Beginning (

From Beginner to Pro
Sixth Edition

German Gonzalez-Morris
lvor Horton

ApPress

Beginning C
From Beginner to Pro

Sixth Edition

German Gonzalez-Morris
lvor Horton

Apress’

Beginning C: From Beginner to Pro

German Gonzalez-Morris Ivor Horton
Santiago, Chile STRATFORD UPON AVON, UK
ISBN-13 (pbk): 978-1-4842-5975-7 ISBN-13 (electronic): 978-1-4842-5976-4

https://doi.org/10.1007/978-1-4842-5976-4
Copyright © 2020 by German Gonzalez-Morris and Ivor Horton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www. freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit

www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259757. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5976-4
﻿www.freepik.com﻿
mailto:﻿orders-ny@springer-sbm.com﻿
﻿www.springeronline.com﻿
mailto:﻿editorial@apress.com﻿
﻿mailto:bookpermissions@springernature.com﻿
﻿http://www.apress.com/bulk-sales﻿
http://www.apress.com/9781484259757
http://www.apress.com/source-code

To my parents, Germdn and Felicia

—German Gonzalez-Morris

For my daughter, Dany

—Ivor Horton

Table of Contents

About the AUtROrS.....ccciuiissnmmmmssssssnmmssssssnmmssssssnmessssnsnnessssnnnsessssnnnnessssnnnnsssssnnnnnsssnnns Xix
About the Technical REVIEWETccuvsssesssssnsmsssnsssssnsssssnsssssnssssssnssssnnssssnnsssssnssssanssssas Xxi
AcknOwIedgmENtScccuerimsssssssmsnnnmsmmssssssssssssnnsssssssssssssssnnnssssssssssssnnnnnssssssssssnnnnnns XXiii
INtroduCtioncccceurisissnnnnmssssnnnnmssssnnnnnssssnnnnnsssnnnnnssssnnnnsssssnnnnsssssnnnnnsssnnnnnnnssnnnnnnnssn XXV
Chapter 1: Programming in C.......ccccivnisemmmmmssssnsnmmsssssssssssssssnssssssssssssssssssssssssnnnsssss 1
THE C LANQUAGE......ccceeeererreirerse e sss s se e sse s s s s sn s sas s sa e s s e s ae s nas s nn s nns 1
The Standard LIDFary..........cccecvcrinsnninsessessesses s s s e s s s s sssssssnssnssssssssssnas 2
[T 11 T 0SS 2
Creating C Programsccoceieenisesnnessss s sessesss e sse s s e sss e sssssssesssssssssassesnssssnens 2
011] oSSR 3

0] 3101 T OO 3
011 o SRRSO 4

L o1] T TSP S R STRR 4
Creating Your FirSt Programcoocceeeienenese s e ssessssssssssssssssnssnsssssssssssssssssnnses 5
Editing YOur FirSt Program...........cccceveneninsnesessesse s ssanses 7
Dealing With EFTOrs........ccocvcvcicersrersr s sn s s sn s s sn s snssns s 7
Dissecting @ Simple Program. ... se s sn s e s 8
L0 1 T OO 9
PreproCesSing DIrECHIVEScoucuccecrereeercririe e 10
Defining the Main() FUNCHION ... s 10
KBYWOIUS ...ttt s e e R e b e R et e s b e R e e b b s Re e e e s b e e n e nrenn s 1

The Body Of @ FUNCHION ..ot 1

vi

TABLE OF CONTENTS

Outputting INFOrMALIONcocouiieer e e b s 13
FUNCHON AFQUMENTS ..ot r e p s n e n e e ne e nennnnens 13
L0 L0 I T T £ 14
THOrAPN SEOUEBNCESccivieecerir e e e e bbbt e e e et 16
TRE PrEPIOCESSONc..veeuereeruerreesesssesesssesessaeseesaesessaessesassnessesssessesnsesassssessssssessnsssnsaes 16
Developing Programs in C.......c.ccocvvrirensnninsirses s ses s s s ses s sssssssssssssees 17
Understanding the PrODIEM ...t sae e e e e sas e sae e se e ssesasaesassesassesassesaesanaens 17
LT 11 T DT 3R 18
1] 01T 44 T=T 0 = R 18
53 (1o 18
Functions and Modular Programming..........ccccueerersessessessessessessessssssssssssssssssssssssssssssssens 19
COMMON MISTAKES......ccurerrerrrerissiresessese s sn s sn s srenn s 23
POINtS 10 REMEMDET ... 23
SUMMEAIY ...t a e ee e e R e s a e R e e R e e s Re e e e nnennnnnas 24

Chapter 2: First Steps in Programming......cccccccmmmmsssmmnmmsssssssssssssssssssssssssssssssssnees 29

Memory in YOUr COMPULET ..o 25
LT L R R T o] R 28
NAMING VANADIES........coeeieeeeriricciree et n s 28
Variables That STOre INTEGEIS........ccou i 29
USING VAMADIES ...ttt e s p et s 34
INILIANIZING VAITADIES.......eceeeeeereeeeriree e 35
Basic Arithmetic Operations.........cccccvvereerierrerieersirsee s s s e sesssesesssessesaenns 36
More on DiviSion With INTEOEIScevrererererere e rereres e e sa e sae e ae e sesa s e sae e saesesaenesaenanaens 4
L1 T 0 01T = (0] £ 4
UNArY MINUS OPEIATOL........ccceueereeerererereeersesersesesaesessessssessesessesessesessessssessesesssnsssessssessssessessssssssassansens 4
Variables and MEMOKY........ocoe e e e sse s sse e snesns s s snssaesresnesnesrsnnennennns 42
SIGNEd INTEYET TYPES ...vveeeriicicririr e e e e e e e et et e et b s 43
UNSIgNEd INTEGET TYPES ..cveueeeecrierirerir et sa s se e r s b b s e p e n e r e e ne e nnnnnnnnas 43
Specifying INteger CONSIANTS.........ccccciriicrr e sp b s 44

TABLE OF CONTENTS

Working with Floating-Point NUMDETSc.ccocverirsrsesseeses s e e ses s ssssnsnnns 46
Floating-Point Number Representation ... sss s ssesseseens 47
Floating-Point VariahIES.........cccuvireiiiininirinene s s s ss e ss et sasssesassassaesassassessasssssnns 48
Division Using Floating-Point VAIUEScccuviririnin i sse s s sss s s seens 49
Controlling the Number of Decimal Places in the OUtPULcceevrcerecre e 50
Controlling the Output Field Width...........cccceeererere v sse e sassesassessesessssesassasaens 50

More Complicated EXPreSSions........cccvcvcriersersessesssssessesses s s s sesssssessnssnssessssssssnssssnns 51

Defining Named Constants..........ccvereverennncre s sss s s s sssssssssssssees 55

Knowing Your LImMitations........c.ccccvernrcensensnses s ses s s e s ses s s snssnnneas 57

Introducing the Sizeof OPErator............oeveeeeerece e e 60

Choosing the Correct Type for the JObccccevererereresc e 61

EXPIiCit TYPE CONVEISION.......cceieeeercrreeresie e se s s 65
AULOMALIC CONVEISIONS......cuviiicsrssissssss s bbb 65
Rules for IMPlICit CONVEISIONSccccverereeerrererreseresereraesessesessesessessssessssessesessessssessssessssessessssensssssasaens 66
Implicit Conversions in Assignment STateMEeNts ... ———— 67

More NUmMeric Data TYPESccccverrerrerirsirser s n s sn e n s nnenne e 68
L E T o (=] 1 1 OSSR 68
Character Input and Character QUIPUL...........cccou e 69
ENUMEIALIONS.......cciiicciii i 73
Cho0Sing ENUMErator VAIUES.........cccoueeeererieecririeecsi e 74
Unnamed ENUMEration TYPESccceurueererereeeirirseesesessee e se s 75
Variables That Store Boolean VaIUES ... sssssssssssssssenes 75

The op= Form of ASSIgNMENL..........cccvcrirrrirrrrr e sn e sneans 76

Mathematical FUNCHIONS.........cococeiiini 77

Designing @ Program.........c.ccccvcernersensessessisses s ses s sss s sss e sssssssssssssessnssnsssssssssssnsssssnas 78
THE PIODIBM ... 78
THE ANGIYSIS.....cueeeiuecerieieese st e st e s e e e e e ae e e R e Re e e e b e Re e e e e Re e e e e R e e e nennans 79
THE SOIULION....cciii s 81

31141 1P 2SS 85

vii

TABLE OF CONTENTS

Chapter 3: Making DeCiSiONS........ccceurrmsssnnnssssssnnsssssssssnsssssssnsssssssssnsssssssnnssssssnnnnss 87
The Decision-MakKing PrOCESS.........ccccurrrrrersessessessessessessssssssesssssssssssssssssssssssssssssssnssnsans 87
Arithmetic COMPANISONScccourueererereeesesireee et e s se et esp e e s 88
The BasicC if StAtEMENT ... s 88
Extending the if Statement: if-BISE ..o s 92
Using Blocks of Code in if StateMENtS..........ccooreeerircecrer e 95
Nested if STAtBMENTS ... ————————————— 95
TESHNG CRATACTEIS......ceieeeeeeerer ettt nnns 99
LOGICAI OPEIALOLScccoveeeuecrereereeesesse e e s e e e b se s b e se e b s s ae e e ssene e e e e sannnnas 102
The Conditional OPEIALOr..........ccoceerereecreriree et 105
Operator Precedence: Who GOES FirSt? ... 108
Multiple-Choice QUESTIONSccccerverierrerrersirrer s sn e sa s sn e snenens 112
Using else-if Statements for MUItiple ChOICEScocveeerereriereereree e rere e rse e aesesae e e sassesasnenes 113
The SWitCh STAtBMENT.......cccirirr i ————————— 114
The goto StatEMENTcoeeeceeee e e ra e e a e e a e e a e e e e ae e naan 122
BitWiSe OPEIatOrS......c.ccevueeercreerirerrr s n e nn s 123
The op=USE 0Of BitWiSE OPEIatOrS.......cceeererrerrererrrrereresserssersssessesessesessessssessssesssssssessssessssessesessenssnes 126
USING BitWiSE OPEIALOrScoveuereeierrererrererereeessesessesessesessesassesssessesessesessessssessssessssesssnssssssssessssessenenes 126
Designing @ Program.........c.ccuceersersessessessesssssessessessessesssssesssssesssssssssssssssssssssssssssssssnsens 131
THE PIODIBM ... 131
THE ANGIYSIS.....ceereeueererresesesess et e e e s e s e ae e s s e Re e e s e Re e e A e R e e sE b e R e e b e e b e ne e e s ans 131
THE SOIULION....cociiiiii s 132
31111 P2 7SS 135
Chapter 4: LOOPS....ccuuseemmmmssssnnmmsssssnnmmssssssnssssssssnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 137
HOW LOOPS WOTK.......ceeieerceerreesinersseeseesssessaessse e snesssessss e ssnessseessnsssnssssssssnesnnssssesssnssnnes 137
Introducing the Increment and Decrement Operators...........ccooeevveenrresnsesesesesenenns 138
THE FOF LOOD ..eeereeerere sttt s n s n s nn s nn e n e nn e n s 139
General FOrm of the fOr LOOPcvvevevieerierieerirree s sseesesssesssssesssessesssessesssssssssssssnsssenns 143
More on the Increment and Decrement Operators...........coecvreenreresnsesnsesesessessssennes 144
THe INCIEMENT OPEIALOL.......cceeeeeerrerereerererer e rae e rre e sesesae e s e rae e sesesaesesaesasaesaesesae e saenasae s esesaenesaenenas 144

viii

TABLE OF CONTENTS

The Prefix and Postfix Forms of the Increment Operatorcccvevriernieverene s seseseesessesessesenns 144
The Decrement OPErator ... s a e s a e sa e sa e e s r e sa e e sn e nns 145
The for Loop REVISIted.........cccvceriercirirsirsir e 146
Modifying the for Loop Control Variable ... 148
A for Loop With NO Parameters..........ccocerrecrerneenerisee e s ssssans 149
The break Statement in @ LOOP.........ccoceerrienirreescsesie e 149
Limiting INput USING @ fOr LOOP......coueurueeeririeescsirieeesisise e se s ss s nnns 152
Generating PSeudo-random INTEEIS........cooierererereririre e 154
More for Loop CONrol OPtiONS.......ccourueeeerereieseresieeesesese e ss s ssens 157
Floating-Point Loop Control VariabIes.............ccoveruiiienniiceresseeseresie e 157
Chars 100p CoNtrol VAriabIEs..........coourueeeeririeercsisecec e 158
(LR (= 0o 158
NESLEA LOOPS......eeerererersessessessessesse s s e sse s e s e s e s e s e s e s s s e s sn s e s s s nnsnnssnssnssnssnssnnsnsnsnnsnns 161
Nested Loops and the goto Statement..........ccocvervrcrcr s 167
(Lo [0 T N o o 168
The continue Statement ... ——————— 171
Designing @ Program.........c.ccoceeerceriensensessessessessessessessessessesssssssssssssssssssssssssssssssssssssnsnns 171
THE PIODIBM .. 171
THE ANAIYSIS. .. .ceereeueeereeesesese st e s e e e b e ae e e s b e R e e e e Re e e A e R e e e e e R e e e e e b e nen e nrans 172
THE SOIULION....cociiiir s 173
1111 P2 7SS 184
Chapter 5: Arrays ..uccuusssssmsssmmsssmsssmsss s s s sssssssssssssssssnsssassnssssnnsnsnssnsnnnnas 187
AN INtroduCtioN 10 AMTAYS......coevirere e sa e sa e sa e sa e s 187
Programming WithOUL AITAYS.......ccceeeerererrererrereerersesessesessesesessssessssessesessessssessssessesessensssssassessssesssnenes 187
LT L T 141 189
USING AN AITAY ...cveereeereertrereeersesessesessesessessssessssessssessssssssssssessssessesessesessessssessssessesessenssssssssessssessenees 190
The Address Of OPErator...........cccuccveeriiernssesrse s sne e 193
Arrays and AQUIESSES.....cceererrerrerrerrerserserse e ssessessessessessesasssessessessssssssesasssesessssssssanssnnes 196
INIHANIZING AN AFTAY.....cveceeceerererere e sae s sae s e s sa e e e saesaesaesaesaesaesaennenens 197
Finding the Size of an Arraycccoecienninnsne s sne e 198

ix

TABLE OF CONTENTS

MUltidimeNnSIONAl AFTAYS.......cecereerrersersessessesssssessessesssssessessessssssssssssssssssssssssssssssssssssassans 199
Initializing Multidimensional ArTaYScccccceeeeeesesese e sse e ssesssssessssnessessssnsssssssnnns 201
CONSTANT AITAYS ... sae e s s sa e s s e sae s sa e s e sa e sa e saenaesa e e s saennenannens 207
Variable-Length Arrays......cocoecevecesesc e sse e sse e e e e sss s s sssssssnssnssnssnsssnnes 209
Designing @ Program.........c.ccucveercennensessessessesses s sessessessessesssssssssssssssssssssssssssssssssssssnsnns 212
QLTI 50 (0] 01T OSSR S 212
THE ANGIYSIS.....ceereeueerirreeerese st s e e b e b e ae e A e Re e e s e Re e e A e R e e sE e e R e e e e e b e e e e nnans 212
THE SOIULION.....cceieeeceir ettt E AR e e e R e ee e b e nenr s 213
31111 P 7SS 219
Chapter 6: Applications with Strings and Textccunneemmmmnnnnnnnsssssmmmm.. 221
What IS @ SEHNG? ..o e 221
Variables That Store SIriNgs........cccevvrerrerninesrese e 223
Arrays Of SHHNQS....cccceeecercce e r e sr e a e r e sr e n e sr s sn e nn e nnen s 226
Operations With SIHNGS.......ccccererreiererr e nens 228
Checking for C11/C17 SUPPOITcocoecererereeereerereesereesesaesesersssessssessesessesassesassessssessessssesassessssesseneres 228
Finding the Length of @ SIHNQcccoueere e sa e a e 230
0] 03T 0TS (T 231
0] o= 1 0 L TS T 231
L0 T o LT TR (T 235
LT 1wl 1 11 T S 4 1o PR 239
QL0 1T 410 T (T 244
Reading Newline Characters into @ StriNg.......cccccveererrcevric st sae s 249
Analyzing and Transforming Strings.........cccerrvrrerniernsniesn s 250
CoNVErting ChAraCer CASEcovverrererrererersssersesersesessesessessssessssessesessessssessssessssessesesssnsssensssessssessenerns 252
Converting Strings 10 NUMEICAI VAIUEScccvverereererererererersesessesessesessessssesssessssessssssssssssessssesssnenes 254
Designing @ Program.........c.ccucveercernessessessesssssessessessesssssessssssssesssssssssssssssssssssssssssssssnsans 257
QLTI 5 (0] 01T ST TOS 257
THE ANGIYSIS. .. .ceereeueeresreseseses et e s e e b e ae e e s A e R e e e s Re e e A e R e e sE e e R e e e e e b e e e e nrans 257
THE SOIULION.....cceieeeceir ettt E AR e e e R e ee e b e nenr s 258

31111 P 7SS 263

TABLE OF CONTENTS

Chapter 7: POINTerS.....ccccuuissemnmmmssssnnmssssssssssssssssnssssssssnssssssnsnssssssnnnsssssnnnnsssssnnnnss 265
A First LOOK @t POINTEIScccceuiircircren s 265
DECIArNG POINTELScceeeeeierireeees et e e e ne s 266
Accessing a Value Through @ POINTEN ..o e 267
USING POINTEIS ...ttt e e s e bbb e e e ne e n e 271
Testing for @ NULL POINTEc.cociererecereeeeerisee s 275
POINters t0 CONSLANTS ..o s 275
CoNSTANT POINTELS ... 276
NAMING POINTELS ...t e e e eene e e 276
Arrays and POINTEIScocvevererere s sn s sa e sa e sn e sa s sa e s 277
MUltidimeNnSIONAl ATTAYS.......ccceeereerrersersessessssssssessessessessessessssssssssssssssssssssssssssssssssssassans 280
Multidimensional Arrays and POINTErS........cccccceereresiesse s 284
AcCesSiNg Array EIBMENTScccccceecierererise e e se e sss e sss s e ssssesss e sssnesnsnennes 286
USING MEMOIY AS YOU GO.....c.ceueereereerernersersessessessessesssansans 289
Dynamic Memory Allocation: The malloc() FUNCHION ..o 289
Releasing Dynamically AlloCated MEMOTY.........coouiiierireeeeirisee e 290
Memory Allocation with the calloc() FUNCLION ..o 295
Extending Dynamically Allocated MemOrY...........oiieerricerrreeseresie e 296
Handling Strings USiNg POINTEYS.........ccocvvrsrrenserrerser e se e e ses e s s snsens 300
USING Arrays 0f POINTEISc.cvveeceecreecere st ree e rse e seesesseses e sae e saesesaesessesessesassesaesessssesassassesassesssnenes 300
Pointers and Array NOTATION.........ccoeererrcrr e sa e e ae e sa e sa e s a e es 307
Designing @ Program.........cccucvereessessessessesssssesssssesssssesssssesssssssssssssssssssssssssssssssssssssnsans 311
THE PIODIBM .. ——————————— 312
TRE ANAIYSIS....ceerierreerresere e sr e e e e s e s e R e e Re e s e R e e R e e nR e e e Re e e Re R e e R e e Renrnns 312
THE SOIUION.....eiicctrtc bbb 313
The CoMPIETE PrOgraMmcccueeveeereereresereresessesessesessesessessssessssessssessssassessssessssesssnsssssssssssssessensssenssaes 318
1111 11T SRS 320

xi

TABLE OF CONTENTS

Chapter 8: Structuring Your Programs......cccucccesmmssssnnnsssssssssssssssssssssssssnssssssnnnnss 323
Program STrUCIUNE.......coee e nrenn 323
Variable SCOpe and LIfETIME.........ccou i 324
Variable SCOpe and FUNCHONS ..ot 327
T T (0 327
DefiNiNg @ FUNCHION.........coeeeec ettt s s ae e e e s s sasae e s e e ae e ae e saesa e e na e e es 328
The return StatBMENT ..o —————————— 332
The Pass-by-Value MeChaniSm..........c.ccccveerrrnnsesssnsessessessesse s snssnssennes 336
FUNCTION PrOTOTYPES ..ottt s sn s sn e e sn e sn e sn e sn e sn s sn e nn e nnenn 338
Pointers As Parameters and Return TYPEScccvvrververrerrersenses s e ses e e senenns 339
CONSE PATAMELELSceoevecesesesressessesseessessessesseesses s ssss s s s s s 340
Perils of REtUrNiNg POINTEIS.......ccoveeererererererte et re s ses e sae e s e sse e s s s e ae e sae e saenasaesassenasnenes 346
SUMMEAIY ...t e a e s a s e ae e s e a e e s e n e e aenn e e nnennanas 349
Chapter 9: More on FUNCLIONSccceerrriimmmmssssssssssnnmss 39 1
Pointers 10 FUNCLIONS ..o s 351
Declaring a Pointer t0 @ FUNCHIONcoo i 351
Calling a Function Through @ FUNCLION POINTET.........cccoeverererierrrerre e sas e sassessenenns 352
Arrays of POINters 10 FUNCHONS ..o 355
Pointers to FUNCEIONS AS AFQUMENTS.......ccoiverenere e sae st s sr e sa e e sa e sn e 357
Variables in FUNCLIONS ..o 360
Static Variables: Keeping Track Within @ FUNCLION.........c.coriiennnerecer s 360
Sharing Variables Between FUNCHIONSo i 362
Functions That Call Themselves: RECUISIONccveerrencnerenesersese e 365
Functions with a Variable Number of Arguments...........coceeeeereneseseesessesessesssssensnnns 368
COPYING @ VA_LIST ...t p e e n e 371
Basic Rules for Variable-Length Argument ListS ... see s 372
The MaiN() FUNCLIONccccecerriree sttt s 372
Terminating @ Program........c.ccocvvrvniiniensessis s ss e se e ss s s s e s s sas s s 374
The aDOrt() FUNCHIONcceeeerereccrte et see s rae e sse e s ras e s e e aesesaesassesae e sae e saenesaesassesaenesaenenans 374
The exit() and ateXit() FUNCHONSccoevererere et sae e sesae e e sa e e ae e naan 374

xii

TABLE OF CONTENTS

The _EXit() FUNCTION.......ccieeece et s e e a e e sp s p e nr s 375
The quick_exit() and at_quick_exit() FUNCLIONS........c.ccoveerierrcrccrc e 375
Enhancing Performance..........cccvcvcrirniniensersesses s se e e e s snssnesnenns 375
Declaring FUNCHONS INTNEcvouieeeiee e 376
USing the restriCt KBYWOIccoeeerueeciicecsir e 376
The _Noreturn FUNCHION SPECITIEN........cccoeriieeeirerce st 377
Designing @ Program.........c.ccucvrersennessensessessessessessessessessessessessesssssssssssesssssssssssssssssssnsnns 377
THE ProBIBIM ... 377
TRE ANAIYSIS....cueereerreereerereererereserseseraesesseras e sas e ssesesaesesaesasseraesesseseraesessesassesansesaenesaesenseassessenessensnaes 378
THE SOIULION.....viiccriic i —————— 380
SUMMEAIY ...t a e b e ae e s e a e e s e n e e e ae e e e enennanas 394
Chapter 10: Essential Input and Qutputcccccniiinisnninnsnmsnnmesmnssmansnen 397
Input and QUEPUL STrEAMS ... s 397
Standard STrEAMS ..o 398
Input from the Keyboard...........coccoeeererenerrrercrr s sas e ses e saesaenens 399
Formatted Keyboard INPUL.........ccoeieiecesererere e ss e sr e s n e s e n e e nn e nn s 399
Input Format Control STHNGSceceeeeererererrrere e serererereseree e raesessesessesas e sas e saesesaesesassasaesassesasnenes 400
Characters in the Input FOrmat STringcccceeverrrrre s se e sas e saeees 406
Variations on Floating-Point INPULooereeeeee et sa e sae e nnen 408
Reading Hexadecimal and OCtal VAIUESccceeevuererrrerererereerereesersesessesesesesessesessssessesessessssessenenes 409
Reading Characters USiNg SCANT_S()covrererrereerereererererererersssersesessesessessssesssessssessesessssessessssessenees 411
String Input from the KEYDO0AIccoveereceeere e re e sae e sae e aesanaens 412
Single-Character Keyboard INPULcccoeeererere e ere s s e rae e ee e saesas e sas e sassesassesassanaens 414
OutpUL 10 the SCIEEN ..o e 419
Formatted Output USING PriNtf_S()....cccvererriinrerirrnsnesisiss s seses e e sessssssesessssssesessssssssnens 419
ESCAPE SEOUBNCES ...veveveereereeerseiersesessesessesssessesessssssssssssessssessesessesessessssessssessssessesssssssssssssessssessenenns 422
INEEQET QUEPUL.....ceec e e et b e e p e 422
Outputting Floating-Point VAIUEScccvrirrierrrnrssrn et seens 425
08 1T T T (= 011 1] 426

xiii

TABLE OF CONTENTS

Other QUPUL FUNCLIONS ..ot 428
Unformatted Output t0 the SCIEEN........ecce e e sa e a e 428
Formatted OUTPUL 10 @N AITAYcceeeriecrcrirre e e a e 429
Formatted Input from an ArTaycoenni———————————— 430

1111 11 SRS 430

Chapter 11: Structuring Data...........cccccsnimmsmmmsnmismismess s ——————— 433

Data Structures: USing STrUCT ..o 433
Defining Structure Types and Structure VariabIes ... 435
Accessing StruCture MEMDELSccocerurecrirree e 436
UNNAMEA STIUCTUIES.......ccicirciieseie e 439
Arrays OF STUCIUIES......cv ettt et ne s 439
Structure MembErs iN EXPreSSIONS........c.ccoceerureierererreiesiseseese s se s se s s sesss s e sessssenes 442
POINTEIS 10 STIUCTUIES......cciiiiiiecc s 442
Dynamic Memory Allocation for SrUCTUIES ..o 443

More on Structure MEMDEISccueeirmnmrm 446
Structures As Members 0f @ StrUCIUTE ... 446
Declaring a Structure Within @ StrUCTUIE.......c.coveeeeeeee st 448
Pointers to Structures As Structure MEMDErS ... 449
DOUDIY LINKEA LISESecveeerereeereecreerereserereseres e sesassessesassessesessssessesessssassessssessssessensssssassesassesssnenes 454
Bit FieldS in @ STIUCTUTE ...t s 457

Structures and FUNCLIONS ... s 459
Structures As Arguments £0 FUNCHONSoccvvevrerercrrce s sa e sae e snenesnesasnens 459
Pointers to Structures AS FUNCHON ArQUMENTS..........ccvevereverierreerre e sessesessesssessesessesessssessesassessssenes 459
Structure As @ Function Return ValUE...........cvciincinnssssessssss s 461
BINAIY TrBESveeireeereres e sre e s r e e s e e R e e R e e s Re e E e e R e e R e e Re e e Re e e RenR e e e R e e ns 466

Sharing MEMOKY ..ot r e sr e s nn e n e sn e sn e nn e nn e 475

Designing @ Program.........ccccccererereressesssssesssnns 479
THE ProBIBIM ... 479
TRE ANAIYSIS....cueereerreereerereerereree e raeseraesesseres e sae e ssesesaesesaesasseras e sae e sassessesansesaesesasesaesensesassessenessensnaes 480
THE SOIULION.....viiccr i ——————— 480

E3 U1 1P 7S 494

xiv

TABLE OF CONTENTS

Chapter 12: Working with Filesccccusemmmmnnssssnmmssssssnmmssssssnssssssssssssssssssssssssnnns 495
The Concept 0f @ File.......ccccvcrcrcercrrir s 495
POSIEIONS N @ FIlE ...ttt 496
File SITBAMS......cceeeece ettt sae e e b b e e e e ne e s e 496
ACCESSING FIlBS ..uveeereereercrerie e rse e ra e s sa e sa e sa e sa e sa e a e sn e sa e a e sa s sn e nn e sn e n s 497
00 T=T 3T o N O 497
Buffering File OPErations..........ccoecvererererererereerersesereesesseses e ssssessesessesessesassesassessssessssessssassesassesssnenes 500
LT 4 L0 T = 0 - 501
0 T T 501
DY 1=1 (T o T 502
WHEING @ TEXE FIlB....eieieeceee s 502
Reading @ TEXL Fileccceueeeeeeececececie e sne s s snesnesr e sn e sn e sn e sn e n e sn s snennennnnns 504
Reading and Writing Strings to @ Text File.......c.ccvcvvrirvninrnsr s senenns 507
Formatted File Input and QUEPULcoeerceecree e 511
Formatted OULPUE 0 @ FilE.......coeceeeerercrere st re s e sa e a e e ae e aesa e sa e n e e 511
Formatted INPut from @ FilB......coe e e a e 512
Dealing With EFTOrs........cocvcrcrsrcr st se s sn s sn s sn e snenn 515
More Open Modes fOr TEXE FileSuvevrrreerierreerierreeresssesee e ssessesssessesssessesssessesssssnes 516
The freopen_s() FUNCLION.........ccccvcicrcrsr s 517
Binary File Input and QULPUL..........c.coorircrr e 518
Opening a File in BiNary MOGE.........coceeieririeecririeeseseses e se s 518
WIItiNG @ BINAIY File ...t 519
Reading @ BiNAry File..........ccoruriirriiceririnee e 520
Moving Around iN @ File.......ccocvirierrersirserir s sn e sn s sn e sn e 526
File PoSitioning OPErationsS..........cccveeerererseresrererersesereesessesesessssessesessesessesessessssessssesssssssssessesassessenens 526
FINAING QUL WHEIE YOU AT ...t rtre s reesereenesassesaesessessssessssessssessssassessssessssesssnssssnassesassesssnenes 527
Setting @ POSItION iN @ FIlB.......cooeeeeeeerec ettt re e ae e e s e sae e sae e sae e saenannens 528
Using Temporary WOrk FileS.........cceoeeerererenesessessessessessessssssssssssssssssssssssssssssssssssnsnns 535
Creating @ Temporary WOrK File.......couuerrniiirennrnssessssss e sesssss s sesessssssesssssssssssssssssssssssssssnsnns 535
Creating @ Unique File NAIMEcccoeverererereeerre e seseesesseses e ssesessesessesessessssesassessssessssssssssssessssessenenes 535

XV

TABLE OF CONTENTS

Updating Binary FIlEScceeeereeererersesssssessesssssesssssesssansans 537
Changing the Contents 0f @ FilE........cccceiriereriererere v sa e e ae e ae e s e sassesaesees 542
Creating a Record from Keyboard INPULcccovrrrernnnicsiree s se s sesssssssennns 544
Writing @ RECOId 10 @ Filecccevueieeieieser ettt sn s sn st sa s e sa e sn e sr e s n s 544
Reading @ Record from @ Filecccoeiiiininerene s ss e e sr e sn e sa s e sa e s 545
L LT T T 1SS 546
LiSting the File CONTENTScccccveeereerere st reeserse e s e sessesas e sse e ssesessesessesassesassesassessssssassassesassesssnenes 546
Updating the EXisting File CONTENTS........cccevererererer e se e e sas e s e s sessesassesassesasnenes 547

File Open Modes SUMMAIYcocceverieeririeenersee s see e s ssesessaesseessesssessesssessessssssssssssnes 554

Designing @ Program..........cocerererenesessnns 555
THE ProBIBIM ... 555
TRE ANAIYSIS....cueereerreereerereerereree e rseseraesesseres e sas e ssesesaesesaesassersesesaeerassesaesansesassesasesassessesassessenersensnaes 556
THE SOIULION.....viiccr i ——————— 556

SUMMEAIY ...t e a e s a s e ae e s e a e e s e n e e aenn e e nnennanas 561

Chapter 13: The Preprocessor and Debuggingccuesmsesssmssssssssssasssssssasssnssannss 363

PrePrOCESSINGeecviererersessessessessessessessessesses e s e s e s e s snssssses e s sesssssssssnsnssnnssnssessnsssnsnnsans 563
INCIUAING HEAUET FIlESeeveeeeeeece e sa e s sa e e s r e s b a e a e a e a e na e nn s 563
Defining YOur OWN HEAAET FIlESccveueierereeerrererteseree s ses e sse e ssesessesessesassesassessssessssssssssssesassesssnenes 564
Managing MUItPIE SOUICE FIlESccueerererererrererer e s s rse e ssese e sesse e sas e sassesaesessssassesassesasnenes 565
External Variables ... ——————————— 565
SHALIC FUNCHIONS ...t 566
Substitutions in Your Program SOUrCe COE.........cceuverrerereerererererenersssersesessessssessssessssessssessessssesassens 566

1 T 0 967
Macros That Look LiKe FUNCHONS ... 568
StringS AS MaCI0 ArQUIMENTSoueueeerieecrerese e s e e es 569
Joining Two Arguments in @ Macro EXPanSioncoccveveneneniesiniesnsese s sesessssessssessssessssessssesaens 571

Preprocessor Directives on MUltiple LiNES.......ccvvvvevvrreriesrerieeserseesesssesesssessesssssaes 571
Logical PreproCeSSOr DIFECTIVESccveuerererererrerereesereesersesesessesessesessesessesessessssessssessesesssssssesassesseneres 571
Conditional CoMPIlALION..........ccceeeererere e re e sa e e s e ae e ae e ae e saenaenenaenees 572
Testing for Multiple CONAItIONScccceeererererrere e ree e e ra e sae e sae e ae e s e e e e sae e saenenaes 573
LU0 T= T T TR o (=T (-1 O 573

xvi

TABLE OF CONTENTS

Testing for Specific Values for Identifiers ... s 573
MUItiple-ChoiCE SEIECHIONS.......cceerreerrerere sttt r e r e e ae e s sa e a e e a e e ae e aena e e naenens 574
Standard PreproCessing MACKOSccvuverererneiesersnssseseses e sas et se s s s e sesassssesesassssssessssssenes 575
BT T e e 576
Debugging Methodsccccvcrircerirsr e e sn e nn 577
INTEQrated DEDUGUETS.......cueeeeereeeeeeri e e s e e pe e e 577
The Preprocessor in DEDUGGINGcococeerereerererreesesessee s ses s sss s se s s e ssssns 578
LTS E T 1 582
Date and Time FUNCHONS.........cccoiiinnnin s 585
GELEING TIME VAIUES ...ttt res e ras e rae e sassesaeras e s s e e sae e saesesaesasaesassesaenesaesesassasassassesasnenes 585
LE Ty T R (T - 589
Getting the Day for @ DALE ... ———— 593
SUMMEAIY ...t a e b e ae e s e a e e s e n e e e ae e e e enennanas 596
Chapter 14: Advanced and Specialized TOPICSuuvrurmsssssmsssssssssssssssssssssssssssssss 397
Working with International Character Setsccccervrenniernscse s 597
Understanding UNICOUEcocceeeriieiesiresisere s sse s se e sn e ss s s e sns e sns s 597
SEttiNG the LOCAIE.......c.ceerecceertr et e e 598
The Wide Character TYpe WCHAr_t........ccccevrnnicrrirnie st s ssssns 599
Operations on Wide Character SIHNgS........ccoucvrinninnnsesr s s sassssessens 602
File Stream Operations With Wide Characters..........ccuevvrereriereererenenssesesssessssessesessssesssssssessssessesenns 606
Fixed Size Types That Store Unicode Characters..........cevrrinienerennesessnsnssesessssssesesssssesessssssssenens 607
Specialized Integer Types for Portabilitycccooevreecrcscrcecr e 610
Fixed-Width INtEGEr TYPEScoveeieeeirireeererir e 611
Minimum-Width INTEOET TYPES.....ccceeeereeeerereercr st 611
Maximum-Width INTEOET TYPEScoeureererereeercririe e 612
The ComplexX NUMDEE TYPES.....ccccerirririrerrerser s se s se e e s e e e snesnn s 612
COMPIEX NUMDEE BASICS......ceveereeereerereerereresersesessesessesessessssessssessesessesessessssessssessssessensssssassessssesssnees 612
Complex Types and OPEratioNS.........cccerereererrereerereererereresesseseesessesessesessesessessssessesessesessesessessssersenees 613
Programming With TRIEadS..........ccccverreriersenssses s se s e e sn s snnnns 617
Creating @ TRIEAMccccvuiecrericerer e e e e e e b e 617
EXItiNg @ TAMBAU......ccveeceeereete e e et se e n e r s 619

TABLE OF CONTENTS

Joining One Thread 10 ANOTNET ..o e sreaens 619

SUSPENAING @ TRFBAM.........covieerererr e e b e e ne b s 622

Managing Thread ACCeSS 10 DAlcccvceeriereircsre e 623
1] 11 R 630
Appendix A: Computer Arithmeticccccrnremmrmnssssnnmmssssssrnsssssse .- 631
Binary NUMDEKScociiieirir sttt sn s sn s sn s s sn e sn s nn e nnnnn 631
Hexadecimal NUMDEIS ... s 632
Negative Binary NUMDEIS ...t sn s snennsnns 634
Big-Endian and Little-Endian Systems.........cccovvvrcrcrcn s 635
Floating-Point NUMDEIS ... e e sa e 637
Appendix B: ASCII Character Code Definitionscccccmmrrrrsssssssssnssnsnnssssssssssnnnns 641
Appendix C: Reserved Words in C......cccucerrussmmmsssnsssssssssssssesssnssssssssssssssssssnssssnnss 647
Appendix D: Input and Output Format Specifications........cccuusmmmmnnnnnnsssssssssnnnns 649
Output Format Specifications..........cccvceerireeniensrrerr e s 649
Input Format Specificationsccceeerercrcccr s 652
Appendix E: Standard Library Header Files.........cccoimmnmmmmmmmnsssnnmmnssssnsnssssssssnnnns 655
111 . 659

xviii

About the Authors

German Gonzalez-Morris is a software architect/engineer working with C/C++, Java, and different
application containers, in particular, with WebLogic Server. He has developed different applications
including JEE/Spring/Python. His areas also include OOP, Java/JEE, Python, design patterns, algorithms,
Spring Core/MVC/Security, and microservices. German has worked in performance messaging, Restful AP]I,
and transactional systems. For more, see www. linkedin.com/in/german-gonzalez-morris.

Ivor Horton is self-employed in consultancy and writes programming tutorials. He worked for IBM for
many years and holds a bachelor’s degree, with honors, in mathematics. Ivor’s experience at IBM includes
programming in most languages (like assembler and high-level languages) on a variety of machines,
real-time programming, and designing and implementing real-time closed-loop industrial control systems.
He has extensive experience teaching programming to engineers and scientists (Fortran, PL/1, APL, etc.).
Ivor is an expert in mechanical, process, and electronic CAD systems; mechanical CAM systems; and
DNC/CNC systems.

http://www.linkedin.com/in/german-gonzalez-morris

About the Technical Reviewer

Michael Thomas has worked in software development for more than 20 years as an individual contributor,
team lead, program manager, and vice president of engineering. Michael has more than 10 years of
experience working with mobile devices. His current focus is in the medical sector, using mobile devices to
accelerate information transfer between patients and healthcare providers.

Acknowledgments

I want to thank my family—my parents, German and Felicia Morris, for giving me education opportunities
and support; Patricia Cruces, my partner, for her infinite patience and love; and my sons, Raimundo and
Gregorio, for their happiness and inspiration.

I value the support and opportunity given to me by the complete Apress team, Steve Anglin and Mark
Powers, and thank them for their guidance and advice. I also thank Michael Thomas, the technical reviewer,
for his important feedback, suggestions, and corrections.

Thanks to my friends and colleagues for their understanding, perceptions, and recommendations on
completing ideas in the book: Ariel Aguayo, Carlos Hasan, and Daniel Lagos.

Introduction

Welcome to Beginning C: From Beginner to Pro, Sixth Edition. With this book, you can become a competent
C programmer using the latest version of the C language. In many ways, C is an ideal language with which
to learn programming. It’s very compact, so there isn’t a lot of syntax to learn before you can write real
applications. In spite of its conciseness, it’s extremely powerful and is used by professionals in many
different areas. The power of C is such that it can be applied at all levels, from developing device drivers
and operating system components to creating large-scale applications. A relatively new area for C is in
application development for mobile phones.

C compilers are available for virtually every kind of computer, so when you've learned C, you'll be
equipped to program in just about any context. Once you know C, you have an excellent base from which
you can build an understanding of the object-oriented C++.

My objective in this book is to minimize what I think are the three main hurdles the aspiring
programmer must face: coming to grips with the jargon that pervades every programming language,
understanding how to use the language elements (as opposed to merely knowing what they are), and
appreciating how the language is applied in a practical context.

Jargon is an invaluable and virtually indispensable means of communication for the expert professional
as well as the competent amateur, so it can’t be avoided. My approach is to ensure that you understand
the jargon and get comfortable using it in context. In this way, you'll be able to more effectively use the
documentation that comes along with the typical programming product and also feel comfortable reading
and learning from the literature that surrounds most programming languages.

Comprehending the syntax and effects of the language elements is obviously an essential part of
learning C, but appreciating how the language features work and how they are used is equally important.
Rather than just using code fragments, I provide you with practical working examples in each chapter that
show how the language features can be applied to specific problems. These examples provide a basis for you
to experiment and see the effects of changing the code.

Your understanding of programming in context needs to go beyond the mechanics of applying
individual language elements. To help you gain this understanding, I conclude most chapters with a more
complex program that applies what you've learned in the chapter. These programs will help you gain the
competence and confidence to develop your own applications and provide you with insight into how you
can apply language elements in combination and on a larger scale. Most important, they’ll give you an idea
of what’s involved in designing real programs and managing real code.

It's important to realize a few things that are true for learning any programming language. First, there
is quite a lot to learn, but this means you'll gain a greater sense of satisfaction when you’ve mastered it.
Second, it’s great fun, so you really will enjoy it. Third, you can only learn programming by doing it, and this
book helps you along the way. Finally, it’s certain you will make a lot of mistakes and get frustrated from time
to time during the learning process. When you think you are completely stuck, you just need to be persistent.
You will eventually experience that eureka moment and realize it wasn’t as difficult as you thought.

INTRODUCTION

How to Use This Book

Because I believe in the hands-on approach, you'll write your first programs almost immediately. Every
chapter has several complete programs that put theory into practice, and these are key to the book. You
should type in and run all the examples that appear in the text because the very act of typing them in is a
tremendous memory aid. You should also attempt all the exercises that appear at the end of each chapter.
When you get a program to work for the first time—particularly when you're trying to solve your own
problems—you'll find that the great sense of accomplishment and progress makes it all worthwhile.

The pace is gentle at the start, but you'll gain momentum as you get further into the subject. Each
chapter covers quite a lot of ground, so take your time and make sure you understand everything before
moving on. Experimenting with the code and trying out your own ideas are important parts of the learning
process. Try modifying the programs and see what else you can make them do—that’s when it gets really
interesting. And don’t be afraid to try things out—if you don’t understand how something works, just type
in a few variations and see what happens. It doesn’t matter if it’s wrong. You'll find you often learn a lot from
getting it wrong. A good approach is to read each chapter through, get an idea of its scope, and then go back
and work through all the examples.

You might find some of the end-of-chapter programs quite difficult. Don’t worry if it’s not all completely
clear on the first try. There are bound to be bits that you find hard to understand at first because they
often apply what you've learned to rather complicated problems. If you really get stuck, you can skip the
end-of-chapter exercises, move on to the next chapter, and come back to them later. You can even go
through the entire book without worrying about them. However, if you can complete the exercises, it shows
you are making real progress.

Who This Book Is For

Beginning C, Sixth Edition is designed to teach you how to write useful programs in C as quickly and easily as
possible. By the end of Beginning C, you'll have a thorough grounding in programming the C language. This
is a tutorial for those of you who've done a little bit of programming before, understand the concepts behind
it, and want to further your knowledge by learning C. However, no previous programming knowledge on
your part is assumed, so if you're a newcomer to programming, the book will still work for you.

What You Need to Use This Book

To use this book, you’ll need a computer with a C compiler and library installed, so you can execute the
examples, and a program text editor for preparing your source code files. The compiler you use should
provide good support for the current international standard for the C language, C17 (ISO/IEC 9899:2018),
which is a bug fix version for C11, commonly referred to as C17 or C18. You'll also need an editor for creating
and modifying your code. You can use any plain text editor such as Notepad or vi to create your source
program files. However, you'll get along better if your editor is designed for editing C code.

I can suggest two sources for a suitable C compiler, both of which are freeware:

o The GNU C compiler, GCC, is available from www.gnu.org and supports a variety of
operating system environments.

o The Pelles C compiler for Microsoft Windows is downloadable from
www.smorgasbordet.com/pellesc/ and includes an excellent integrated
development environment (IDE).

XXVi

http://www.gnu.org
http://www.smorgasbordet.com/pellesc/

INTRODUCTION

Conventions Used

I use a number of different styles of text and layout in the book to help differentiate between the different
kinds of information. For the most part, their meanings will be obvious. Program code will appear like this:

int main(void)
{ printf("Beginning C\n");
return 0;

}

When a code fragment is a modified version of a previous instance, I occasionally show the lines that
have changed in bold type like this:

int main(void)

{
printf("Beginning C by Ivor Horton\n");
return 0;

}

When code appears in the text, it has a different typestyle that looks like this: double.

I'll use different types of “brackets” in the program code. They aren’t interchangeable, and their
differences are very important. I'll refer to the symbols () as parentheses, the symbols { } as braces, and the
symbols [] as square brackets.

Important new words in the text are shown in italic like this.

xxvii

CHAPTER 1

Programming in C

Cis a powerful and compact computer language that allows you to write programs that specify exactly what
you want your computer to do. You're in charge: you create a program, which is just a set of instructions, and
your computer will follow them.

Programming in C isn’t difficult, as you're about to find out. I'm going to teach you all the fundamentals
of C programming in an enjoyable and easy-to-understand way, and by the end of this chapter, you'll have
written your first few C programs. It’s as easy as that!

In this chapter, you'll learn

e What the Clanguage standard is
o What the standard library is

e How to create C programs

e How C programs are organized

e How to write your own program to display text on the screen

The C Language

Cis remarkably flexible. It has been used for developing just about everything you can imagine by way of a
computer program, from accounting applications to word processing and from games to operating systems.
It is not only the basis for more advanced languages, such as C++, it is also used currently for developing
mobile phone apps in the form of Objective C. Objective C is standard C with a thin veneer of object-
oriented programming capability added and too many new devices/microcontrollers, such as Raspberry

Pi and Arduino. C is easy to learn because of its compactness. Thus, C is an ideal first language if you have
ambitions to be a programmer. You'll acquire sufficient knowledge for practical application development
quickly and easily.

The Clanguage is defined by an international standard, and the latest is currently defined by the C17
(ISO/IEC 9899:2018), which is a bug fix version for C11 more than new features (for instance, it deprecates
ATOMIC_VAR_INIT). The current standard is commonly referred to as C17 or C18—the informal names
of this version. This occurs because it was finished in 2017, but published in 2018. It is known that GCC
uses C17 as a parameter to target this new version. Nevertheless, the aforementioned is not declared in
the standard, and the language that I describe in this book conforms to C17 or can be considered C11
with several solved issues. You need to be aware that some elements of the language as defined by C17 are
optional. This implies that a C compiler that conforms to the C17 standard may not implement everything in
the standard. (A compiler is just a program that converts your program written in terms you understand into

© German Gonzalez-Morris and Ivor Horton 2020 1
G. Gonzalez-Morris and 1. Horton, Beginning C, https://doi.org/10.1007/978-1-4842-5976-4_1

https://doi.org/10.1007/978-1-4842-5976-4_1#DOI

CHAPTER 1 © PROGRAMMING IN C

a form your computer understands.) I will identify any language feature in the book that is optional so far as
C17 is concerned, just so you are aware that it is possible that your compiler may not support it. We will use
C11/C17 as a synonym in the book.

It is also possible that a C17 compiler may not implement all of the language features mandated by
the C17 standard; in particular, only the newest compilers have C11/C17 compatibility at 100 percent. It
takes time to implement new language capabilities, so compiler developers will often take an incremental
approach to implementing them. This provides another reason why a program may not work. Having said
that, I can confirm from my own experience that the most common reason for things not working ina C
program, at least 99.9 percent of the time, is that a mistake has been made.

The Standard Library

The standard library for C is also specified within the C17 standard. The standard library defines constants,
symbols, and functions that you frequently need when writing a C program. It also provides some optional
extensions to the basic C language. Machine-dependent facilities such as input and output for your computer
are implemented by the standard library in a machine-independent form. This means that you write data

to a disk file in C in the same way on your PC as you would on any other kind of computer, even though the
underlying hardware processes are quite different. The standard functionality that the library contains includes
capabilities that most programmers are likely to need, such as processing text strings or math calculations. This
saves you an enormous amount of effort that would be required to implement such things yourself.

The standard library is specified in a set of standard files called header files. Header files always have
names with the extension .h. To make a particular set of standard features available in your C program file,
you just include the appropriate standard header file in a way that I'll explain later in this chapter. Every
program you write will make use of the standard library. A summary of the header files that make up the
standard library is in Appendix E.

At the beginning, there was the C POSIX library that implemented many features for ANSI C. One of
those libraries is pthreads that today is obsolete and implemented in the standard library. Other POSIX
libraries (ISO/IEC 9945 (POSIX)) are in the road map for C2x for future releases.

Learning C

If you are completely new to programming, there are some aspects of C that you do not need to learn, at least
not the first time around. These are capabilities that are quite specialized or used relatively infrequently. I have
put all these together in Chapter 14 so you will learn about them when you are comfortable with the rest.

Although the code for all the examples is available via the Download Source Code link located at www.
apress.com/9781484259757, I recommend that you type in all the examples in the book, even when they are
very simple. Keying stuff in makes it less likely that you will forget things later. Don’t be afraid to experiment
with the code. Making mistakes is very educational in programming. The more mistakes you make early on,
the more you are likely to learn.

Creating C Programs

There are four fundamental stages, or processes, in the creation of any C program:
o Editing
e Compiling
e Linking

o Executing

http://www.apress.com/9781484259757
http://www.apress.com/9781484259757

CHAPTER 1 PROGRAMMING IN C

You'll soon know all these processes like the back of your hand because you'll be carrying them out so
often. First, I'll explain what each process is and how it contributes to the development of your C program.

Editing

Editing is the process of creating and modifying C source code—the name given to the program instructions
you write. Some C compilers come with a specific editor program that provides a lot of assistance in managing
your programs. In fact, an editor often provides a complete environment for writing, managing, developing,
and testing your programs. This is sometimes called an integrated development environment (IDE).

You can also use a general-purpose text editor to create your source files, but the editor must store the
code as plain text without any extra formatting data embedded in it. Don’t use a word processor such as
Microsoft Word; word processors aren’t suitable for producing program code because of the extra formatting
information they store along with the text. In general, if you have a compiler system with an editor included,
it will provide a lot of features that make it easier to write and organize your source programs. There will
usually be automatic facilities for laying out the program text appropriately and color highlighting for
important language elements, which not only makes your code more readable but also provides a clear
indicator when you make errors when keying in such words.

If you're working with Linux, the most common text editor is the Vim editor. Alternately, you might
prefer to use the GNU Emacs editor. With Microsoft Windows, you could use one of the many freeware
and shareware programming editors. These will often provide help in ensuring your code is correct, with
syntax highlighting and autoindenting. There is also a version of Emacs for Microsoft Windows. The vi and
Vim editors from the UNIX environment are available for Windows too, and you could even use Notepad++
(http://notepad-plus-plus.org/).

Of course, you can also purchase one of the professionally created programming development
environments that support C, such as those from JetBrains or Microsoft(there is a free Community Edition),
in which case you will have very extensive editing capabilities. Before parting with your cash though, it’s a
good idea to check that the level of C that is supported conforms to the current C standard, C17. With some
of the products out there that are primarily aimed at C++ developers, C has been left behind somewhat.

Compiling

The compiler converts your source code into machine language and detects and reports errors in the
compilation process. The input to this stage is the file you produce during your editing, which is usually
referred to as a source file.

The compiler can detect a wide range of errors that are due to invalid or unrecognized program code, as
well as structural errors where, for example, part of a program can never be executed. The output from the
compiler is known as object code, and it is stored in files called object files, which usually have names with the
extension .obj in the Microsoft Windows environment or .0 in the Linux/UNIX environment. The compiler
can detect several different kinds of errors during the translation process, and most of these will prevent the
object file from being created.

The result of a successful compilation is a file with the same name as that used for the source file, but
with the .0 or .obj extension.

If you're working in UNIX, at the command line, the standard command to compile your C programs
will be cc (or the GNU'’s Not UNIX [GNU] compiler, which is . gcc). You can use it like this:

cc -c myprog.c
where myprog. c is the name of the source file that contains the program you want to compile. Note that if

you omit the -c flag, your program will automatically be linked as well. The result of a successful compilation
will be an object file.

http://notepad-plus-plus.org/

CHAPTER 1 © PROGRAMMING IN C

Most C compilers will have a standard compile option, whether it’s from the command line (such as cc
myprog.c) or a menu option from within an IDE (where you'll find a Compile menu option). Compiling from
within an IDE is generally much easier than using the command line.

Compilation is a two-stage process. The first stage is called the preprocessing phase, during which your
code may be modified or added to, and the second stage is the actual compilation that generates the object
code (this second stage does assembly underneath; GCC and other compilers have options for these steps,
but most of the time, it is not necessary). Your source file can include preprocessing macros, which you use
to add to or modify the C program statements. Don’t worry if this doesn’t make complete sense now. It will
come together for you as the book progresses.

Linking

The linker combines the object modules generated by the compiler from source code files, adds required
code modules from the standard library supplied as part of C, and welds everything into an executable
whole. The linker also detects and reports errors, for example, if part of your program is missing or a
nonexistent library component is referenced.

In practice, a program of any significant size will consist of several source code files, from which the
compiler generates object files that need to be linked. A large program may be difficult to write in one
working session, and it may be impossible to work with as a single file. By breaking it up into a number of
smaller source files that each provide a coherent part of what the complete program does, you can make
the development of the program a lot easier. The source files can be compiled separately, which makes
eliminating simple typographical errors a bit easier. Furthermore, the whole program can usually be
developed incrementally. The set of source files that make up the program will usually be integrated under a
project name, which is used to refer to the whole program.

Program libraries support and extend the C language by providing routines to carry out operations
that aren’t part of the language. For example, libraries contain routines that support operations such as
performing input and output, calculating a square root, comparing two character strings, or obtaining date
and time information.

A failure during the linking phase means that once again you have to go back and edit your source
code. Success, on the other hand, will produce an executable file, but this does not necessarily mean that
your program works correctly. In a Microsoft Windows environment, the executable file will have an .exe
extension; in UNIX, there will be no such extension, but the file will be of an executable type. Many IDEs
have a build option, which will compile and link your program in a single operation.

Executing

The execution stage is where you run your program, having completed all the previous processes
successfully. Unfortunately, this stage can also generate a wide variety of error conditions that can include
producing the wrong output, just sitting there and doing nothing, or perhaps crashing your computer for
good measure. In all cases, it’s back to the editing process to check your source code.

Now for the good news: This is also the stage where if your program works, you get to see your computer
doing exactly what you told it to do! In UNIX and Linux, you can just enter the name of the file that has been
compiled and linked to execute the program. In most IDEs, you'll find an appropriate menu command that
allows you to run or execute your compiled program. This Run or Execute option may have a menu of its
own, or you may find it under the Compile menu option. In Windows, you can run the . exe file for your
program as you would any other executable.

The processes of editing, compiling, linking, and executing are essentially the same for developing
programs in any environment and with any compiled language. Figure 1-1 summarizes how you would
typically pass through processes as you create your own C programs.

— 1|

Editing

Create/modify
program source code

Y

Source File

Compiling

(*c)

Generate machine
instructions

Yes

No

Object File
(*.obj)

Linking

Link in
libraries, etc.

No

Executing

Run program

No

Sucess!

Executable File
(*.exe)

Figure 1-1. Creating and executing a program

Creating Your First Program

We'll step through the processes of creating a simple C program, from entering the program source code to
executing it. Don’t worry if what you type doesn’t mean much to you at this stage—I'll explain everything as

we go along.

CHAPTER 1

PROGRAMMING IN C

CHAPTER 1 © PROGRAMMING IN C

TRY IT OUT: AN EXAMPLE C PROGRAM

Run your editor and type in the following program exactly as it’s written. Be careful to use the
punctuation exactly as you see here. Make sure you enter the brackets that are on the fourth and

last lines as braces—the curly ones {}, not the square brackets [] or the parentheses ()—it really
does matter. Also, make sure you put the forward slashes the right way (/), as later you'll be using the
backslash (\) as well. Don’t forget the semicolon (;):

/* Program 1.1 Your Very First C Program - Displaying Hello World */
#include <stdio.h>

int main(void)

{
printf("Hello world!");
return 0;

}

When you’ve entered the source code, save the program as hello.c. You can use whatever name you
like instead of hello, but the extension must be . c. This extension is the common convention when you
write C programs and identifies the contents of the file as C source code. Most compilers will expect the
source file to have the extension .c, and if it doesn’t, the compiler may refuse to process it.

Next, you’ll compile your program as | described in the “Compiling” section previously in this chapter
and then link the pieces necessary to create an executable program, as discussed in the “Linking”
section. Compiling and linking are often carried out in a single operation, in which case it is usually
described as a build operation. When the source code has been compiled successfully, the linker will
add code from the standard libraries that your program needs and create the single executable file for
your program.

Finally, you can execute your program. Remember that you can do this in several ways. There is the
usual method of double-clicking the . exe file from Windows Explorer if you’re using Windows, but you
will be better off opening a command-line window and typing in the command to execute it because the
window showing the output will disappear when execution is complete. You can run your program from
the command line in all operating system environments. Just start a command-line session, change

the current directory to the one that contains the executable file for your program, and then enter the
program name to run it.

If everything worked without producing any error messages, you've done it! This is your first program,
and you should see the following output:

Hello world!

