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CHAPTER 1

Introduction

Using computers as more than glorified typewriters or calculators is an increasingly
important aspect of any scientific or technological field, and knowing how to program

a computer to solve new problems has become as essential a skill as mathematics.
Learning how to program can be a frustrating experience at times since computers
require a level of precision and rigor in how we express our ideas, which we rarely
encounter elsewhere in life. While occasionally infuriating, programming can also be
very rewarding. Programs are created out of pure thought, and it is a special feeling when
you make a computer transform your ideas into actions and see it solve your problems
for you.

Solving any kind of problem, on a computer or otherwise, requires a certain level
of precision. To address the right question, we must first understand what the problem
is. We also need to have a precise idea about what an adequate solution to the problem
would be—or at the very least some way of distinguishing between two solutions to
judge if one is better than the other. These are concerns we will need to address in any
problem-solving task, but where everyday life might forgive some fuzzy thinking in
problem solving, computers are far less forgiving. To solve a problem on a computer, you
must first specify with mathematical clarity what the problem is and what a solution is
and, after that, how you will go about deriving a solution. And only then can you write a
program and put the computer to work.

For the novice programmer, the last step—implementing a solution in a computer
language—is often the most frustrating. Computer programs do not allow any
ambiguities, and that means that if you do not abide by the computer language’s rules—if
you get the grammar wrong in the slightest—the computer will refuse even to consider
your program. Learning how to write programs the computer will even attempt to run is
the first hurdle to overcome.

Many good books can teach you different programming languages, and it is worth
your while getting a few of these about the programming languages you plan to use in
your future work. This book is not only about programming, however, but about how

© Thomas Mailund 2021
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computation is done and how you can make computation efficient. Still, from time to time,
I'will show you tricks for making your programming efficient as well, meaning speeding
up how fast you can write your programs, which is a separate issue from how efficient your
programs are once you have implemented them. These tricks are generally applicable,
provided your programming language supports the features we use, and for a working
programmer, efficient programming is as important as efficient programs. Iwon'’t cover
these tricks as separate topics, but show them when we study topics where they are useful.
For the programming we do in the book, we will use the Python programming language.
The Python language is generally considered an excellent first language to learn because of
its high-level yet intuitive features, and at the same time, Python is one of the most popular
programming languages for scientific programs. It is one of the most frequently used
languages for data science. It is number one on the Kaggle machine learning platform
(www. kaggle.com). It has powerful libraries for machine learning, data analysis, and
scientific computing through various software modules. It is also one of the most popular
languages for scripting workflows of data analysis and for administrating computer systems.
We will not explore the full language, however, as the book is already long without
discussing all the powerful features in Python. But I will show you how the code we write
would look if you implemented it like a “real” Python programmer, with the features of
the language you would need to get there. You can safely ignore those parts if you only
want to learn the aspects of programming that generalize to other languages and if you
are only interested in how to write effective and efficient code. In any language you
use regularly, however, it is worth knowing the programming style and idioms for that
language. Styles do not directly translate from one language to another, since what is
easy to do in one might be hard in another and vice versa. Spend the time to learn how
experienced programmers use a language when you learn it, if you want to be effective.
We use Python to illustrate ideas and for exercising topics we cover, but the focus
of the book is not on Python programming. The focus is how to think about problem
solving in a disciplined way, to consider problems as computational tasks, and how
to plan solutions in ways that are computationally efficient. Along the way, we will
see different programming paradigms that will show you how you can think about
programming in different ways. Primarily, these will be functional programming and
object-oriented programming, both of which are supported by Python. Thinking about
structuring data, about how to efficiently manipulate data to solve problems, and how to
structure your code so it is easy to write, easy to extend, and easy to maintain is what we
mean by computational thinking.


http://www.kaggle.com

CHAPTER 1 INTRODUCTION

Models of the World and Formalizing Problems

Our goal is to learn how to formalize objectives in such a way that we can specify
mathematically and objectively what solutions to our goals are. This also means
formalizing what data we have and how we should interpret it. Formalizing a problem
might reveal that we do not have sufficient data for the issue at hand. It might also show
that we do not truly understand our problem. If we cannot clearly define what we want,
we won't be able to formalize how to get it. We might, with some luck, be able to fudge
it a bit and get something and then use subjective opinion to judge if what we get is
what we wanted. This is far from optimal, though. If you and I disagree on whether one
solution is better than another or not, we have no way of resolving the issue.

Formalizing problems and formalizing what data we have to work with is what you
do in all natural sciences. You might not have thought about it this way before—depending
on which science you have a background in—but when we derive theories (or laws) about
the natural world, we are making formal statements about how the world works. For some
theories there are exceptions—the world is breaking a natural law—which tells us we do
not have a comprehensive theory. But any theory worth its salt can be falsified, which is
another way of saying that we can judge if a data point matches the formalization of the
theory or not.

In the hard sciences, like physics and chemistry, these theories are described
in the language of mathematics, often in somewhat complex equations. In sciences
describing very complex systems, such as biology that tries to explain life in general, we
often have much simpler mathematics, and the rules almost always have exceptions.
Biology is more complicated than particle physics, so it is harder to formalize, and thus
we stick with simpler equations. There is no point in using very complex mathematics
to describe something we do not understand—simple mathematics suffices for that.
Any quantitative evaluation of the natural world requires some mathematics and some
formalization of scientific theories—even if the mathematics is as simple as counting to
see if some quantity is more abundant in some situations than others. All quantitative
data analysis involves formalizing our thoughts about reality and reducing data to the
relevant aspects for those formal descriptions.

Abstracting the complex natural world to something more manageable is called
modeling. We build models of the real world—usually mathematical models. We aim at
making the models simple enough to understand, yet sophisticated enough to describe
the aspects of the world we are interested in. In principle, we could model molecular
evolution as a physical system at the level of particles. We don'’t, because this would be
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much too complex for us to work with and probably wouldn’t help us answer most of the
questions about evolution we are interested in. Instead, we model molecular evolution
as random mutations in strings of DNA, abstracting the three-dimensional DNA
molecules into one-dimensional strings over the four letters A, C, G, and T. We abstract
away aspects of the world that are not relevant for the models, and we abstract away
features about the data that are not modeled.

Building models of the natural world is the goal of all the sciences and much
too broad a topic for this book. The models are relevant for computational thinking,
however. When we formalize how to solve problems, we do so within a model of the
world. This model will affect how we can formalize problems and at which level of detail
we consider our data. Sometimes, changing the model of reality can change what can
be efficiently computed—or make an easy problem intractable. Of course, we should
not pick scientific theories based on what we can efficiently calculate, but sometimes,
abstracting away aspects of the world that are not essential for the problem at hand will
not qualitatively change solutions but might make an otherwise impossible problem easy.

This book is not about modeling the world. We will generally assume that we have
some formal models to work with within whatever scientific field we find ourselves.
You are rarely in the situation where you can pick your theories at random to satisfy
your computational needs, but keep in mind that formalizing the problem you want to
solve might give you some wiggle room within those formal scientific theories. When,
for example, we study genome evolution or population genetics, we abstract complex
DNA molecules to the level of strings or reduce populations to gene frequencies. These
abstractions are there to simplify the subject matter to something that can be attacked
computationally.

What Is Computational Thinking?

Computational thinking is what you do when you take a problem and formalize it,

when you distil it into something where you can objectively determine if something is a
solution to it or not. For example, given a sequence of numbers, are all positive? Easy to
check, and either all the numbers are positive or they are not. Or perhaps the problem is
not a yes-no question but an optimization issue. Finding the shortest route to get from
points A to B is an optimization problem. It might be easy for us to determine if one path
is shorter than another, which would be a yes-no problem, but actually coming up with
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short routes might be a harder problem. It is still a computational problem, as long as we
can formalize what a path is and how we measure distance.

Computational thinking is also what happens after you have formalized the problem,
when you figure out how to solve it. A formal description for how to solve a problem
is called an algorithm, after the ninth-century mathematician Muhammad ibn Musa
al’Khwarizmi who is also responsible for the term algebra. To qualify as an algorithm, a
description of how to solve a problem must be in sufficient detail that we can follow it
without having to involve any guesswork. If you implement it on a computer, I guarantee
you that you do not want to leave any room for guessing. The description must always
get to a solution in a finite number of steps—we don’t want to keep computing forever—
and the description must always lead to a valid solution—we don’t want to follow all the
steps and end up with something we cannot use anyway.'

Designing algorithms is part science and part art. There are general guidelines
we can use to approach a computational problem to develop algorithms and general
approaches to organizing data such that we can manipulate it efficiently, but you will
almost always have to adapt the general ideas to your specific problem. Here, sparks of
insight cannot be underestimated—sometimes, just looking at a problem in different
ways will open entirely new ways of approaching it. The general approaches can be
taught and learned and are the main topic of this book. The art of designing algorithms
comes with practice, and as with all skills, the more you practice, the better you get.

Most of the algorithms we will see in this book are used in almost all software that
runs on your computer (with the exceptions of some toy examples found in the exercises
that are never used in the wild). Sorting and searching in data and arranging data for
fast retrieval or fast update is part of almost all computations. The models behind such
algorithms are often exceedingly abstract, much more so than any model we would use
to describe real-world phenomena. A sorting algorithm might work in a world where
the only thing you can do with objects is to determine which of two objects is smaller.

'There are exceptions to the requirement that an algorithm should always complete in a finite
number of steps. When we implement something like a web service or an operating system,

we don’t want our programs to terminate after a finite number of calculations, but instead

want them to run, and be responsive, indefinitely. In those cases, we relax the requirement and
require that they can respond to all events in a finite number of steps. We also have exceptions to
always getting correct answers. Sometimes, we can accept that we get the right answer with high
probability—if we can quickly test if the answer is correct and maybe rerun the algorithm for
another solution and continue this until we get lucky. These are unusual cases, however, and we
do not consider them in this book.
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Or maybe the algorithm works in a model that allows more structure to data, and this
structure can be exploited to make the algorithm more efficient. In any case, what we
can do with data depends on our models, and for computation, these models are often
remarkably abstract. Such abstract models can feel far from the world your problem
originates in, but it is because the models are so very theoretical that we can apply the
algorithmic solutions to so many varied problems.

Some people spend their entire lives developing new algorithms for general
problems. Those people would be professional computer science academics. Most
people who solve problems on computers are not doing this, even if they develop
algorithms on a daily basis. When we deal with concrete issues, we can usually do so
by combining existing algorithms in the right ways. Having a toolbox of algorithms to
pick from and knowing their strengths and weaknesses is more important in day-to-
day computational work than being able to design algorithms entirely from scratch—
although that can be important as well, of course, on the rare occasions when your
toolbox does not suffice.

Whether you can get where you want to go by combining existing algorithms or you
have to design new ones, the general approach is the same. You have to break apart big
tasks that you do not know how to solve (yet) into smaller tasks that, when all done, will
have completed the larger tasks. Steps to a job, such as “find the largest number in a
sequence,” can be broken into smaller steps such as “compare the first two numbers and
remember the largest,” “compare the largest of the first two to the third and remember
the largest,” and so on. You start out with one big task—the problem you want to solve—
and you keep breaking down the problem into smaller tasks until they all are tasks you
know how to handle—either because they are trivial or because you have an algorithm
in your toolbox that can solve them. The practice of breaking down tasks until you can
resolve them all is at the heart of computational thinking.

Developing and combining algorithms is a vital part of computational thinking, but
algorithms alone do not solve any problems. Algorithms need to be executed to solve
concrete problems; we need to follow the instructions they provide on actual data to get
actual solutions. Since we rarely want to do this by hand or with pen and paper, we wish
to instruct computers how to run algorithms, which means that we have to translate a
high-level description of an algorithm to a lower-level description that can be put into
a computer program that the machine will then slavishly execute. This task is called
implementing the algorithm.
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Designing an algorithm and implementing it as a computer program are two
separate tasks, although tightly linked. The first task involves understanding the problem
you want to solve in sufficient detail that you can break it down into pieces that you know
how to address. The second task consists in breaking those pieces into even smaller
ones that the computer can solve; this is where the algorithm design task meets the
programming task.

The abstraction level at which you can implement an algorithm depends intimately
on the programming language and the libraries of functionality you have access to.

At the most basic level —the hardware of your computer—the instructions available

do little more than move bits around and do basic arithmetic.? A modern CPU is a

very sophisticated machine for doing this, with many optimizations implemented in
hardware, but the basic operations you have at this level are still pretty primitive. This is
the level of abstraction where you can get the highest performance out of your CPU, but
we practically never program at this level, because it is also the level of abstraction where
you get the lowest performance out of a programmer. Basic arithmetic is just too low a
level of abstraction for us to think about algorithms constructively.

Programming languages provide higher levels of abstraction to the programmer.
They can do this because someone has written a program that can translate the
high-level operations in the programming language into the right sequence of lower-
level operations that the computer can actually execute.?* Which abstractions are
available varies tremendously between programming languages, but they all need to
describe programs that are eventually run at the low level of the computer’s CPU. The
programming language abstractions are just an interface between the programmer and

2Okay, at a more fundamental level, a computer is a rock you can communicate with through
electricity, but from a computational perspective, basic arithmetic operations are as primitive as
they come.

Ifyou think about it, there is an interesting question on how programs that translate high-level
instructions into low-level instructions are written. It is hard enough to write a program that
works correctly in a high-level programming language; it is substantially harder to do in the
language the machine understands. You want to write the programs for dealing with high-
level abstractions in programming languages that support these abstractions. But to support
the abstractions, you need a program that implements them. That is a circular dependency,
and that is problematic. You can solve it by first writing primitive programs that support some
abstractions. Now you can use these abstractions to write a better program that can handle
more abstractions. This, in turn, lets you write even better programs with better abstractions. At
this point, you can throw away the most primitive programs because you have implemented a
programming language that you can use to implement the programming language itself. This
process is known as bootstrapping, named after the phrase “to pull oneself up by one’s bootstraps.”

7
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the machine, and the language’s implementers have handled how these abstractions are
executed at the lower layers of the computer.

We sometimes talk about high-level and low-level programming languages, but
there isn’t a real dichotomy. There are merely differences in the higher-level abstractions
provided by all programming languages. Some programming languages provide an
environment for programming very close to the hardware, where you can manipulate
bits at the lowest level while still having some abstractions to control the steps taken by
your program and some abstractions for representing data beyond merely bit patterns.
These we would call low-level languages because they aim to be close to the lowest
level of abstraction on the computer. Other languages, high-level languages, provide a
programming environment that tries to hide the lower levels to protect the programmer
from them. How data is actually represented at lower levels is hidden by abstractions in
the language, and the programming environment guarantees that the mapping between
language concepts and bits is handled correctly.

Computational Thinking in a Broader Context

To summarize, what we call computational thinking in this book refers to a broad range
of activities vital for solving problems using a computer. For some of those activities,
computational thinking is merely a tiny aspect. Making models of the real world in order
to understand it is the entire goal of science; considering scientific theories in the light
of how we can make computations using the equations that come out of the theories

is a minute aspect of the scientific process, but an essential one if you want to use your
computer to do science. Creating new algorithms to solve a particular problem is also
almost entirely computational thinking in action; implementing these algorithms, on
the other hand, can be an almost mechanical process once you have fleshed out the
algorithm in sufficient detail.

One thing that sometimes complicates learning how to think about computations is
that there is rarely a single right answer to any problem you consider. It shares this with
natural sciences. While we usually believe that there is a unique natural world out there
to explore, we generally do not attempt to model it in full detail; an accurate model of
reality would be too complicated to be useful. Instead, we build models that simplify
reality, and there is no “right” model to be found—only more or less valuable models.
When we seek to solve a problem on a computer, we are in the same situation. We need
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to abstract a model of reality that is useful, and there may be many different choices we
can reasonably make in doing this, all with different pros and cons.

For any of these models, we have a seemingly endless list of appropriate algorithms
we can choose from to solve our problem. Some will be horrible choices for various
reasons. They might not solve the problem at hand in all cases, or at all, or they might
solve the problem but take so long to do this that in practical terms they never finish
computing. Many of the choices, however, will solve the problem and in a reasonable
time, but use different computational resources in doing so. Some run faster than others;
some can exploit many CPUs in parallel, solving the problem faster but using more
resources to do so; some might be fast but require much more memory to solve the
problem and therefore might not be feasible solutions given the resources you have. It
requires computational thinking to derive these algorithms, but it is also computational
thinking to reason about the resources they need and to judge which algorithms can be
used in practice and which cannot.

Once you have chosen an appropriate algorithm to solve your problem, you
need to implement it to execute it. On itself, the algorithm is useless; only when it is
executed does it have any value, and executing it on a computer means you have to
implement it as a computer program first. At this step, you need to decide on a computer
programming language and then how to flesh out the details the algorithm does not
specify. For choosing the programming language, you once again have numerous
choices, all with different strengths and weaknesses. Typically, the first choice is between
the speed and speed—how fast can you implement the algorithm in a given language
vs. how fast it will run once you have implemented it. Typically, high-level languages let
you implement your ideas more swiftly, but often at the cost of slightly (or less slightly)
slower programs. Low-level languages let you control your computer in greater detail,
which allows you to implement faster programs, but at the cost of also having to specify
details that high-level languages will shield you from. You shouldn’t always go for
making your programs as fast as possible; instead, you should go for solving your actual
problem as speedy as possible. You can make your program very fast to run by spending
a vast amount of time implementing it, or you can implement it quickly and let it run
a little longer. You want to take the path that gets you to your solution the fastest. Here,
of course, you should also take into account how often you expect to use your program.
A program that is run often gains more from being faster than one that runs only for a
specific project and only a few times there.
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In reality, the choice of programming language is not between all possible languages,
but between the languages you know how to write programs in. Learning a new
programming language to implement an algorithm is rarely, if ever, worth the time. If
you only know one language, the choice is made for you, but it is worthwhile to know
a few, at least, and to know both a high-level and a low-level language with sufficient
fluency that you can implement algorithms in them with comfortable fluency. This gives
you some choice in what to choose when you have a program to write.

The choices aren’t all made once you have decided on the programming language,
though. There will always be details that are not addressed by your algorithm, but that
must be addressed by your program. The algorithm might use different abstract data
structures, such as “sets” or “queues” or “tables,” and it might also specify how fast
operations on these have to be, but when you have to make concrete implementations
of these structures or choose existing implementations from software libraries, there are
more options to consider. In high-level programming languages, there are fewer details
you have to flesh out than in low-level languages, which is one of the reasons it is usually
much faster to implement an algorithm in a high-level language than in a low-level
language—but there will always be some choices to be made at this point in the process
as well.

You might hope you are done when you have implemented your algorithm, but
this is usually not the case. You need to feed data into the program and get the answer
out, and here you have choices to make about data formats. Your program will not live
in isolation from other programs, either, but communicate with the world, usually in
the form of files and data formatted in different file formats. Again, there are choices to
be made for how you wrap your algorithm in a program. If your algorithm is useful for
more than a single project, you might also put it in a software library, and then there are
choices to be made about how you provide an interface to it. If you build a whole library
of different algorithms and data structures, constructing interfaces to the library is full
of critical design decisions, and these decisions affect how other programs can use the
algorithms and how efficiently, so this is also an aspect of computational thinking—but
here only a part of the broader topic of software engineering.

10



CHAPTER 1 INTRODUCTION

What Is to Come

The purpose of this book is to introduce computational thinking as basic problem-
solving approaches for designing algorithms and implementing them in a computer
language, the Python language. We will focus on the design of algorithms more than the
implementation of them and only use a subset of the Python programming language
for exercises. We will use the Python features necessary so our code behaves the way a
Python programmer would expect, with the idioms of the language, but we will mainly
use a subset of Python for the core code that you will find in many other languages.
This will make it easier to transfer what you learn to other programming languages, but
keep in mind that it also means that the solutions we consider are not necessarily the
solutions an experienced Python programmer would come up with. There are ways of
expressing things in Python that can implement our algorithms more effectively, but
those are Python specific and might not be found in other languages.

In many of the following chapters, I will explain how computation is done on an
actual computer, not just in Python but on computers in general. General computers do
not understand Python programs but do understand more primitive instructions that
you can give a CPU, and I will try to put our Python programs in a context of these. I will
also explain how computers store data, which they can only do using simple memory
words consisting of ones and zeros. These explanations are far from comprehensive and
are only intended to give you a feeling for how instructions in a high-level programming
language such as Python will have to be translated into much lower-level concepts on
actual hardware. When I do explain these concepts, I will not always be completely
honest about how Python actually handles these issues. Since Python is a very high-
level programming language, it supports features that are not found in lower-level
languages, and this means that to run a Python program, you need a more complex
model of both data and code than you will need in many other languages. I will explain
general concepts, but I will give a simplified explanation of them. If you want to know the
details of how your computer really deals with these concepts and how Python handles
these and more complex features of the language, you will need to find this information
elsewhere.

We use a real programming language to explain the algorithms in the book to make it
easier for you to experiment with them. Many algorithmic textbooks will not, preferring
to describe algorithms in pseudo-code where the abstractions can be fitted to the
problem. This might make the description of algorithms slightly more accessible, but can
also easily hide away the issues that you will have to resolve actually to implement them.

11
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We prefer to use an actual language. It is a very high-level language, so some details that
you will have to deal with in lower-level languages are still hidden from you, but what
you can implement in Python you can actually run on your computer. And it is vital that
you do take the code in this book and experiment with it.

To get the full benefit out of this book, or any book like it, you must practice. And
practice a lot. Programming can look deceptively easy—at least for the complexity level
we consider in this book—but it is substantially harder to write your own code than it is
to read and understand code already written.* Without exercising the skills involved in
computational thinking and algorithmic programming, at best you will get a superficial
understanding. Watching the Olympics doesn’t prepare you for athletics. Each chapter has
an exercise set associated with it, and you should expect to use at least as much time doing
exercises as you spend reading the chapters if you want the full benefit out of the book.

‘An interesting thing is that to inexperienced programmers, and with simple programs, itis a lot
easier to read a program than to write it. The opposite is the case for experienced programmers
working in more extensive and more complex programs. Once programs reach a certain level
of complexity, they get harder to read than to write, and a lot of software engineering aims at
alleviating this.

12
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Introducing Python
Programming

Many textbooks on algorithms will present the algorithms in so-called pseudo-code,
something that looks like it is written in a real programming language while it is in

fact written in an approximation to such a language but where the abstractions and
programming constructs are chosen to make the algorithms look as simple as necessary.
Since the goal of these books is to present the essentials of an algorithm and not distract
the reader with unnecessary language artifacts, it is a sensible approach. It does,
however, occasionally hide too many details from the reader, and since the pseudo-code
cannot be run by a computer, it is not possible to experiment with it to test different
approaches to how an algorithm could be implemented in practice. In this book, we will
not use pseudo-code but present all algorithms in the Python programming language.
Python is a very high-level language, and in many ways, Python implementations of
common algorithms look very similar to pseudo-code versions of them, but with Python,
you get a working implementation.

Python is a general-purpose programming language with many advanced features,
and it scales well to constructing large software systems. At the same time, it has a
very gentle learning curve and lets you implement small programs with minimal
programming overhead. It is perfect for our purpose in this book. By knowing just a tiny
subset of the language, you will be able to implement the algorithms we cover, and you
will be able to experiment with them. Should you decide to make more of a career out
of programming, then you can easily pick up the more advanced features of Python and
use this language for larger projects as well.

Writing complete programs, especially more extensive applications, requires
different skills than the computational thinking we cover in this book. It takes a different
skill set to be able to engineer software such that it is scalable and maintainable than the
skills that are needed to build efficient algorithms. Those software engineering skills are
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beyond the topics here. If you are interested in writing larger systems, there are many
excellent textbooks on the market.

Obtaining Python

When you write programs in Python, you will usually do this in one or more plain-text
files using a text editor. You cannot use word processors such as Microsoft Word since
these do not save their documents as plain text. An excellent editor that supports Python
and is available on Windows, macOS, and Linux is Visual Studio Code (https://code.
visualstudio.com). When you save a file, give it the suffix . py. This is not necessary

to have Python run your program, but it is the convention, and it makes it easier to
recognize that a file contains a Python program.

You can download Python from www. python.org/. There are installers for Windows
and macOS§, and if you use Linux, then chances are that Python is already installed. If
not, the package manager on your platform will be able to install it. The dialect of Python
we will use in this book is Python 3.x (version numbers that start with 3). The differences
between Python 2.x and 3.x, for the purpose of the algorithms we will explore here, are
very minor, and all the algorithms in this book work equally well in either version. There
are differences in the built-in functions, though, so you should download the installer for
a Python 3.x to get exactly the behavior as described here.

In a few places, we will use additional functionality from what you get with a basic
Python installation, however. We use a module called Numpy for tables when we cover
dynamic programming in Chapter 9, and I show you plotting code for empirically
validating the running time of algorithms in Chapter 4 where I use a module called
matplotlib. You do not need either to follow the book, however. There are alternatives
to Numpy for tables, and you can always plot running times in spreadsheets or other
plotting programs. You can install these packages using a tool, pip, that is installed
together with Python

pip install <package name>

but if you do not mind a larger installation—taking up more space on your disk—you can
install Python together with many packages for scientific computing and data science
from www.anaconda. com. We only use a tiny fraction of the software that is installed via
Anaconda, but everything we do use will be available to you once you have installed
Anaconda. If you continue programming in Python after you have read this book,
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chances are that you will find a good use for many of the other modules installed by
Anaconda, especially if you want to continue your career using Python for data science.

Running Python

When you have installed Python, written a program, and saved it to a file, say file.py,
then you can run your program by writing

python3 file.py
in your terminal. If you want to use Python interactively, you can write
python3

Press Ctrl+D to leave the Python terminal again.

This will give you a Python terminal where you can write instructions to Python and
get its response back. For the next few sections, you can just do that. I suggest you type
all the following examples into your Python terminal to test the results they give you.

Expressions in Python

Try writing some arithmetic expressions into the Python terminal, for example
2 +4

or

2 *¥3

You can write expressions as you know and love them from basic arithmetic. The
arithmetic binary operators +, -, *, and / work as you would expect them to from the
arithmetic you learned in school,' as does the unary -. That is,

-4

'If you have used other programming languages or if you use Python 2, division might work
differently from what you expect. In some languages, including Python 2, / is integer division if
you divide two integers, so, for example, 3/2 would be 1 since 2 divides 3 once, with a remainder
of 1. In Python 3, / works as you learned in school and is called “true division.” Integer division
has a separate operator, //; see in the following.
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is minus four.
2 ¥2 +3

is 7. Notice that we interpret 2 * 2 + 3 asyou are familiar with in mathematical
notation. First, we multiply two by two, and then you add three. Python knows the
precedence rules that say that multiplication binds stronger than addition. If you want
another precedence, you use parentheses as you would with a pen and paper.

(3 +2) *2

would be 10.

When you do not use parentheses and arithmetic precedence is taken into account,
the evaluation proceeds from left to right for the preceding binary operators (for
exponentiation, the order is right to left; see in the following). For example,

1/2/2

is interpreted as (1/2)/2 = 1/4 = 0.25 and not 1/(2/2) = 1.0. To get right-to-left evaluation,
you will need to add parentheses:

1/ (27 2)

If you have not noticed that in the usual arithmetic notation, then trust me it is how it
works there as well. In expressions like this, however, I would use parentheses as well to
make the order explicit.

You can always use parentheses to change the default evaluation order or simply
to make explicit what you intend, even if it is already the default. Writing (2 * 2) + 3,
while it is the default for2 * 2 + 3, doesn’t make the expression any harder to read,
after all. Twouldn’t use parentheses here, and you would probably not either, but you
can if you want to.

There are more operations than addition, subtraction, multiplication, and divisions,
for example, raising a number to a power. If you want to compute two to the power of
four, 2* = 16, you can use the ** operator: 2**4. This operator has higher precedence
than multiplication and division, so 2 * 2**4 is 2.24 = 32 and not (2-2)* = 256. This
operator is not evaluated left to right but right to left, also following typical mathematical
notation. This means that 2**3**4 is interpreted as 2% ~2.4x 10* and not (2%)* = 4086.

If you want to compute the latter, you must write (2*¥*3)**4. The notation is the same as
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it would be in the usual mathematical notation, but if you find it hard to remember, you
can always use parentheses to avoid any surprises, even when not strictly necessary.
Python 3 has two different division operators. When you use /, you get the division
you are used to in mathematics; 1 / 3 gives you a third. However, it is often useful
to guarantee that if you divide two integers, you get the integer result of the division.
Remember that for division, n/m, you get an integer if m divides n. In general, you can
write n = a-m + b where a is the integer number of times that m divides n and b < m is the
remainder. To get the integer part of the division, a in this example, you will use the //
operator. So while 5 / 2 will giveyou 2.5,5 // 2 will give you 2. To get the remainder,
you use the modulus operator, %. Since 5 =2-2 + 1, we would expect 5 % 2 to be one, and
indeed it is. If you evaluate

(577 2)*2+ (5%2)

the a-m + b form of this division, you get five, as expected. Another way to put this is that
5 // 2isfive divided by two, rounded down, or |5/2].

The rules for integer division and remainder are always like these if we consider
positive numbers n and m, but if n or m is negative, the result of the two operators is not
necessarily as well defined, and different programming languages have made different
choices.

An example might be the best way to illustrate this. Let’s say we work on a program
where we need to know what weekday any given day is. There are seven weekdays, and
we can number them from Monday = 0 to Sunday = 6. If today is Tuesday, we would
represent it as 1. If we want to know what day it is 10 days from now, we could do

today = 1 # Today is Tuesday
k = (today + 10) % 7 # Weekday 10 days from today

and we would find that k=4, so a Friday. All programming languages will agree on this.
They will reason that you have moved forward 11 days, or 11//7=1 week, and then you
have 4 days left, 11%7=4.

But what if we want to know what weekday it was 10 days ago? Then we could do

k = (today - 10) % 7 # Weekday 10 days ago

Here, we are evaluating -9 % 7, and different programming languages make
equally valid, but different, choices on what the result should be. Some will say that
you move one week back, so -1 times 7 days, so -9//7 should be -1, and then you have
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