying Strings Using a Library Function 212
Determining String Length Using a Library Function 213
Joining Strings Using a Library Function 214
Comparing Strings 215
Searching a String 218

Analyzing and Transforming Strings 221
Converting Characters 224
Converting Strings to Numerical Values 227

Working with Wide Character Strings 227
Operations on Wide Character Strings 228
Testing and Converting Wide Characters 229

Designing a Program 231
The Problem 231
The Analysis 231
The Solution 231

Summary 238
Exercises 239

xii •CONTENTS

KHAPTER7 Pointers 241

A First Look at Pointers 241
Declaring Pointers 242
Accessing a Value Through a Pointer 243
Using Pointers 246
Pointers to Constants 250
Constant Pointers 251
Naming Pointers 251

Arrays and Pointers 251
Multidimensional Arrays 255

Multidimensional Arrays and Pointers 259
Accessing Array Elements 260

Using Memory As You Go 263
Dynamic Memory Allocation: The mallocQ Function 263
Memory Allocation with the callocQ Function 268
Releasing Dynamically Allocated Memory 268
Reallocating Memory 270

Handling Strings Using Pointers 271
String Input with More Control 272
Using Arrays of Pointers 273

Designing a Program 283
The Problem 283
The Analysis 284
The Solution 284

Summary 294
Exercises 294

RHAPTER 8 Structuring Your Programs 295

Program Structure 295
Variable Scope and Lifetime 296
Variable Scope and Functions 299

Functions 299
Defining a Function 300
The return Statement 304

•CONTENTS xiii

The Pass-By-Value Mechanism 307
Function Declarations 309
Pointers As Arguments and Return Values 310

const Parameters 313
Returning Pointer Values from a Function 322
Incrementing Pointers in a Function 326

Summary 326
Exercises 327

•CHAPTER 9 More on Functions 329

Pointers to Functions 329
Declaring a Pointer to a Function 329
Calling a Function Through a Function Pointer 330
Arrays of Pointers to Functions 333
Pointers to Functions As Arguments 335

Variables in Functions 338
Static Variables: Keeping Track Within a Function 338
Sharing Variables Between Functions 340

Functions That Call Themselves: Recursion 343
Functions with a Variable Number of Arguments 345

Copying a vaj ist 348
Basic Rules for Variable-Length Argument Lists 348

The mainO Function 349
Ending a Program 350
Libraries of Functions: Header Files 351
Enhancing Performance 352

Declaring Functions inline 352
Using the restrict Keyword 353

Designing a Program 353
The Problem 353
The Analysis 354
The Solution 356

Summary 371
Exercises 372

xiv KONTENTS

RHAPTER10 Essential Input and Output Operations 373

Input and Output Streams 373
Standard Streams 374
Inputfrom the Keyboard 375

Formatted Keyboard Input 376
Input Format Control Strings 376
Characters in the Input Format String 382
Variations on Floating-Point Input 383
Reading Hexadecimal and Octal Values 384
Reading Characters Using scanfQ 386
Pitfalls with scanfQ 388
String Input from the Keyboard 388
Unformatted Input from the Keyboard 389

Outputto the Screen 394
Formatted Output to the Screen Using printfO 394
Escape Sequences 396
Integer Output 397
Outputting Floating-Point Values 400
Character Output 401

Other Output Functions 403
Unformatted Output to the Screen 404
Formatted Output to an Array 404
Formatted Input from an Array 405

Sending Output to the Printer 405
Summary 406
Exercises 406

KHAPTER11 Structuring Data 409

Data Structures: Using struct 409
Defining Structure Types and Structure Variables 411
Accessing Structure Members 411
Unnamed Structures 414
Arrays of Structures 414
Structures in Expressions 417
Pointers to Structures 417
Dynamic Memory Allocation for Structures 418

• C O N T E N T S XV

More on Structure Members 420
Structures As Members of a Structure 420
Declaring a Structure Within a Structure 421
Pointers to Structures As Structure Members 422
Doubly Linked Lists 426
Bit-Fields in a Structure 429

Structures and Functions 430
Structures As Arguments to Functions 430
Pointers to Structures As Function Arguments 431
A Structure As a Function Return Value 432
An Exercise in Program Modification 436
Binary Trees 439

Sharing Memory 447
Unions 448
Pointers to Unions 450
Initializing Unions 450
Structures As Union Members 450

Defining Your Own Data Types 451
Structures and the typedef Facility 452
Simplifying Code Using typedef 453

Designing a Program 454
The Problem 454
The Analysis 454
The Solution 454

Summary 464
Exercises 465

•CHAPTER 12 Working with Files 467

The Concept of a File 467
Positions in a File 468
File Streams 468

Accessing Files 468
Opening a File 469
Renaming a File 471
Closing a File 472
Deleting a File 472

xvi CONTENTS

Writing to a Text File 473
Reading from a Text File 474
Writing Strings to a Text File 476
Reading Strings from a Text File 477
Formatted File Input and Output 480

Formatted Output to a File 481
Formatted Input from a File 481

Dealing with Errors 483
Further Text File Operation Modes 484
Binary File Input and Output 485

Specifying Binary Mode 486
Writing a Binary File 486
Reading a Binary File 487

Moving Around in a File 495
File Positioning Operations 495
Finding Out Where You Are 496
Setting a Position in a File 496

Using Temporary Work Files 502
Creating a Temporary Work File 502
Creating a Unique File Name 502

Updating Binary Files 503
Changing the File Contents 508
Reading a Record from the Keyboard 509
Writing a Record to a File 5io
Reading a Record from a File 511
Writing a File 512
Listing the File Contents 513
Updating the Existing File Contents 514

File Open Modes Summary 521
Designing a Program 521

The Problem 522
The Analysis 522
The Solution 522

Summary 527
Exercises 527

•CONTENTS xvii

CHAPTER 13 Supporting Facilities 529

Preprocessing 529
Including Header Files in Your Programs 530
External Variables and Functions 530
Substitutions in Your Program Source Code 531
Macro Substitutions 532
Macros That Look Like Functions 532
Preprocessor Directives on Multiple Lines 534
Strings As Macro Arguments 534
Joining Two Results of a Macro Expansion 535

Logical Preprocessor Directives 536
Conditional Compilation 536
Directives Testing for Specific Values 537
Multiple-Choice Selections 537
Standard Preprocessing Macros 538

Debugging Methods 538
Integrated Debuggers 539
The Preprocessor in Debugging 539
Using the assertO Macro 543

Additional Library Functions 545
The Date and Time Function Library 545
Getting the Date 549

Summary 555
Exercises 555

APPENDIX A Computer Arithmetic 557

Binary Numbers 557
Hexadecimal Numbers 558
Negative Binary Numbers 560
Big-Endian and Little-Endian Systems 561
Floating-Point Numbers 562

APPENDIX B ASCII Character Code Definitions 565

APPENDIX C Reserved Words In C 571

xviii CONTENTS

•APPENDIX D Input and Output Format Specifications 573

Output Format Specifications 573
Input Format Specifications 576

• N D E X 579

About the Author

•VOR NORTON started out as a mathematician, but after graduating he was lured into messing around
with computers by a well-known manufacturer. He has spent many happy years programming occa­
sionally useftil applications in a variety of languages as well as teaching scientists and engineers to do
likewise. He has extensive experience in applying computers to problems in engineering design
and manufacturing operations. He is the author of a number of tutorial books on programming in C,
C++, and Java. When not writing programming books or providing advice to others, he leads a life
of leisure.

XIX

Acknowledgments

I 'd like to thank Gary Cornell for encouraging me to produce this new updated edition of Beginning C:
From Novice to Professional. I'm particularly grateful to Stan Lippman for taking the time to cast his
critical eye over the entire draft text; he did not pull any punches in his extensive review comments
and the book is surely better as a result. My thanks to all the people at Apress, who have done their
usual outstandingly professional job of converting my initial text with all its imperfections into this
finished product. Any imperfections that remain are undoubtedly mine.

My sincere thanks to those readers of previous editions of this book who took the trouble to
point out my mistakes and identify areas that could be better explained. I also greatly appreciate all
those who wrote or e-mailed just to say how much they enjoyed the book or how it helped them get
started in programming.

Last and certainly not least I'd like to thank my wife, Eve, who stiU provides limitless love, support,
and encouragement for whatever I choose to do, and always understands when I can't quite make it
to dinner on time.

xxi

Introduction

We lelcome to Beginning C: From Novice to Professional, Fourth Edition. With this book you can
become a competent C programmer. In many ways, C is an ideal language with which to learn
programming. C is a very compact language, so there isn't a lot of syntax to learn before you can write
real applications. In spite of its conciseness and ease, it's also an extremely powerful language that's
still widely used by professionals. The power of C is such that it is used for programming at all levels,
from device drivers and operating system components to large-scale applications. C compilers are
available for virtually every kind of computer, so when you've learned C, you'll be equipped to
program in just about any context. Finally, once you know C, you have an excellent base from which
you can build an understanding of the object-oriented C++.

My objective in this book is to minimize what I think are the three main hurdles the aspiring
programmer must face: coming to grips with the jargon that pervades every programming language,
understanding how to use the language elements (as opposed to merely knowing what they are), and
appreciating how the language is applied in a practical context.

Jargon is an invaluable and virtually indispensable means of communication for the expert
professional as well as the competent amateur, so it can't be avoided. My approach is to ensure that
you understand the jargon and get comfortable using it in context. In this way, you'll be able to more
effectively use the documentation that comes along with most programming products, and also feel
comfortable reading and learning from the literature that surrounds most programming languages.

Comprehending the syntax and effects of the language elements is obviously an essential pgirt of
learning a language, but appreciating how the language features work and how they are used is equally
important. Rather than just using code fragments, I always provide you with practical working exam­
ples that show the relationship of each language feature to specific problems. These examples can
then provide a basis for you to experiment and see the effects of changing the code in various ways.

Your understanding of programming in context needs to go beyond the mechanics of applying
individual language elements. To help you gain this understanding, I conclude most chapters with a
more complex program that applies what you've learned in the chapter. These programs will help
you gain the competence and confidence to develop your own applications, and provide you with
insight into how you can apply language elements in combination and on a larger scale. Most impor­
tant, they'll give you an idea of what's involved in designing real programs and managing real code.

It's important to realize a few things that are true for learning any programming language. First,
there is quite a lot to learn, but this means you'll gain a greater sense of satisfaction when you've
mastered it. Second, it's great fun, so you really will enjoy it. Third, you can only learn programming
by doing it, and this book helps you along the way. Finally, it's much easier than you think, so you
positively can do it.

How to Use This Book
Because I believe in the hands-on approach, you'll write your first programs almost immediately.
Every chapter has several programs that put a theory into practice, and these examples are key to the
book. I advise you to type in and run all the examples that appear in the text because the very act of
typing in programs is a tremendous aid to remembering the language elements. You should also
attempt all the exercises that appear at the end of each chapter. When you get a program to work for

xxiii

xxiv UNTRODUCTION

the first time—particularly when you're trying to solve your own problems—^you'll find that the great
sense of accomplishment and progress make it all worthwhile.

We will start off at a gentle pace, but we'll gain momentum as we get further into the subject.
Each chapter will cover quite a lot of ground, so take your time and make sure you understand every­
thing before moving on. Experimenting with the code and trying out your own ideas is an important
part of the learning process. Try modifying the programs and see what else you can make them do—
that's when it gets really interesting. And don't be afiraid to try things out—if you don't understand
how something works, just type in a few variations and see what happens. A good approach is to read
each chapter through, get an idea of its scope, and then go back and work through all the examples.

You might find some of the end-of-chapter programs quite difficult. Don't worry if it's not all
completely clear on the first try. There are bound to be bits that you find difficult to understand at
first, because they often apply what you've learned to rather complicated problems. And if you really
get stuck, you can skip the end-of-chapter programs, move on to the next chapter, and come back to
them later. You can even go through the entire book without worrying about them. The point of
these programs is that they're a useful resource for you—even after you've finished the book.

Who This Book Is For
Beginning C: From Novice to Professional, Fourth Edition is designed to teach you how to write useful
programs as quickly and easily as possible. This is the tutorial for you if

• You're a newcomer to programming but you want to plunge straight into the C language and
learn about programming and writing C programs right from the start.

• You've done a little bit of programming before, so you understand the concepts behind it—
maybe you've used BASIC or PASCAL. Nowyou're keen to learn C and develop your programming
skills further.

This book doesn't assume any previous programming knowledge on your part, but it does move
quickly from the basics to the real meat of the subject. By the end of Beginning C, you'll have a thorough
grounding in programming the C language.

What You Need to Use This Boole
To use this book, you'll need a computer with a C compiler and library installed so that you can
execute the examples, and a program text editor for preparing your source code files. The compiler
you use should provide good support for the International Standard for the C language, ISO/IEC
9899. You'll also need an editor for creating and modifying your code. You can use any plain text
editor such as Notepad or vi to create your source program files. However, you'll get along better if
your editor is designed for editing C code.

To get the most out of this book you need the willingness to learn, the desire to succeed, and the
determination to continue when things are unclear and you can't see the way ahead. Almost everyone
gets a little lost somewhere along the way when learning programming for the first time. When you
find you are struggling to grasp some aspect of C, just keep at it—the fog will surely disperse and
you'll wonder why you didn't understand the topic in the first place. You might believe that doing all
this is going to be difficult, but I think you'll be surprised by how much you can achieve in a relatively
short time. I'll help you to start experimenting on your own and become a successful programmer.

• NTRODUCTION

Conventions Used
I use a number of different styles of text and layout in the book to help differentiate between the
different kinds of information. For the most part, their meanings will be obvious. Program code will
appear like this:

in t main(void)

{
printf("\nBeginning C");
return 0;

}

When a code fragment is a modified version of a previous instance, I show the lines that have
changed in bold type like this:

in t main(void)

{
printf("\nBeginning C by Ivor Horton");
return 0;

}

When code appears in the text, it has a different typestyle that looks like this: double.
I'll use different types of "brackets" in the program code. They aren't interchangeable, and their

differences are very important. I'll refer to the symbols () as parentheses, the symbols {} as braces,
and the symbols [] as square brackets.

Important new words in the text are shown in bold type.

Code from the Book
All the code from the book and solutions to the exercises are available for download from the Apress
web site at http: //www.apress. com.

C H A P T E R 1

Programming in C

W is a powerful and compact computer language that allows you to write programs that specify
exactly what you want your computer to do. You're in charge: you create a program, which is just a
set of instructions, and your computer will follow them.

Programming in C isn't difficult, as you're about to find out. I'm going to teach you all the
fundamentals of C programming in an enjoyable and easy-to-understand way, and by the end of
this chapter you'll have written your first few C programs. It's as easy as that!

In this chapter you'll learn the following:

• How to create C programs

• How C programs are organized

• How to write your own program to display text on the screen

Creating C Programs
There are four fundamental stages, or processes, in the creation of any C program:

• Editing

• Compiling

• Linking

• Executing

You'll soon know all these processes like the back of your hand (you'll be doing them so easily
and so often), but first let's consider what each process is and how it contributes to the creation of a
C program.

Editing
This is the process of creating and modifying C source code—the name given to the program instruc­
tions you write. Some C compilers come with a specific editor that can provide a lot of assistance
in managing your programs. In fact, an editor often provides a complete environment for writing,
managing, developing, and testing your programs. This is sometimes called an integrated development
environment, or IDE.

CHAPTER 1 ;. PROGRAMMING IN C

You can also use other editors to create your source files, but they must store the code as plain
text without any extra formatting data embedded in it. In general, if you have a compiler system with
an editor included, it will provide a lot of features that make it easier to write and organize your
source programs. There will usually be automatic facilities for laying out the program text appropriately,
and color highlighting for important language elements, which not only makes your code more
readable but cdso provides a clear indicator when you make errors when keying in such words.

If you're working in UNIX or Linux, the most common text editor is the vi editor. Alternately you
might prefer to use the emacs editor.

On a PC you could use one of the many freeware and shareware programming editors. These
will often provide a lot of help in ensuring your code is correct with syntax highlighting and autoin-
denting of your code. Don't use a word processor such as Microsoft Word, as these aren't suitable for
producing program code because of the extra formatting information they store along with the text.
Of course, you also have the option of purchasing one of the professionally created programming
development environments that support C, such as those from Borland or Microsoft, in which case
you will have very extensive editing capabilities. Before parting with your cash though, it's a good
idea to check that the level of C that is supported is approximate to the current C standard. With
some of the products out there that are primarily aimed at C++ developers, C has been left behind
somewhat. A further possibility is to get the emacs editor for Windows, emacs is the editor of choice
for some programming professionals.

Compiling
The compiler converts your source code into machine language and detects and reports errors in the
compilation process. The input to this stage is the file you produce during your editing, which is
usually referred to as a source file.

The compiler can detect a wide range of errors that are due to invalid or unrecognized program
code, as well as structural errors where, for example, part of a program can never be executed. The
output from the compiler is known as object code and is stored in files called object files, which
usually have names with the extension . ob j in the Microsoft Windows environment, or . o in the
Linux/UNDC environment. The compiler can detect several different kinds of errors during the trans­
lation process, and most of these will prevent the object file from being created.

The result of a successful compilation is a file with the same name as that used for the source
file, but with the . o or . ob j extension.

If you're working in UNIX, at the command line, the standard command to compile your C
programs will be cc (or the GNU's Not UNIX (GNU) compiler, which is gcc). You can use it like this:

cc -c myprog.c

where my prog. c is the program you want to compile. Note that if you omit the - c flag, your program
will automatically be linked as well. The result of a successful compilation will be an object file.

Most C compilers will have a standard compile option, whether it's from the command line
(such as cc my prog. c) or a menu option from within an IDE (where you'll find a Compile menu option).

CHAPTER 1 ^ PROGRAMMING IN C

Linking
The linker combines the various modules generated by the compiler from source code files, adds
required code modules from program libraries supplied as part of C, and welds everything into an
executable whole. The linker can also detect and report errors, for example, if part of your program
is missing or a nonexistent library component is referenced.

In practice, if your program is of any significant size, it will consist of several separate source
code files, which can then be linked. A large program may be difficult to write in one working session,
and it may be impossible to work with as a single file. By breaking it up into a number of smaller
source files that each provide a coherent part of what the whole program does, you can make the
development of the program a whole lot easier. The source files can be compiled separately, which
makes eliminating simple typographical errors a bit easier. Furthermore, the whole program can
usually be developed incrementally. The set of source files that make up the program will usually be
integrated under a project name, which is used to refer to the whole program.

Program libraries support and extend the C language by providing routines to carry out opera­
tions that aren't part of the language. For example, libraries contain routines that support operations
such as performing input and output, calculating a square root, comparing two character strings, or
obtaining date and time information.

A failure during the linking phase means that once again you have to go back and edit your
source code. Success on the other hand will produce an executable file. In a Microsoft Windows
environment, this executable file will have an . exe extension; in UNIX, there will be no such exten­
sion, but the file will be of an executable type.

Many IDEs also have a Build option, which will compile and link your program in one step. This
option will usually be found, within an IDE, in the Compile menu; alternatively, it may have a menu
of its own.

Executing
The execution stage is where you run your program, having completed all the previous processes
successfully. Unfortunately, this stage can also generate a wide variety of error conditions that can
include producing the wrong output or just sitting there and doing nothing, perhaps crashing your
computer for good measure. In all cases, it's back to the editing process to check your source code.

Now for the good news: this is the stage where, at last, you get to see your computer doing
exactly what you told it to do! In UNIX and Linux you can just enter the name of the file that has been
compiled and linked to execute the program. In most IDEs, you'll find an appropriate menu command
that allows you to run or execute your compiled program. This Run or Execute option may have a
menu of its own, or you may find it under the Compile menu option. In Windows, you can run the
. exe file for your program as you would any other executable.

The processes of editing, compiling, linking, and executing are essentially the same for devel­
oping programs in any environment and with any compiled language. Figure 1-1 summarizes how
you would typically pass through processes as you create your own C programs.

CHAPTER 1 PROGRAMMING IN C

1 i
Editini

Figure 1 -1. Creating and executing a program

Creating Your First Program
Let's step through the processes of creating a simple C program, from entering the program itself to
executing it. Don't worry if what you type doesn't mean anything to you at this stage—I'll explain
everything as we go along.

CHAPTER 1 PROGRAMMING IN C

llljjll^lli^
lllilllllllH^^^

liiiijIpĤ ^̂

jlllljilllM
i||l|i|||H |||||p||||ip|l|p^^^^

l i l i l lBi l l i lH
Illiilill̂ ^̂ ^̂ ^

l l i i l l l l l i l l ^ ^
l l l j l l l l i l l^
|||||||lii|i|W
illllllllĤ ^̂ ^̂ ^
jllllillllllH^

lijiiiiliii^^
|i||||||lRlli;;:S^^

iillililĤ^̂^̂^̂^̂^̂^̂^̂^

Editing Your First Program
You could try altering the same program to display something else on the screen. For example, you
might want to try editing the program to read like this:

/* Program 1.2 Your Second C Program */
#include<stclio.h>

int main(void)

{

}

printf("If at first you don\'t succeed, try, try, try again!");
return 0;

CHAPTER 1 % PROGRAMMING IN C

The \ ' sequence in the middle of the text to be displayed is called an escape sequence. Here it's
a special way of including a single quote in the text because single quotes are usuedly used to indicate
where a character constant begins and ends. YouTl learn more about escape sequences in the
"Control Characters" section later in this chapter. You can try recompiling the program, relinking it,
and running it again once you've altered the source. With a following wind and a bit of luck you have
now edited your first program. You've written a program using the editor, edited it, and compiled,
linked, and executed it.

Dealing with Errors
To err is human, so there's no need to be embarrassed about making mistakes. Fortunately computers
don't generally make mistakes themselves and they're actually very good at indicating where we've
slipped up. Sooner or later your compiler is going to present you with a list (sometimes a list that's
longer than you want) of the mistakes that are in your source code. You'll usually get an indication
of the statements that are in error. When this happens, you must return to the editing stage, find out
what's wrong with the incorrect code, and fix it.

Keep in mind that one error can result in error messages for subsequent statements that may
actually be correct. This usually happens with statements that refer to something that is supposed to
be defined by a statement containing an error. Of course, if a statement that defines something has
an error, then what was supposed to be defined won't be.

Let's step through what happens when your source code is incorrect by creating an error in your
program. Edit your second program example, removing the semicolon (;) at the end of the line with
printf 0 in it, as shown here:

/* Program 1.2 Your Second C Program */
#include<stdio.h>

int main(void)

{
printf("If at first you don\'t succeed, try, try, try again!")
return 0;

}

If you now try to compile this program, you'll see an error message that will vary slightly depending
on which compiler you're using. A typical error message is as follows:

Syntax error : missing ';' before '}'
HELLO.C - 1 error(s), 0 warning(s)

Here, the compiler is able to determine precisely what the error is, and where. There really should be
a semicolon at the end of that printf () line. As you start writing your own programs, you'll probably
get a lot of errors during compilation that are caused by simple punctuation mistakes. It's so easy to
forget a comma or a bracket, or to just press the wrong key. Don't worry about this; a lot of experi­
enced programmers make exactly the same mistakes—even after years of practice.

As I said earlier, just one mistake can sometimes result in a whole stream of abuse from your
compiler, as it throws you a multitude of different things that it doesn't like. Don't get put off by the
number of errors reported. After you consider the messages carefully, the basic approach is to go
back and edit your source code to fix what you can, ignoring the errors that you can't understand. Then
have another go at compiling the source file. With luck, you'll get fewer errors the next time around.

To correct your example program, just go back to your editor and reenter the semicolon.
Recompile, check for any other errors, and your program is fit to be run again.

CHAPTER 1 ' PROGRAMMING IN C

Dissecting a Simpie Program
Now that you've written and compiled your first program, let's go through another that's very similar
and see what the individual lines of code do. Have a look at this program:

/* Program 1.3 Another Simple C Program - Displaying a Quotation */
#include <stdio.h>

int main(void)

{
printf("Beware the Ides of March!");
return 0;

}

This is virtually identical to your first program. Even so, you could do with the practice, so use
your editor to enter this example and see what happens when you compile and run it. If you type it
in accurately, compile it, and run it, you should get the following output:

Beware the Ides of March!

Comments
Look at the first line of code in the preceding example:

/* Program 1.3 Another Simple C Program - Displaying a Quotation */

This isn't actually part of the program code, in that it isn't telling the computer to do anything.
It's simply a comment, and it's there to remind you, or someone else reading your code, what the
program does. Anything between /* and */ is treated as a comment. As soon as your compiler finds
/* in your source file, it will simply ignore anything that follows (even if the text looks like program
code) until it finds the matching */ that marks the end of the comment. This may be on the same
line, or it can be several lines further on.

You should try to get into the habit of documenting your programs, using comments as you go
along. Your programs will, of course, work without comments, but when you write longer programs
you may not remember what they do or how they work. Put in enough comments to ensure that a
month from now you (and any other programmer) can understand the aim of the program and how
it works.

As I said, comments don't have to be in a line of their own. A comment is everything between
/* and */, wherever /* and */ are in your code. Let's add some more comments to the program:

/* Program 1.3 Another Simple C Program - Displaying a Quotation */
#include <stdio.h> /* This is a preprocessor directive */

int main(void) /* This identifies the function main() */
{ /* This marks the beginning of main() */
printf("Beware the Ides of March!"); /* This line displays a quotation */
return 0; /* This returns control to the operating system */

} /* This marks the end of main() */

You can see that using comments can be a very useful way of explaining what's going on in the
program. You can place comments wherever you want in your program, and you can use them to
explain the general objectives of the code as well as the specifics of how the code works. A single
comment can spread over several lines; everything from the /* to the */ will be treated as a comment

CHAPTER 1 \ PROGRAMMING IN C

and ignored by the compiler. Here's how you could use a single comment to identify the author of
the code and to assert your copyright:

/*
* Written by Ivor Horton
* Copyright 2006
*/

This is one comment spread over four lines. I have used asterisks to mark the beginning of each
line of text here but they are not obligatory, just part of the comment as I wrote it. You can use anything
you like to improve the readability of a comment, but don't forget that */ will be interpreted as the
end of the comment.

Preprocessing Directives
Look at the following line of code:

#include <stdio.h> /* This is a preprocessor directive */

This is not strictly part of the executable program, but it is essential in this case—in fact, the
program won't work without it. The symbol # indicates this is a preprocessing directive, which is an
instruction to your compiler to do something before compiling the source code. The compiler handles
these directives during an initial preprocessing phase before the compilation process starts. There
are quite a few preprocessing directives, and they're usually placed at the beginning of the program
source file.

In this case, the compiler is instructed to "include" in your program the contents of the file with
the name stdio. h. This file is called a header file, because it's usually included at the head of a program.
In this case the header file defines information about some of the functions that are provided by the
standard C library but, in general, header files specify information that the compiler uses to integrate any
predefined functions or other global objects with a program, so you'll be creating your own header
files for use with your programs. In this case, because you're using the printf () function from the
standard library, you have to include the stdio. h header file. This is because stdio. h contains the
information that the compiler needs to understand what printf () means, as well as other functions
that deal with input and output. As such, its name, stdio, is short for standard input/output. All
header files in C have fQe names with the extension . h. You'll use other C header files later in the book.

I f Jo te Although the header file names are not case sensitive, it's common practice to write them in #include
directives in lowercase letters.

Every C compiler that conforms to the international standard (ISO/IEC 9899) for the language
will have a set of standard header files supplied with it. These header files primarily contain declara­
tions relating to standard library functions that are available with C. Although all C compilers that
conform with the standard will support the same set of standard library functions and will have the
same set of standard header files available, there may be extra library functions provided with a
particular compiler that may not be available with other compilers, and these will typically provide
functionality that is specific to the type of computer on which the compiler runs.

CHAPTER 1 M PROGRAMMING IN C

Defining the main() Function
The next five statements define the function main ():

i n t main(void) / * This iden t i f i es the function main() * /
{ / * This marks the beginning of main() * /

printf("Beware the Ides of March!"); / * This l ine displays a quotation * /
return 0; / * This returns control to the operating system * /

} / * This marks the end of main() * /

A function is just a named block of code between braces that carries out some specific set of
operations. Every C program consists of one or more functions, and every C program must contain
a function called ma in ()—the reason being that a program will always start execution from the beginning
of this function. So imagine that you've created, compiled, and linked a file called progname.exe.
When you execute this program, the operating system calls the function main() for the program.

The first line of the definition for the function main () is as follows:

int main(void) /* This identifies the function main() */

This defines the start of the function main (). Notice that there is no semicolon at the end of the
line. The first line identifying this as the function main () has the word int at the beginning. What
appears here defines the type of value to be returned by the function, and the word int signifies that
the function main () returns an integer value. The integer value that is returned when the execution
of main () ends represents a code that is returned to the operating system that indicates the program
state. You end execution of the main () function and specify the value to be returned in the statement:

return 0; /* This returns control to the operating system */

This is a return statement that ends execution of the ma in () function and returns that value 0 to
the operating system. You return a zero value from main () to indicate that the program terminated
normally; a nonzero value would indicate an abnormal return, which means, in other words, things
were not as they should be when the program ended.

The parentheses that immediately follow the name of the function, main, enclose a definition of
what information is to be transferred to main() when it starts executing. In this example, however,
you can see that there's the word void between the parentheses, and this signifies that no data can
be transferred to main (). Later, you'll see how data is transferred to main() and to other functions in
a program.

The function main () can call other functions, which in turn may call further functions, and so
on. For every function that's called, you have the opportunity to pass some information to it within
the parentheses that follow its name. A function will stop execution when a return statement in the
body of the function is reached, and control will then transfer to the calling function (or the operating
system in the case of the function main()).

Keywords
In C, a keyword is a word with special significance, so you shouldn't use keywords for any other
purposes in your program. For this reason, keywords are also referred to as reserved words. In the
preceding example, int is a keyword and void and return are also keywords. C has several keywords,
and you'll become familiar with more of them as you learn more of the language. You'll find a
complete list of C keywords in Appendix C.

