p ~ f
i

Pro iPhone

Development
with SwiftUl

Design and Manage Top Quality Apps
Third Edition

Wallace Wang

Apress:

Pro iPhone Development
with SwiftUl

Design and Manage Top Quality Apps
Third Edition

Wallace Wang

Apress’

Pro iPhone Development with SwiftUI: Design and Manage Top Quality Apps

Wallace Wang
San Diego, CA, USA

ISBN-13 (pbk): 978-1-4842-7826-0 ISBN-13 (electronic): 978-1-4842-7827-7
https://doi.org/10.1007/978-1-4842-7827-7

Copyright © 2022 by Wallace Wang

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub: https://github.com/Apress/Pro-iPhone-Development-with-SwiftUI. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7827-7

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas ix
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss Xi
Chapter 1: Organizing Codeccuussmemmmssssnnnmmsssssnnsmsssssnsssssssnnssssssssnnssssssnnnnsssssnnnnsssss 1
Using the // MARK: COMIMENT........cccoiriirieriereninsesese s sese s s sessessesaessssessessesasssssesaesaesssssssessees 4
USINg FileS @nd FOIAEIS......cccerivirreriereriesersere e sessesse s ssesesessesaesessessesaesssssssesaesasssssessesaesssssssesneses 7
USE COAE SNMIPPELS .c.verreerererieserrersessesesseressessesessessessessesessesaesasssssessesasssssensesaesssssssessessesansensenaes 11
Creating Custom Code SNIPPELS.....ccccvverierrrerrrere s sere s s s sse e s s saesassessesaens 13
Editing and Deleting Custom Code SNIPPELSccceveverreriererensersereressessessessessssessessessssessessees 15

USE VIEW MOUITIBI'Sc.eeeeeececce e 16
SUIMIMAIY....eeeeeeceeree e e e e e s ae e s e e e e e e s Re e s e e e se e e e e Re e e re e nen e e nnnnees 18
Chapter 2: Debugging Codecussemmmrssssnnnmmssssnnnsmssssnnnssssssnsnssssssnsnssssssnnnsssssnnnnsnsss 19
Simple Debugging TEChNIQUESccecerveerircere s s 22
Using the XCode DEDUGUET.......cccvirermirirreerese s e ss e sss e sens 26
USING BreakpPointsccccevicesincsiniessse e s s s 27
Stepping Through COde ... e 28
Managing Breakpoints..........cuueerrenernsessnessssse s sesse s s s ssssssessssesessessssssensanes 31
Using Symbolic Breakpoints.........ccuoverernsenenesmnnse s sessessss s ssssesssssssssssessssessnns 32
Using Conditional Breakpointscccvievnninnnieninnnnsinsesess e sessessesssssssessessessssessessens 35

ES 1] 4= RS 37
Chapter 3: Understanding ClOSUIeScccurumsssmmnmmssssnssssssssnsssssssssnnssssssnnnssssssnnnssnss 39
Closures with Multiple Parameters........ccccveveverrriererensenseresssessesessessssessessesssssssessessesssssssessees 42
Understanding Value Capluring........ccccovovireninnsni s s s ss s s srsssssessesnes 43
USiNg CloSUreS lIKe DALAccoerrererererereeresesesese e s senns 44
USING Trailing ClOSUIEScccveruierreserisesessesesresesesse e e s sesse e s sss e s ssssesssssssnsssssssssssnssssnns 46

iii

TABLE OF CONTENTS

Passing Parameters 10 @ Trailing CIOSUIEc.ccveruerernerierensssersese e sessessessessssessessessssessessees 48
Passing Parameters and Returning a Value from a Trailing ClOSUr€........cccoeveververerersersersens 49

11T 111 SRS 50
Chapter 4: Multithreaded Programming Using Grand Central Dispatch................. 53
Understanding TAFEAUSc.cvceerueecrercreree e 54
Using Grand Central DiSPACRccoveeeerenernirncsne s 60
USing DiSPAtCh GrOUPS......ccccevieririirire st s s e s e e s ae b e aennes 67
11104 RS 72
Chapter 5: Understanding CONCUITENCY......cccussseessessssnnssessssnsnssssssnnsssssssnnsssssssnnnsssss 73
Concurrency With ASYNC/AWAILc.evvvevrererererserseressssessese e ssssessessessssesessessssssssssessessssessesseses 74
Using Concurrency with User INTErfaces.........cccvverrecirncnnienirs s se s sens 78
SUIMIMAIY.....eeeeeeecee e e e e e Re e e e e e e e e Re e s ae e se e e e e se e e re e ne e e e nnnneas 83
Chapter 6: Understanding Data Persistence.........ccuueemmmmsssnnnmmssssssnssssssnsnssssssnsnsnsns 85
Storing Preferences in USErDefaults........c.cccoveeresrnsennnesesnse s sessesessenens 86
Reading and Writing t0 FileScooucevirenrniserse s 91
0T 0 0T (= D OO 95
Creating a Data MOdel Filcccvvvirieriennrirere s sere s s se s s s sae e s e saesnesessessesnens 96
Adding Core Data to an EXisting Project.........ccvvvrvninnnnrninens s s sesessesees 101

£ 11134 7R 116
Chapter 7: Sharing Data Between Structures........ccusemrrnssssennnnssssnsnsssssssssssssssnnns 117
Sharing Data With BiNdINGSc.ccccoriirenrnsrnr s 117
Sharing Data with StateObject and ObServedODbEcCt............ccoverererrnrerererer e 124
Sharing Data with EnvironmentODject...........ccvvvrrennenrnscsrese e 130
BT 1117 o SRS 136
Chapter 8: Translating with Localization............ccccusemmmmnssssnnnmnssssssnmnssssnssnsssssnns 137
Creating a Localization File.........ccccvevririeriennsirie s s e s s ss e s s sae e saesnes 138
Defining MUIIPIE PrEVIBWSc.ciiriiiie st ses s se s sn e s sn s sae s nae s 145
Using @ LoCalizableStriNgKEYcccovueccrrierirenircseris et se s e ses e se s 148
Using String Interpolation with Localizable Strings ..o 151

iv

TABLE OF CONTENTS

Formatting Numbers and Dates..........ccccvvrvnninininin s s saeens 155
USiNg PSEUAOIANGUAGEScceiricrrereriesinsisese s s srs s s s ss s e s e s sss e s e s snssss e snesnessssesnesnens 158
SUMIMANY ..t s E e e e e b e e e e e R e R e e e e e e e Ao b e e e e e Re e R e e e e e aenns 164
Chapter 9: Adding Search t0o an AppP.......ccccmrmssssnnmmmsssssnnmsssssssnsssssssnnsssssssnssssssnnnnss 165
Adding a Search Bar t0 @ LISt VIEWcccccvvernnerenesenssesssessss s ses e sessesessssessssessnns 166
Changing the Placeholder Text in the Search Barccouvvvennnnnnsesnesessse s 169
Making the Search Bar Visible Initially...........ccccoovvriernnninieninssrsene s sessessessessssesesaens 170
Adding Suggestions t0 the SEArCh Barccccvcevevrrerierienesessensesessssessessessessssessessessessssessessens 172
31111117 OO ORS 175
Chapter 10: Detecting Motion and Orientationccceivnsnnmmnnnssssnnnnnsssssssssssssnnns 177
Understanding Core MOLIONccooeecrnenrenererc e 177
Detecting ACCEIErationcccviinininirn s s 178
Detecting Rotation with the GYrOSCOPEcccvvererirniri e 184
Detecting Magnetic FIelds........cccvriinnncnn s 188
Detecting Device Motion Data ... e 192

£ 1117 S 195
Chapter 11: Using Location and Mapsccccuseemmmsssssnnnmsssssssnssssssssnsssssssssssssssnnnss 197
USING MAPKIL.......ccoieeerriirieereses e e 197
DEfiNiNG ACCUIACY.....ceeeerreerrnesrssesesese s s sr s e s sr s e se e sr s sn e sr e r e nnpa e 198
Defining @ DiStanCe FIlLErcccuovceiiiernserrresere s 199
Requesting @ LOCALION.........c.cuccervesereserrnse e se s se s s e sns e s senns 200
Retrieving LOCAtion Datac.cccceerenernsesnnesnnese s s se s s sesssssssssesenses 200
Requesting AUthOFZation ... s 201
Adding @ MaP MATKETccvierereririereners s s s a s sa e st aesae e e naennens 205
AddiNG @ MAP PiN...cecrccicccerire s s sse e se e sae e s e s saesas s s e ssesaesa s e nsesaesaesassensesaens 208
Adding a Map ANNOTALION...........cocrierec e s s 210
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e aennis 213

TABLE OF CONTENTS

Chapter 12: Playing Audio and Vide0ccceussseensssssssnsssssssssnsssssssnsssssssssssssssssnnnss 215
Playing an AUio File ... s s s 216
Lo N T Yo T T 221
Overlaying TEXt ON VB0cccoeeerereererererese e 225
B30T 1117 o OSSR 230
Chapter 13: Using SPeeCh......ccccrrsssmmmmmmssssnnmmsssssnssssssssnssssssssnnsssssssnnsssssssnnsssssnnnnnss 231
Converting SPEeCh t0 TEXEccvciiere e e e nnen 231
Recognizing SPoKen COMMANGS..........ccvrrverereererrerersesessesessesessessessessssessessesssssssessessesssssssessens 240
Turning TEXE 10 SPEECH.....cv i —————— 248
SUMIMANY ..t e e s b E e e b b e e e R e R e e e e e Re e Re R e e e e e Re R e e e e nRenrs 251
Chapter 14: Integrating SwiftUl with UIKitcccccmmmmiirinnnnnssssssnnnnnnsssssssssssssnns 253
DiSPIaying @ PDF Filecccvvierenenereseressesesssesese s sessesesse s ssssssesssssssssessssssesssssssssssssssssssssenns 254
Displaying @ WEDSITE.........cccrirerienersse s s ses s 258
Integrating SwiftUl into Storyboard Projects.........cccvvvrvnieniisnsnnene s sesese s sesesaens 262
£ 11134 7P 272
Chapter 15: Using the Photo Library and the Cameraccocvnseemnnnsssssnssssssssnns 273
Setting Privacy SELtNGS.....c.ccvoierrrce sttt 274
Designing a Simple User INterface...........cccurinnrninsnsn s sesesnens 275
Creating an IMAgEPICKEccoeeerrerereser s 278
TESHNG The APP c.veriirire e e e e e e 283
L1134 RS 285
Chapter 16: Using Facial Recognition........cccccuseemmmmssssnmnmmssssssnmsssssssssssssssssssssssnnnss 287
Recognizing FACES iN PICTUIESc.ccvceveriirire s sn s sn e s ss s sne s 287
Highlighting Faces in an IMage...........ccoucvirinnninininn s sessesnens 293
SUMIMANY ..ttt e e s R e e e e e bR e e e e R e R e b e e e Re e Re R e e e e e Re R e e e e e Renns 302

TABLE OF CONTENTS

Chapter 17: Using Machine Learning.........ccccussssessesssssnnsssssssssssssssssnssssssssssssssssnnnss 303
Understanding Machine Learning...........cccvivnnnineninnnsnsese s sessesesssssssessesssssssessessesssssssessens 304
Finding @ Core ML MOEIccvvererininsinene s st 306
IMAGE RECOGNITION ... e 308
Detecting LANGUAGESccceevrrerrrreserese e srssessssess e sss s sessesssssssssssssssssssssssssssssssnsssns 321
L1134 RS 324

Chapter 18: Handling Errorsccuceummmnssssmmmmssssssnmsssssssnsssssssssssssssssssssssssssssssssnnnss 325
Using the Guard STatemeNt..........cccvevrinir e sa e nae s 326
Using the Do-Try-Catch Statement ... 331
USING try? @nd IrY! ..o e e e 337
£ 10T 1117 o 341

INO@X uueniissnnnsssnnnsssnnssssanssssanssssanssssannsssansssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 343

vii

About the Author

Wallace Wang is a former Windows enthusiast who took one look at Vista and realized
that the future of computing belonged to the Mac. He’s written more than 40 computer
books, including Microsoft Office for Dummies, Beginning Programming for Dummies,
Steal This Computer Book, My New Mac, and My New iPad. In addition to programming
the Mac and iPhone/iPad, he also performs stand-up comedy, having appeared on
A&E’s "An Evening at the Improv" and having performed in Las Vegas at the Riviera
Comedy Club at the Riviera Hotel and Casino. When he’s not writing computer books
or performing stand-up comedy, he enjoys blogging about screenwriting at his site,

The 15 Minute Movie Method, where he shares screenwriting tips with other aspiring
screenwriters who all share the goal of breaking into Hollywood.

ix

About the Technical Reviewer

Wesley Matlock is a published author of books about iOS technologies. He has more
than 20 years of development experience in several different platforms. He first started
doing mobile development on the Compaq iPAQ in the early 2000s. Today, Wesley enjoys
developing on the iOS platform and bringing new ideas to life for Major League Baseball
in the Denver metro area.

xi

CHAPTER 1

Organizing Code

Programs are rewritten and modified far more often than they are ever created. That
means most of the time developers must change and modify existing code either written
by someone else or written by you sometime in the past. Since you may be writing code
that you or someone else will eventually modify in the future, you need to make sure you
organize your code to make it easy to understand.

While every developer has their own programming style and no two programmers
will write the exact same code, programming involves writing code that works and
writing code that’s easy to understand.

Writing code that works is hard. Unfortunately, once developers get their code to
work, they rarely clean it up and optimize it. The end result is a confusing mix of code
that works but isn’t easy to understand. To modify that code, someone has to decipher
how it works and then rewrite that code to make it cleaner to read while still working
as well as the original code. Since this takes time and doesn’t add any new features, it’s
often ignored.

Since few developers want to take time to clean up their code after they get it to work,
it'’s best to get in the habit of writing clear, understandable code right from the start. That
involves several tasks:

e Writing code in a consistent and understandable style

e Making the logic of your code clear so anyone reading it later can
easily understand how it works

e Organizing code to make it easy to modify later

When writing code, focus on clarity and readability. It’s possible to write code that
works but is hard to understand. That makes modifying that code difficult. Many times, it
can be easier to rewrite code from scratch rather than waste time trying to figure out how
it works.

© Wallace Wang 2022
W. Wang, Pro iPhone Development with SwiftUI, https://doi.org/10.1007/978-1-4842-7827-7_1

https://doi.org/10.1007/978-1-4842-7827-7_1#DOI

CHAPTER 1 ORGANIZING CODE

Swift lets you choose any name for variables and constants. However, it’s a good
idea to use descriptive names to help you understand what type of data that variable or
constant can hold. Consider the following variable names:

var x: Int = 8
var dgie83: Double = 13.48
var FLdkjep: String = "Right"

While valid, these names don’t make it clear what type of data they hold. A far better
solution is to use descriptive names like this:

var age: Int = 8
var weight: Double = 13.48
var direction: String = "Right"

Single word variable names can be fine, but you may want to use multiple words to
make a variable or constant name even more descriptive. When combining multiple
words to form a variable or constant name, Swift programmers commonly use
camelCase, which uses lowercase letters for the first word and an uppercase letter for the
first letter of each succeeding word like this:

var ageOfPet: Int = 8
var weightInKilograms: Double = 13.48
var directionToTurn: String = "Right"

Just as variable and constant names can be too short, they can also be too long.
Ideally, use descriptive names that get their meaning across using as few words and
characters as possible.

When declaring variables or constants, you can optionally define the data type they
hold by adding a prefix or suffix that identifies the type of data they contain such as

var strName : String
var intAge : Int
var dblSalary : Double

var nameStr : String
var agelnt : Int
var salaryDbl : Double

CHAPTER 1 ORGANIZING CODE

Note The idea of adding data type prefixes to variable and constant names
is known as Hungarian notation, which was invented by Charles Simonyi, who
worked at Xerox PARC and Microsoft.

The ultimate goal is to write self-documenting code that makes it easy for anyone
to understand at first glance. One huge trap that programmers often make is assuming
they’ll be able to understand their own code months or even years later. Yet even after
a few weeks, your own code can seem confusing because you're no longer familiar with
your assumptions and logic that you had when you wrote the code originally.

If you can’t even understand your own code months or even weeks later, imagine
how difficult other programmers will find your code when they have to modify it in your
absence. Good code doesn’t just work, but it’s easy for other programmers to understand
how it works and what it does as well.

When developing your own programming style, strive for consistency and
organization. Consistency means you use the same convention for writing code whether
it’'s naming variables with prefixes or suffixes that identify the data type or indenting
code the same way to highlight specific steps.

Organization means using spacing and storing related code together such as putting
variables and functions in the same location consistently. This can group chunks of code
in specific places to make code easier to understand as shown in Figure 1-1.

CHAPTER 1 ORGANIZING CODE

import SwiftUI

struct ContentView: View {

@State private choiceArray = [Int]()
PState private randomNumber = @
@State private message = "

@PState private arraylLength = 180
@State private maxNumber: Double = 1@e@

var body: some View {
VStack {
Slider(value: SmaxNumber, in: 1...160)
Text({"Max value = \(Int(maxNumber))")
.padding()
Button({action: {
choiceArray.removeAll()
for _ in @...arrayLength - 1 {
randomNumber = Int.random{in:
1...Int(maxNumber))
choiceArray.append(randomNumber)
message = "\(choiceArray)"
}
04
Text("Create array")
}
TextEditor(text: Smessage)

¥

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()
}
}

Figure 1-1. Grouping related code together makes it easy to know where to look
for certain information

The specific placement of code is arbitrary, but what’s important is that you organize
code so it’s easy to find. The clearer your code, the easier it will be to fix and modify
itlater.

Using the // MARK: Comment

Besides physically grouping related items together such as functions and variables,

you can also make searching for groups of related code easier by using the // MARK:
comment. By placing a // MARK: comment, followed by descriptive text, you can make
it easy to jump from one section of code to another through Xcode’s pull-down menu as
shown in Figure 1-2.

CHAPTER 1 ORGANIZING CODE

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help

ece M P>] Secretary ProblemU!) 8 iPod touch (7th generation) Secretary ProblemUl | Build for Previews
= QA AS gD 88 < > B ContentView.swift

v B Secretary ProblemUl [secretary ProblemUl) = Secretary ProblemUl) B ContentView.swi [ContentView

v © Secretary ProblemU! ! i :: D " StalCNafss s
¥4 n n W.SW
= Secretary_ProblemUIApp... 3 i/ s:crztar:rcprzbie;m hoiceiny
B ContentView.swift “ 11 randomitumbec
75 Assets.xcassets 5 // Created by Wallace Wang on 3/26/21. () message
@ Info.plist 5 1 [arrayLength
> = Preview Content & import Swiftul @ maxNumber
> = Products Main user interface
struct ContentView: View { [2) body
1 // MARK: State variables) ContentView_Previews
12 @State private var choiceArray = [Int
13 @State private var randomNumber = @ m previaus
L @State private var message = "*®
15 @State private var arraylLength ee
16 @State private var maxNumber:dfouble = 100
18 // MARK: Main user interface
19 var body: some View {
20 VStack {
2 Slider(value: SmaxNumber, in: 1...180)
22 Text("Max value = \(Int(maxNumber))")
23 .padding()
24 Button(action: {
25 choiceArray.removeAll()
y for _ in @...arraylLength - 1 {
27 randomNumber = Int.random(in:
1...Int{maxNumber))
28 choiceArray,append(randomNumber)
29 message = "\ (choiceArray)"
. }

|

32 Text("Create array")
33 }
34 TextEditor(text: Smessage)

Figure 1-2. The // MARK: comment creates categories in Xcode's pull-
down menus

The structure of the // MARK: comment looks like this:
// MARK: Descriptive text

The two // symbols define a comment. The MARK: text tells Xcode to create a pull-
down menu category. The descriptive text can be any arbitrary text you want to identify
the code that appears underneath.

Once you've defined one or more // MARK: comments, you can quickly jump to any
of them by clicking on the last item displayed above Xcode’s middle pane to open a pull-
down menu as shown in Figure 1-3.

CHAPTER 1 ORGANIZING CODE

B y Problemut) 7=

y ProblemUl) B ContentView.swift) [5) ContentView ?C]ic’(ing the last item here...

(B secretary ProblemUl) ~ Secretary ProblemUl) [ContentView.swi [ContentView

T State variables ...displays a popup menu here
2 [/ ContentView.swift [choiceArray

3 // Secretary ProblemUI

) randomNumber

u ff

5 // Created by Wallace Wang on 3/26/21. message

6 I arrayLength

f . P~ [} maxNumber

5 mport Swift [Z) Main user interface
10 struct ContentView: View { [body

1 // MARK: State variables B contentView_Previews
12 @PState private var choiceArray = [Int]() .

13 @PState private var randomNumber = @ Q previews

14 @State private var message = ""

15 @State private var arrayLength = 108

16 @State private var maxNumber: Double = 100

18 // MARK: Main user interface

19 var body: some View {

20 VStack {

21 Slider(value: SmaxNumber, in: 1...100)

22 Text("Max value = \(Int(maxNumber))")

23 .padding()

Button

(action: {

] choiceArray.removeAll()
6 for _ in @...arraylLength - 1 {

randomNumber = Int.random(in:
1...Int{maxNumber))

choiceArray.append({randomNumber)

message = "\(choiceArray)"

Figure 1-3. Displaying Xcode’s pull-down menu that lists all // MARK: comments

If you choose Editor » Minimap, you can toggle between opening or hiding

the minimap, which

displays a thumbnail view of your code. If you have // MARK:

comments in your code, the minimap will display them, as shown in Figure 1-4, so you

can click on any // MARK: comment to jump to that part of your code.

CHAPTER 1 ORGANIZING CODE

struct ContentView: View { P g T
// MARK: Variable declaration . Ho
"D "Parrot") =

let petArray = ["Cat", og",

Display image here

@State private var index = @

var body: some View {
VStack {

Picker(selection: $index, label: Text(“Picker")) {

ForEach(@..<petArray.count) {

Minimap

Text{petArray[$e])
}
}
Text({"You picked \(petArray[index]
.padding()

// MARK: Display image here]
Image(uilmage: (UIImage(named: petArray[index]) ?? UlImage(systemName:
“hare.fil"))!)
.resizable()
.aspectRatio(contentMode: .fill)
.frame(width: 250, height: 250)

}

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()
}

Figure 1-4. The minimap displays // MARK: comments for easy navigation

Use the // MARK: comment generously throughout each .swift file. This will make it
easy to jump to different parts of your code to modify or study later.

Using Files and Folders

Theoretically, you could create a single file and cram it full of code. While this would
work, it’s likely to be troublesome to read and modify. A far better solution is to divide
your project into multiple files and store those multiple files in separate folders in
Xcode’s Navigator pane.

Separate files and folders exist solely for your benefit to organize your project.
Xcode ignores all folders and treats separate files as if they were all stored in a single file.
When creating separate files, the two most common types of files to create are shown in
Figure 1-5:

CHAPTER 1 ORGANIZING CODE

o SwiftUI View

o Swift File

r
Choose a template for your new file:

i0s macOS watchOS tvOS DriverkKit

Source

Swift File Cocoa Touch
Class
Header File C File
User Interface
Swiftul View Storyboard

Cancel

A

o

Ul Test
Case Class

CcH+

C++ File

View

-
®
Unit Test Objective-C File
Case Class
N\
Metal File
L 1-..
Empty Launch Screen

Figure 1-5. The two most common types of .swift files in a project

SwiftUI View files define user interfaces that appear on an iOS screen.

The Swift File option creates a blank .swift file for storing and isolating code such as

defining a list of variables, data structures, or classes.

The more .swift files you add to a project, the harder it can be to find any particular

file. To help organize all the files that make up a project, Xcode lets you create folders.

By using folders, you can selectively hide or display the contents of a folder as shown in

Figure 1-6.

CHAPTER 1 ORGANIZING CODE

v B Fruta
(T README
v @ Shared
3 FrutaApp
> & Components
> & Ingredients
v & Model
3l Account
FileS @ Configuration
3\ Order
3 Model
> & Navigation
> & NutritionFacts
> & Orders
Folders > & Recipe
> & Smoothie
> & Styles
> & Resources
&= i0S
3 AppTabNavigation
3 FrutaAppClip
) i0S Clip
{7} i0S Extended
& ios

Figure 1-6. Folders help organize all the files in a project

To create an empty folder, choose File » New » Group. Once you've created an
empty folder, you can drag and drop other folders or files into that empty folder.

Another option is to select one or more files and/or folders by holding down the
Command key and clicking on a different file and/or folder. Then choose File » New »
Group from Selection. This creates a new folder and automatically stores your selected
items into that new folder.

You can also right-click in the Navigator pane to display a pop-up menu with the
New Group or New Group from Selection commands as shown in Figure 1-7.

CHAPTER 1

ORGANIZING CODE

@ Xcode Iﬁﬂ Edit View Find Mavigate Editor Product Debug

o ce » TN . ®8T
£ -
| AddFiles to “DeleteMe2”.. 3¢A Window 02T
BEERQ —
v [DeleteMe2 Open... #0 :"e'"t ®N
v iDeloteMe2 OPeN Recent > g8
. AppDel¢ OPen Quickly... ©%O | playground.. 0N
s ViewCol ojoce Window o3ew Project. N
¥ . | New Gr¢ Close Tab W Workspace... ~IEN i
Close "Flle.swift” e [—
vifBothe¢ Close Project ~O8W I Group with Folder
Main.stc %S Group from Selection
|55 Assets.a
| Launch$ ¢3S
Info.plis 2
P . | Products 2
== Export...
Open in New Tab
Open in New Window
Show in Finder
Open with External Editor
Save As Workspace...
Project Settings...
Page Setup... 1 3P
Print... P

Figure 1-7. Menu commands to create a new folder

File pull-down menu

BEERQAAS=Ec B
v [B DeleteMe2
¥ || DeleteMe2

Open in New Tab .
Open in New Window

Show in Finder

Open with External Editor
Open As >
Show File Inspector

New File...
Add Files to “DeleteMe2"..

Delete

New Group
New Group without Folder
New Group from Selection

Find in Selected Groups...
Source Control >

Project Mavigator Help

Right-click pop-up
menu

Note If the Group or Group from Selection commands are greyed out, click on a
file to select it before choosing the File » New » Group or File » New » Group
from Selection command.

Once you've created a folder, you can always delete that folder afterwards. To delete

a folder, follow these steps:

1. Click on the folder you want to delete in the Navigator pane.

2. Choose Edit » Delete, or right-click on the folder and when a
pop-up menu appears, choose Delete. If the folder is not empty,

Xcode displays a dialog to ask if you want to remove references to

any stored files in that folder or just delete them all as shown in

Figure 1-8.

10

CHAPTER 1 ORGANIZING CODE

Do you want to move Data
Structures.swift to the Trash, or
only remove the reference to it?

This operation cannot be undone.

Move to Trash

Remove Reference

Cancel

Figure 1-8. Xcode alerts you if you're deleting a folder that contains files

Note Deleting a folder also deletes its contents as well, which can include other
folders and files.

3. Click the Move to Trash button to delete the files completely (or
click Remove Reference to keep the file and disconnect the file
from your project but without deleting it).

Use Code Snippets

Remembering the exact syntax to create switch statements or for loops in Swift can be
troublesome. As a shortcut, Xcode offers code snippets, which let you insert generic code
in your Swift files that you can customize afterwards. This lets you focus on the purpose
of your code without worrying about the specifics of how Swift implements a particular
way of writing branching or looping statements. In addition, code snippets help you
write consistent code that’s formatted the same way.

To use code snippets, follow these steps:

1. Clickin the Swift file where you want to type code.
2. Click the Library icon. A window appears.

3. Click the Snippets icon to display code snippets as shown in
Figure 1-9.

11

CHAPTER 1 ORGANIZING CODE

Snippets icon

® PBnippets

Swilt

API Availability Check

Closure Expression

Closure Stored Constant Decla...
Computed Variable Get and Se...
Computed Variable Get Declar...
Convenience Initializer Declara...
Defer Statement

Deinitializer Declaration
Do-Catch Statement
Enumerated Type Declaration
For Statement

f ’m Function Statement

@ = &
Closure Expression
A set of statements that can be reused and passed to other code.
(@l {parameters) IS return type B
}

Language Swift
Platform All
Completion closure

Availability Function, Method, or Top Level

Figure 1-9. The Code Snippets window

4. Scroll through the Code Snippets window and click on a snippet

you want to use. Xcode displays a brief description of that code

snippet.

5. Drag a snippet from the Code Snippet window and drop it in

your Swift file. Xcode displays your snippet with placeholders for

customizing the code with your own data as shown in Figure 1-10.

do {
try
} catch {

}

Figure 1-10. A code snippet ready for customization

12

CHAPTER 1 ORGANIZING CODE

Creating Custom Code Snippets

The Code Snippet window can make it easy to use common types of Swift statements
without typing them yourself. However, you might create your own code that you might
want to save and reuse between multiple projects. Rather than copy and paste from one
project to another, you can store your own code in the Code Snippet window.

To store your own code as a snippet, follow these steps:

1. Select the code you want to store.

2. Choose Editor » Create Code Snippet, or right-click on your
selected code and when a pop-up menu appears, choose Create
Code Snippet as shown in Figure 1-11. Xcode adds your selected
code to the Code Snippet window as shown in Figure 1-12.

13

CHAPTER 1

ORGANIZING CODE

Editor Product Debug

Show Editor Only

+ Canvas
Assistant
Layout

Show Completions
Show Code Actions
Edit All in Scope
Refactor

Fix All Issues

Show Issues

Show All Issues

Create Preview
Create Library Item

Canvas

Selection
Structure

Code Folding
Syntax Coloring
Font Size
Theme

+ Inline Comparison
Side By Side Comparison
Comment on Current Line

Minimap
Authors
Code Coverage

Vim Mode
Invisibles
+ Wrap Lines

Show Last Change For Line

Create Code Snippet...

Source Co

%+

>
>
>
>
>
>

Editor menu

Jump to Definition
Show Code Actions

Show Quick Help

Set Breakpoint

Continue to Here

Refactor >
Find >
Mavigate >

Show Last Change For Line

Create Code Snippet...

Comment on Current Line

Cut

Copy

Copy File and Line

Copy Symbol MName

Copy Qualified Symbol Name
Paste

Services >

Right-click
popup menu

Figure 1-11. The Create Code Snippet command for adding your own code to the
Code Snippet library

14

CHAPTER1 ORGANIZING CODE
® Snippets 8
@ = &
User
| My Code Snippet |
My Code Snippet
Button {
. I
Mycode SHlppet } label: {
Swift Text("Click Me")
}.buttonStyle(.bordered)
AP| Availability Check .buttonBorderShape(.roundedRectangle(radius: 28))
Closure Expression
Closure Stored Constant Decla...
@] Computed Variable Get and Se...
Computed Variable Get Declar...
Convenience Initializer Declara...
Defer Statement Language Swift
Platform = All
Deinitializer Declaration Completion
Availability Al Scopes
Do-Catch Statement
Delete Done

Figure 1-12. Adding custom code to the Code Snippet window

3. Clickin the Title text field and type a descriptive name for your
code snippet. You may also want to edit your code or modify other
options as well.

4. Click Done. From now on, you'll be able to use your custom code
snippet in any Xcode project.

Editing and Deleting Custom Code Snippets

After adding one or more code snippets, you may want to delete them. You can only
delete any code snippets you added to Xcode; you can never delete any of Xcode’s
default code snippets. To delete a user-defined code snippet from the Code Snippet
window, follow these steps:

15

CHAPTER 1 ORGANIZING CODE

1. Click on a Swift file in the Navigator pane.

2. Click the Library icon to open the library window.
3. Click the Snippets icon.

4. Click on the code snippet you want to edit or delete.

5. Click the Edit button. Now you can modify the code and when
you're finished, click Done. (Or click the Delete button. When
Xcode asks if you really want to delete the code snippet, click
Delete.)

Use View Modifiers

When designing user interfaces in SwiftUI, you typically create a view (such as Text) and

then apply modifiers. If you tend to use the same modifiers over and over again, you can

duplicate these modifiers for multiple views. However, duplicating modifiers can take up
space and make code harder to read as shown here:

Text ("This is the first line")
font(.title)
.foregroundColor(.yellow)
.background(Color.blue)
.cornerRadius(6)
.padding()

Text ("Second line here")
font(.title)
.foregroundColor(.yellow)
.background(Color.blue)
.cornerRadius(6)
.padding()

Besides taking up space with duplicate code, another problem is if you want to
change one or more modifiers such as changing the font size or the background color.
With duplicate modifiers, you need to modify every copy, increasing the chance you’ll
miss one or more copies.

16

CHAPTER 1 ORGANIZING CODE

A better solution is to store commonly used groups of modifiers together in a
separate structure defined as a ViewModifier. Then you can apply this ViewModifier
structure to multiple views. Now if you need to change these modifiers, you can change
them in one place rather than in multiple places throughout your code.

In the preceding example, it makes sense to store the modifiers within a
ViewModifier structure like this:

struct MyStyle: ViewModifier {
func body(content: Content) -> some View {
content
font(.title)
.foregroundColor(.yellow)
.background(Color.blue)
.cornerRadius(6)
.padding()

This ViewModifier structure encloses all the modifiers, which can then be applied to
any view by using .modifier followed by the name of your structure like this:

struct ContentView: View {
var body: some View {

VStack {
Text ("This is the first line")
.modifier(MyStyle())
Text ("Second line here")
.modifier(MyStyle())
}

}

struct MyStyle: ViewModifier {
func body(content: Content) -> some View {
content
.font(.title)
.foregroundColor(.yellow)

17

CHAPTER 1 ORGANIZING CODE

.background(Color.blue)
.cornerRadius(6)
.padding()

Just as functions let you isolate and reuse code, so can ViewMaodifiers let you isolate
and reuse modifiers for different views.

Summary

Writing iOS apps involves writing new code and modifying existing code. To do both
tasks, you need to understand how any existing code works so you don’t accidentally
duplicate or break it. In many cases, you'll have to edit other people’s code, which may or
may not have been written in a clear, understandable manner.

Although you can’t control how other programmers write code, you can control how
you write code. The general principle is to write code that’s easy to understand. This can
involve adding comments (especially // MARK: comments to make it easy to jump to
specific parts of your code). You should also use descriptive variable names and organize
the related code in logical groups. You can do that by storing different parts of your code
together. You can also organize code by storing code in separate files that you can group
in folders.

To insure you write common Swift statements in a consistent manner, you can use
code snippets to insert the basic Swift code for you. Then you just have to customize
it with your own data. For more flexibility, store your own code in the Code Snippet
window. That way you can reuse your own code between multiple projects in Xcode.

Organizing code is never necessary, but since most programs are modified multiple
times, proper organization ahead of time can make modifying code much easier. Always
assume that someone else will modify your code and make it easy on that person for the
future, especially because that person could be you.

18

CHAPTER 2

Debugging Code

In the professional world of software, you'll actually spend more time modifying existing
programs than you ever will creating new ones. When writing new programs or editing
existing ones, it doesn’t matter how much experience or education you might have
because even the best programmers can make mistakes. In fact, you can expect that you
will make mistakes no matter how careful you may be. Once you accept this inevitable
fact of programming, you need to learn how to find and fix your mistakes.

In the world of computers, mistakes are commonly called “bugs,” which gets
its name from an early computer that used physical switches to work. One day the
computer failed and when technicians opened the computer, they found that a moth
had been crushed within a switch, preventing the switch from closing. From that point
on, programming errors have been called bugs and fixing computer problems has been
known as debugging.

Three common types of computer bugs are

e Syntax errors - Occurs when you misspell something such as a
keyword, variable name, function name, class name, or use a symbol

incorrectly

e Logic errors - Occurs when you use commands correctly, but the
logic of your code doesn’t do what you intended

e Runtime errors - Occurs when a program encounters unexpected
situations such as the user entering invalid data or when another
program somehow interferes with your program unexpectedly

Syntax errors are the easiest to find and fix because they’re merely misspellings
of variable names that you created or misspelling of Swift commands that Xcode can
help you identify. If you type a Swift keyword such as “var” or “let,” Xcode displays that
keyword in pink (or whatever color you specify for displaying keywords in the Xcode
editor).

19
© Wallace Wang 2022

W. Wang, Pro iPhone Development with SwiftUI, https://doi.org/10.1007/978-1-4842-7827-7_2

https://doi.org/10.1007/978-1-4842-7827-7_2#DOI

CHAPTER 2 DEBUGGING CODE

Now if you type a Swift keyword and it doesn’t appear in its usual identifying color,
then you know you probably typed it wrong somehow. By coloring your code, Xcode’s
editor helps you visually identify common misspellings or typos.

Besides using color, the Xcode editor provides a second way to help you avoid
mistakes when you need to type the name of a method or class. As soon as Xcode
recognizes that you might be typing a known item, it displays a pop-up menu of possible
options. Now instead of typing the entire command yourself, you can simply select a
choice in the pop-up menu and press the Tab or Enter key to let Xcode type your chosen
command correctly as shown in Figure 2-1.

Text ("First line = " + message)

[EI foregroundColor(_ color: Color?) Text

[0 foregroundColor(_ color: Color?) View

[@ frame(width:height:alignment:)

[@ font(_ font: Font?) Text

[@ fontwWeight(_ weight:)

0 fixedSize()

[fixedSize(horizontal:vertical:)

@ font(_ font: Font?) View
foregroundColor(_ color: Color?) -» Text

Sets the color of the text displayed by this view.
Figure 2-1. Xcode displays a menu of possible commands you might want to use

Syntax errors often keep your program from running at all. When a syntax error
keeps your program from running, Xcode can usually identify the line (or the nearby
area) of your program where the misspelled command appears so you can fix it as shown
in Figure 2-2.

(@State var message = "Hello, world!"
var body: some View {
VStack |
Text ("First line = " + mess) 2 © Cannot find 'mess' in scope

.font(.title)

Figure 2-2. Syntax errors often keep a program from running, which allows Xcode
to identify the syntax error

20

