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Introduction

In the second edition of Machine Learning Using R, we added a new chapter on time
series modeling (Chapter 9), a traditional topic that has its genesis from statistics. The
second newly added chapter is deep learning (Chapter 11), which is fast emerging

as a sub-field of machine learning. Apart from these two new chapters, the overall
presentation of text and code in the book is put out in a new reader-friendly format.

The new edition continues to focus on building the use cases using R, a popular
statistical programming language. For topics like deep learning, it might be advised to
adopt Python with frameworks like TensorFlow. However, in this new edition, we will
show you how to use the R programming language with TensorFlow, hence avoiding the
effort of learning Python if you are only comfortable with R.

Like in the first edition, we have kept the fine balance of theory and application of
machine learning through various real-world use cases, which give the readers a truly
comprehensive collection of topics in machine leaning in one volume.

What you'll learn:

e Understand machine learning algorithms using R

e Master a machine learning model building a process flow
o Theoretical foundations of machine learning algorithms

o Industry focused real-world use cases

e Time series modeling in R

e Deep learning using Keras and TensorFlow in R

Who This Book is For

This book is for data scientists, data science professionals, and researchers in academia
who want to understand the nuances of machine learning approaches/algorithms

in practice using R. The book will also benefit readers who want to understand the
technology behind implementing a scalable machine learning model using Apache
Hadoop, Hive, Pig, and Spark.
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INTRODUCTION

This book is a comprehensive guide for anybody who wants to understand the
machine learning model building process from end to end, including:

e Practical demonstration of concepts in R
e Machine learning models using Apache Hadoop and Spark
o Time series analysis

o Introduction to deep learning models using Keras and
TensorFlow using R

XXiv



CHAPTER 1

Introduction to Machine
Learning and R

Beginners to machine learning are often confused by the plethora of algorithms and
techniques being taught in subjects like statistical learning, data mining, artificial
intelligence, soft computing, and data science. It’s natural to wonder how these subjects are
different from one another and which is the best for solving real-world problems. There is
substantial overlap in these subjects and it’s hard to draw a clear Venn diagram explaining
the differences. Primarily, the foundation for these subjects is derived from probability

and statistics. However, many statisticians probably won’t agree with machine learning
giving life to statistics, giving rise to the never-ending chicken and egg conundrum kind of
discussions. Fundamentally, without spending much effort in understanding the pros and
cons of this discussion, it’s wise to believe that the power of statistics needed a pipeline to
flow across different industries with some challenging problems to be solved and machine
learning simply established that high-speed and frictionless pipeline. The other subjects
that evolved from statistics and machine learning are simply trying to broaden the scope of
these two subjects and putting it into a bigger banner.

Except for statistical learning, which is generally offered by mathematics or
statistics departments in the majority of the universities across the globe, the rest of
these subjects—like machine learning, data mining, artificial intelligence, and soft
computing—are taught by computer science department.

In the recent years, this separation is disappearing but the collaboration between
the two departments is still not complete. Programmers are intimidated by the complex
theorems and proofs and statisticians hate talking (read as coding) to machines all
the time. But as more industries are becoming data- and product-driven, the need for
getting the two departments to speak a common language is strongly emphasized. Roles
in industry are suitably revamped to create openings like machine learning engineers,
data engineers, and data scientists into a broad group being called the data science team.

1
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The purpose of this chapter is to take one step back and demystify the terminologies
as we travel through the history of machine learning and emphasize that putting the ideas
from statistics and machine learning into practice by broadening the scope is critical.

At the same time, we elaborate on the importance of learning the fundamentals
of machine learning with an approach inspired by the contemporary techniques from
data science. We have simplified all the mathematics to as much extent as possible
without compromising the fundamentals and core part of the subject. The right balance
of statistics and computer science is always required for understanding machine
learning, and we have made every effort for our readers to appreciate the elegance of
mathematics, which at times is perceived by many to be hard and full of convoluted
definitions, theories, and formulas.

1.1 Understanding the Evolution

The first challenge anybody finds when starting to understand how to build intelligent
machines is how to mimic human behavior in many ways or, to put it even more
appropriately, how to do things even better and more efficiently than humans. Some
examples of these things performed by machines are identifying spam emails, predicting
customer churn, classifying documents into respective categories, playing chess,
participating in jeopardy, cleaning house, playing football, and much more. Carefully
looking at these examples will reveal that humans haven’t perfected these tasks to date
and rely heavily on machines to help them. So, now the question remains, where do you
start learning to build such intelligent machines? Often, depending on which task you
want to take up, experts will point you to machine learning, artificial intelligence (AI), or
many such subjects, that sound different by name but are intrinsically connected.

In this chapter, we have taken up the task to knit together this evolution and finally
put forth the point that machine learning, which is the first block in this evolution, is
where you should fundamentally start to later delve deeper into other subjects.

1.1.1 Statistical Learning

The whitepaper, Discovery with Data: Leveraging Statistics with Computer Science to
Transform Science and Society by American Statistical Association (ASA) [1], published
in July 2014, defines statistics as “the science of learning from data, and of measuring,
controlling, and communicating uncertainty is the most mature of the data sciences”.
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This discipline has been an essential part of the social, natural, bio-medical, and physical
sciences, engineering, and business analytics, among others. Statistical thinking not only
helps make scientific discoveries, but it quantifies the reliability, reproducibility, and
general uncertainty associated with these discoveries. This excerpt from the whitepaper
is very precise and powerful in describing the importance of statistics in data analysis.

Tom Mitchell, in his article, “The Discipline of Machine Learning [2],” appropriately
points out, “Over the past 50 years, the study of machine learning has grown from the
efforts of a handful of computer engineers exploring whether computers could learn to
play games, and a field of statistics that largely ignored computational considerations, to
a broad discipline that has produced fundamental statistical-computational theories of
learning processes.”

This learning process has found its application in a variety of tasks for commercial
and profitable systems like computer vision, robotics, speech recognition, and many
more. At large, it’s when statistics and computational theories are fused together that
machine learning emerges as a new discipline.

1.1.2 Machine Learning (ML)

The Samuel Checkers-Playing Program, which is known to be the first computer program
that could learn, was developed in 1959 by Arthur Lee Samuel, one of the fathers of
machine learning. Followed by Samuel, Ryszard S. Michalski, also deemed a father of
machine learning, came out with a system for recognizing handwritten alphanumeric
characters, working along with Jacek Karpinski in 1962-1970. The subject from then has
evolved with many facets and led the way for various applications impacting businesses
and society for the good.

Tom Mitchell defined the fundamental question machine learning seeks to answer
as, “How can we build computer systems that automatically improve with experience,
and what are the fundamental laws that govern all learning processes?” He further
explains that the defining question of computer science is, “How can we build machines
that solve problems, and which problems are inherently tractable/intractable?’; whereas
statistics focus on answering “What can be inferred from data plus a set of modeling
assumptions, with what reliability?”

This set of questions clearly shows the difference between statistics and machine
learning. As mentioned earlier in the chapter, it might not even be necessary to deal
with the chicken and egg conundrum, as we clearly see that one simply complements
the other and is paving the path for the future. As we dive deep into the concepts of
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statistics and machine learning, you will see the differences clearly emerging or at times
completely disappearing. Another line of thought, in the paper “Statistical Modeling:
The Two Cultures” by Leo Breiman in 2001 [3], argued that statisticians rely too heavily
on data modeling, and that machine learning techniques are instead focusing on the
predictive accuracy of models.

1.1.3 Artificial Intelligence (Al)

The Al world from very beginning was intrigued by games. Whether it be checkers, chess,
Jeopardy, or the recently very popular Go, the Al world strives to build machines that can
play against humans to beat them in these games and it has received much accolades
for the same. IBM’s Watson beat the two best players of Jeopardy, a quiz game show
wherein participants compete to come out with their responses as a phrase in the form
of questions to some general knowledge clues in the form of answers. Considering the
complexity in analyzing natural language phrases in these answers, it was considered to
be very hard for machines to compete with humans. A high-level architecture of IBM’s
DeepQA used in Watson looks something like in Figure 1-1.

Evidence

sources
Question ) Candidate Supporting Deep
D Primary —— answer evidence p— evidence

< h . .
searc generation retrieval scoring

A4

Question Query Hypothesis > Soft > Hypothesis and a Final merging
analysis kd decomposition Ed generation filtering evidence scoring Synthesis and ranking

-~
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Hypothesis > Soft » Hypothesis and models
generation filtering evidence scoring

Figure 1-1. Architecture of IBM’s DeepQA

Y
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Al also sits at the core of robotics. The 1971 Turing Award winner, John McCarthy,
a well known American computer scientist, was believed to have coined this term and
in his article titled, “What Is Artificial Intelligence?” he defined it as “the science and
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engineering of making intelligent machines [4]” So, if you relate back to what we said
about machine learning, we instantly sense a connection between the two, but Al goes
the extra mile to congregate a number of sciences and professions, including linguistics,
philosophy, psychology, neuroscience, mathematics, and computer science, as well as
other specialized fields such as artificial psychology. It should also be pointed out that
machine learning is often considered to be a subset of Al

1.1.4 Data Mining

Knowledge Discovery and Data Mining (KDD), a premier forum for data mining, states its
goal to be advancement, education, and adoption of the “science” for knowledge discovery
and data mining. Data mining, like ML and Al, has emerged as a interdisciplinary subfield
of computer science and for this reason, KDD commonly projects data mining methods, as
the intersection of Al, ML, statistics, and database systems. Data mining techniques were
integrated into many database systems and business intelligence tools, when adoption of
analytic services were starting to explode in many industries.

The research paper, “WEKA Experiences with a Java open-source project”[5] (WEKA
is one of the widely adapted tools for doing research and projects using data mining),
published in the Journal of Machine Learning Research, talked about how the classic
book, Data Mining: Practical Machine Learning Tools and Techniques with Java, [6] was
originally named just Practical Machine Learning, and the term data mining was only
added for marketing reasons. Eibe Frank and Mark A. Hall, who wrote this research paper,
are the two coauthors of the book, so we have a strong rationale to believe this reason for
the name change. Once again, we see fundamentally, ML being at the core of data mining.

1.1.5 Data Science

It’s not wrong to call data science a big umbrella that brought everything with a potential
to show insight from data and build intelligent systems inside it. In the book, Data
Science for Business [7], Foster Provost and Tom Fawcett introduced the notion of viewing
data and data science capability as a strategic asset, which will help businesses think
explicitly about the extent to which one should invest in them. In a way, data science has
emphasized the importance of data more than the algorithms of learning.

It has established a well defined process flow that says, first think about doing
descriptive data analysis and then later start to think about modeling. As a result of
this, businesses have started to adopt this new methodology because they were able to



CHAPTER 1 INTRODUCTION TO MACHINE LEARNING AND R

relate to it. Another incredible change data science has brought is around creating the
synergies between various departments within a company. Every department has its
own subject matter experts and data science teams have started to build their expertise
in using data as a common language to communicate. This paradigm shift has witnessed
the emergence of data-driven growth and many data products. Data science has given us
a framework, which aims to create a conglomerate of skillsets, tools, and technologies.
Drew Conway, the famous American data scientist who is known for his Venn diagram
definition of data science as shown in Figure 1-2, has very rightly placed machine
learning in the intersection of Hacking Skills and Math & Statistics Knowledge.

Figure 1-2. Venn diagram definition of data science

We strongly believe the fundamentals of these different fields of study are all derived
from statistics and machine learning but different flavors, for reasons justifiable in
its own context, were given to it, which helped the subject be molded into various
systems and areas of research. This book will help trim down the number of different
terminologies being used to describe the same set of algorithms and tools. It will present
a simple-to-understand and coherent approach, the algorithms in machine learning
and its practical use with R. Wherever it’s appropriate, we will emphasize the need to
go outside the scope of this book and guide our readers with the relevant materials.
By doing so, we are re-emphasizing the need for mastering traditional approaches in
machine learning and, at the same time, staying abreast with the latest development in
tools and technologies in this space.
6
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Our design of topics in this book are strongly influenced by data science framework
but instead of wandering through the vast pool of tools and techniques you would find
in the world of data science, we have kept our focus strictly on teaching practical ways of
applying machine learning algorithms with R.

The rest of this chapter is organized to help readers understand the elements of
probability and statistics and programming skills in R. Both of these will form the
foundations for understanding and putting machine learning into practical use. The
chapter ends with a discussion of technologies that apply ML to a real-world problem.
Also, a generic machine learning process flow will be presented showing how to connect
the dots, starting from a given problem statement to deploying ML models to working
with real-world systems.

1.2 Probability and Statistics

Common sense and gut instincts play a key role for policymakers, leaders, and
entrepreneurs in building nations and large enterprises. The question is, how do we
change some intractable qualitative decision making into objectively understood
quantitative decision making? That’s where probability and statistics come in. Much of
statistics is focused on analyzing existing data and drawing suitable conclusions using
probability models. Though it’s very common to use probabilities in many statistical
modeling, we feel it’s important to identify the different questions probability and
statistics help us answer. An example from the book, Learning Statistics with R: A
Tutorial for Psychology Students and Other Beginners by Daniel Navarro [8], University of
Adelaide, helps us understand it much better. Consider these two pairs of questions:

1. What are the chances of a fair coin coming up heads 10 times in a
row?

2. Ifmy friend flips a coin 10 times and gets 10 heads. Is she playing a
trick on me?

and

1. How likely it is that five cards drawn from a perfectly shuffled
deck will all be hearts?

2. Iffive cards off the top of the deck are all hearts, how likely is it
that the deck was shuffled?
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In case of the coin toss, the first question could be answered if we know the coin is
fair, there’s a 50% chance that any individual coin flip will come up heads, in probability
notation, P(heads) = 0.5. So, our probability is P(heads 10 times in a row) =.0009765625
(since all the 10 coin tosses are independent of each other, we can simply compute (0.5)10
to arrive at this value). The probability value .0009765625 quantifies the chances of a fair
coin coming up heads 10 times in a row.

On the other side, such a small probability would mean the occurrence of the event
(heads 10 times in a row) is very rare, which helps to infer that my friend is playing some
trick on me when she got all heads. Think about this—does tossing a coin 10 times give
you strong evidence for doubting your friend? Maybe no; you may ask her to repeat the
process several times. The more the data we generate, the better will be the inference.
The second set of questions has the same thought process but is applied to a different
problem. We encourage you to perform the calculations yourself to answer the question.

So, fundamentally, probability could be used as a tool in statistics to help us answer
many such real-world questions using a model. We will explore some basics of both
these worlds, and it will become evident that both converge at a point where it’s hard to
observe many differences between the two.

1.2.1 Counting and Probability Definition

Imagine we are conducting an experiment with coin flips, in which we will flip three
coins eight times each. Each combination of heads and tails constitutes a unique
outcome. For example, HHH is a unique outcome. The possible outcomes are the
following: (HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT). Figure 1-3 shows a basic
illustration of this experiment, with three coins, a total of eight possible outcomes
(HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT) are present. This set is called the
sample space.
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Figure 1-3. Sample space of three-coin tossing experiment

It’s easy to count the total number of possible outcomes in such a simple example
with three coins, but as the size and complexity of the problem increase, manually
counting is not an option. A more formal approach is to use combinations and
permutations. If the order is of significance, we call it a permutation; otherwise, generally
the term combination is used. For instance, if we say it doesn’t matter which coin gets
heads or tails out of the three coins, we are only interested in number of heads, which
is like saying there is no significance to the order, then our total number of possible
combination will be {HHH, HHT, HTT, TTT}. This means HHT and HTH are the same,



