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Introduction

Welcome to Beginning C: From Beginner to Pro, Sixth Edition. With this book, you can become a competent
C programmer using the latest version of the C language. In many ways, C is an ideal language with which
to learn programming. It’s very compact, so there isn’t a lot of syntax to learn before you can write real
applications. In spite of its conciseness, it’s extremely powerful and is used by professionals in many
different areas. The power of C is such that it can be applied at all levels, from developing device drivers
and operating system components to creating large-scale applications. A relatively new area for C is in
application development for mobile phones.

C compilers are available for virtually every kind of computer, so when you've learned C, you'll be
equipped to program in just about any context. Once you know C, you have an excellent base from which
you can build an understanding of the object-oriented C++.

My objective in this book is to minimize what I think are the three main hurdles the aspiring
programmer must face: coming to grips with the jargon that pervades every programming language,
understanding how to use the language elements (as opposed to merely knowing what they are), and
appreciating how the language is applied in a practical context.

Jargon is an invaluable and virtually indispensable means of communication for the expert professional
as well as the competent amateur, so it can’t be avoided. My approach is to ensure that you understand
the jargon and get comfortable using it in context. In this way, you'll be able to more effectively use the
documentation that comes along with the typical programming product and also feel comfortable reading
and learning from the literature that surrounds most programming languages.

Comprehending the syntax and effects of the language elements is obviously an essential part of
learning C, but appreciating how the language features work and how they are used is equally important.
Rather than just using code fragments, I provide you with practical working examples in each chapter that
show how the language features can be applied to specific problems. These examples provide a basis for you
to experiment and see the effects of changing the code.

Your understanding of programming in context needs to go beyond the mechanics of applying
individual language elements. To help you gain this understanding, I conclude most chapters with a more
complex program that applies what you've learned in the chapter. These programs will help you gain the
competence and confidence to develop your own applications and provide you with insight into how you
can apply language elements in combination and on a larger scale. Most important, they’ll give you an idea
of what’s involved in designing real programs and managing real code.

It's important to realize a few things that are true for learning any programming language. First, there
is quite a lot to learn, but this means you'll gain a greater sense of satisfaction when you’ve mastered it.
Second, it’s great fun, so you really will enjoy it. Third, you can only learn programming by doing it, and this
book helps you along the way. Finally, it’s certain you will make a lot of mistakes and get frustrated from time
to time during the learning process. When you think you are completely stuck, you just need to be persistent.
You will eventually experience that eureka moment and realize it wasn’t as difficult as you thought.



INTRODUCTION

How to Use This Book

Because I believe in the hands-on approach, you'll write your first programs almost immediately. Every
chapter has several complete programs that put theory into practice, and these are key to the book. You
should type in and run all the examples that appear in the text because the very act of typing them in is a
tremendous memory aid. You should also attempt all the exercises that appear at the end of each chapter.
When you get a program to work for the first time—particularly when you're trying to solve your own
problems—you'll find that the great sense of accomplishment and progress makes it all worthwhile.

The pace is gentle at the start, but you'll gain momentum as you get further into the subject. Each
chapter covers quite a lot of ground, so take your time and make sure you understand everything before
moving on. Experimenting with the code and trying out your own ideas are important parts of the learning
process. Try modifying the programs and see what else you can make them do—that’s when it gets really
interesting. And don’t be afraid to try things out—if you don’t understand how something works, just type
in a few variations and see what happens. It doesn’t matter if it’s wrong. You'll find you often learn a lot from
getting it wrong. A good approach is to read each chapter through, get an idea of its scope, and then go back
and work through all the examples.

You might find some of the end-of-chapter programs quite difficult. Don’t worry if it’s not all completely
clear on the first try. There are bound to be bits that you find hard to understand at first because they
often apply what you've learned to rather complicated problems. If you really get stuck, you can skip the
end-of-chapter exercises, move on to the next chapter, and come back to them later. You can even go
through the entire book without worrying about them. However, if you can complete the exercises, it shows
you are making real progress.

Who This Book Is For

Beginning C, Sixth Edition is designed to teach you how to write useful programs in C as quickly and easily as
possible. By the end of Beginning C, you'll have a thorough grounding in programming the C language. This
is a tutorial for those of you who've done a little bit of programming before, understand the concepts behind
it, and want to further your knowledge by learning C. However, no previous programming knowledge on
your part is assumed, so if you're a newcomer to programming, the book will still work for you.

What You Need to Use This Book

To use this book, you’ll need a computer with a C compiler and library installed, so you can execute the
examples, and a program text editor for preparing your source code files. The compiler you use should
provide good support for the current international standard for the C language, C17 (ISO/IEC 9899:2018),
which is a bug fix version for C11, commonly referred to as C17 or C18. You'll also need an editor for creating
and modifying your code. You can use any plain text editor such as Notepad or vi to create your source
program files. However, you'll get along better if your editor is designed for editing C code.

I can suggest two sources for a suitable C compiler, both of which are freeware:

o  The GNU C compiler, GCC, is available from www.gnu.org and supports a variety of
operating system environments.

o The Pelles C compiler for Microsoft Windows is downloadable from
www.smorgasbordet.com/pellesc/ and includes an excellent integrated
development environment (IDE).
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INTRODUCTION

Conventions Used

I use a number of different styles of text and layout in the book to help differentiate between the different
kinds of information. For the most part, their meanings will be obvious. Program code will appear like this:

int main(void)
{ printf("Beginning C\n");
return 0;

}

When a code fragment is a modified version of a previous instance, I occasionally show the lines that
have changed in bold type like this:

int main(void)

{
printf("Beginning C by Ivor Horton\n");
return 0;

}

When code appears in the text, it has a different typestyle that looks like this: double.

I'll use different types of “brackets” in the program code. They aren’t interchangeable, and their
differences are very important. I'll refer to the symbols ( ) as parentheses, the symbols { } as braces, and the
symbols [ ] as square brackets.

Important new words in the text are shown in italic like this.
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CHAPTER 1

Programming in C

Cis a powerful and compact computer language that allows you to write programs that specify exactly what
you want your computer to do. You're in charge: you create a program, which is just a set of instructions, and
your computer will follow them.

Programming in C isn’t difficult, as you're about to find out. I'm going to teach you all the fundamentals
of C programming in an enjoyable and easy-to-understand way, and by the end of this chapter, you'll have
written your first few C programs. It’s as easy as that!

In this chapter, you'll learn

e What the Clanguage standard is
o  What the standard library is

e How to create C programs

e How C programs are organized

e  How to write your own program to display text on the screen

The C Language

Cis remarkably flexible. It has been used for developing just about everything you can imagine by way of a
computer program, from accounting applications to word processing and from games to operating systems.
It is not only the basis for more advanced languages, such as C++, it is also used currently for developing
mobile phone apps in the form of Objective C. Objective C is standard C with a thin veneer of object-
oriented programming capability added and too many new devices/microcontrollers, such as Raspberry

Pi and Arduino. C is easy to learn because of its compactness. Thus, C is an ideal first language if you have
ambitions to be a programmer. You'll acquire sufficient knowledge for practical application development
quickly and easily.

The Clanguage is defined by an international standard, and the latest is currently defined by the C17
(ISO/IEC 9899:2018), which is a bug fix version for C11 more than new features (for instance, it deprecates
ATOMIC_VAR_INIT). The current standard is commonly referred to as C17 or C18—the informal names
of this version. This occurs because it was finished in 2017, but published in 2018. It is known that GCC
uses C17 as a parameter to target this new version. Nevertheless, the aforementioned is not declared in
the standard, and the language that I describe in this book conforms to C17 or can be considered C11
with several solved issues. You need to be aware that some elements of the language as defined by C17 are
optional. This implies that a C compiler that conforms to the C17 standard may not implement everything in
the standard. (A compiler is just a program that converts your program written in terms you understand into

© German Gonzalez-Morris and Ivor Horton 2020 1
G. Gonzalez-Morris and 1. Horton, Beginning C, https://doi.org/10.1007/978-1-4842-5976-4_1


https://doi.org/10.1007/978-1-4842-5976-4_1#DOI

CHAPTER 1 © PROGRAMMING IN C

a form your computer understands.) I will identify any language feature in the book that is optional so far as
C17 is concerned, just so you are aware that it is possible that your compiler may not support it. We will use
C11/C17 as a synonym in the book.

It is also possible that a C17 compiler may not implement all of the language features mandated by
the C17 standard; in particular, only the newest compilers have C11/C17 compatibility at 100 percent. It
takes time to implement new language capabilities, so compiler developers will often take an incremental
approach to implementing them. This provides another reason why a program may not work. Having said
that, I can confirm from my own experience that the most common reason for things not working ina C
program, at least 99.9 percent of the time, is that a mistake has been made.

The Standard Library

The standard library for C is also specified within the C17 standard. The standard library defines constants,
symbols, and functions that you frequently need when writing a C program. It also provides some optional
extensions to the basic C language. Machine-dependent facilities such as input and output for your computer
are implemented by the standard library in a machine-independent form. This means that you write data

to a disk file in C in the same way on your PC as you would on any other kind of computer, even though the
underlying hardware processes are quite different. The standard functionality that the library contains includes
capabilities that most programmers are likely to need, such as processing text strings or math calculations. This
saves you an enormous amount of effort that would be required to implement such things yourself.

The standard library is specified in a set of standard files called header files. Header files always have
names with the extension .h. To make a particular set of standard features available in your C program file,
you just include the appropriate standard header file in a way that I'll explain later in this chapter. Every
program you write will make use of the standard library. A summary of the header files that make up the
standard library is in Appendix E.

At the beginning, there was the C POSIX library that implemented many features for ANSI C. One of
those libraries is pthreads that today is obsolete and implemented in the standard library. Other POSIX
libraries (ISO/IEC 9945 (POSIX)) are in the road map for C2x for future releases.

Learning C

If you are completely new to programming, there are some aspects of C that you do not need to learn, at least
not the first time around. These are capabilities that are quite specialized or used relatively infrequently. I have
put all these together in Chapter 14 so you will learn about them when you are comfortable with the rest.

Although the code for all the examples is available via the Download Source Code link located at www.
apress.com/9781484259757, I recommend that you type in all the examples in the book, even when they are
very simple. Keying stuff in makes it less likely that you will forget things later. Don’t be afraid to experiment
with the code. Making mistakes is very educational in programming. The more mistakes you make early on,
the more you are likely to learn.

Creating C Programs

There are four fundamental stages, or processes, in the creation of any C program:
o Editing
e  Compiling
e Linking

o  Executing
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You'll soon know all these processes like the back of your hand because you'll be carrying them out so
often. First, I'll explain what each process is and how it contributes to the development of your C program.

Editing

Editing is the process of creating and modifying C source code—the name given to the program instructions
you write. Some C compilers come with a specific editor program that provides a lot of assistance in managing
your programs. In fact, an editor often provides a complete environment for writing, managing, developing,
and testing your programs. This is sometimes called an integrated development environment (IDE).

You can also use a general-purpose text editor to create your source files, but the editor must store the
code as plain text without any extra formatting data embedded in it. Don’t use a word processor such as
Microsoft Word; word processors aren’t suitable for producing program code because of the extra formatting
information they store along with the text. In general, if you have a compiler system with an editor included,
it will provide a lot of features that make it easier to write and organize your source programs. There will
usually be automatic facilities for laying out the program text appropriately and color highlighting for
important language elements, which not only makes your code more readable but also provides a clear
indicator when you make errors when keying in such words.

If you're working with Linux, the most common text editor is the Vim editor. Alternately, you might
prefer to use the GNU Emacs editor. With Microsoft Windows, you could use one of the many freeware
and shareware programming editors. These will often provide help in ensuring your code is correct, with
syntax highlighting and autoindenting. There is also a version of Emacs for Microsoft Windows. The vi and
Vim editors from the UNIX environment are available for Windows too, and you could even use Notepad++
(http://notepad-plus-plus.org/).

Of course, you can also purchase one of the professionally created programming development
environments that support C, such as those from JetBrains or Microsoft(there is a free Community Edition),
in which case you will have very extensive editing capabilities. Before parting with your cash though, it’s a
good idea to check that the level of C that is supported conforms to the current C standard, C17. With some
of the products out there that are primarily aimed at C++ developers, C has been left behind somewhat.

Compiling

The compiler converts your source code into machine language and detects and reports errors in the
compilation process. The input to this stage is the file you produce during your editing, which is usually
referred to as a source file.

The compiler can detect a wide range of errors that are due to invalid or unrecognized program code, as
well as structural errors where, for example, part of a program can never be executed. The output from the
compiler is known as object code, and it is stored in files called object files, which usually have names with the
extension .obj in the Microsoft Windows environment or .0 in the Linux/UNIX environment. The compiler
can detect several different kinds of errors during the translation process, and most of these will prevent the
object file from being created.

The result of a successful compilation is a file with the same name as that used for the source file, but
with the .0 or .obj extension.

If you're working in UNIX, at the command line, the standard command to compile your C programs
will be cc (or the GNU'’s Not UNIX [GNU] compiler, which is . gcc). You can use it like this:

cc -c myprog.c
where myprog. c is the name of the source file that contains the program you want to compile. Note that if

you omit the -c flag, your program will automatically be linked as well. The result of a successful compilation
will be an object file.
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Most C compilers will have a standard compile option, whether it’s from the command line (such as cc
myprog.c) or a menu option from within an IDE (where you'll find a Compile menu option). Compiling from
within an IDE is generally much easier than using the command line.

Compilation is a two-stage process. The first stage is called the preprocessing phase, during which your
code may be modified or added to, and the second stage is the actual compilation that generates the object
code (this second stage does assembly underneath; GCC and other compilers have options for these steps,
but most of the time, it is not necessary). Your source file can include preprocessing macros, which you use
to add to or modify the C program statements. Don’t worry if this doesn’t make complete sense now. It will
come together for you as the book progresses.

Linking

The linker combines the object modules generated by the compiler from source code files, adds required
code modules from the standard library supplied as part of C, and welds everything into an executable
whole. The linker also detects and reports errors, for example, if part of your program is missing or a
nonexistent library component is referenced.

In practice, a program of any significant size will consist of several source code files, from which the
compiler generates object files that need to be linked. A large program may be difficult to write in one
working session, and it may be impossible to work with as a single file. By breaking it up into a number of
smaller source files that each provide a coherent part of what the complete program does, you can make
the development of the program a lot easier. The source files can be compiled separately, which makes
eliminating simple typographical errors a bit easier. Furthermore, the whole program can usually be
developed incrementally. The set of source files that make up the program will usually be integrated under a
project name, which is used to refer to the whole program.

Program libraries support and extend the C language by providing routines to carry out operations
that aren’t part of the language. For example, libraries contain routines that support operations such as
performing input and output, calculating a square root, comparing two character strings, or obtaining date
and time information.

A failure during the linking phase means that once again you have to go back and edit your source
code. Success, on the other hand, will produce an executable file, but this does not necessarily mean that
your program works correctly. In a Microsoft Windows environment, the executable file will have an .exe
extension; in UNIX, there will be no such extension, but the file will be of an executable type. Many IDEs
have a build option, which will compile and link your program in a single operation.

Executing

The execution stage is where you run your program, having completed all the previous processes
successfully. Unfortunately, this stage can also generate a wide variety of error conditions that can include
producing the wrong output, just sitting there and doing nothing, or perhaps crashing your computer for
good measure. In all cases, it’s back to the editing process to check your source code.

Now for the good news: This is also the stage where if your program works, you get to see your computer
doing exactly what you told it to do! In UNIX and Linux, you can just enter the name of the file that has been
compiled and linked to execute the program. In most IDEs, you'll find an appropriate menu command that
allows you to run or execute your compiled program. This Run or Execute option may have a menu of its
own, or you may find it under the Compile menu option. In Windows, you can run the . exe file for your
program as you would any other executable.

The processes of editing, compiling, linking, and executing are essentially the same for developing
programs in any environment and with any compiled language. Figure 1-1 summarizes how you would
typically pass through processes as you create your own C programs.
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Figure 1-1. Creating and executing a program

Creating Your First Program

We'll step through the processes of creating a simple C program, from entering the program source code to
executing it. Don’t worry if what you type doesn’t mean much to you at this stage—I'll explain everything as

we go along.
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TRY IT OUT: AN EXAMPLE C PROGRAM

Run your editor and type in the following program exactly as it’s written. Be careful to use the
punctuation exactly as you see here. Make sure you enter the brackets that are on the fourth and

last lines as braces—the curly ones {}, not the square brackets [ ] or the parentheses ()—it really
does matter. Also, make sure you put the forward slashes the right way (/), as later you'll be using the
backslash (\) as well. Don’t forget the semicolon (;):

/* Program 1.1 Your Very First C Program - Displaying Hello World */
#include <stdio.h>

int main(void)

{
printf("Hello world!");
return 0;

}

When you’ve entered the source code, save the program as hello.c. You can use whatever name you
like instead of hello, but the extension must be . c. This extension is the common convention when you
write C programs and identifies the contents of the file as C source code. Most compilers will expect the
source file to have the extension .c, and if it doesn’t, the compiler may refuse to process it.

Next, you’ll compile your program as | described in the “Compiling” section previously in this chapter
and then link the pieces necessary to create an executable program, as discussed in the “Linking”
section. Compiling and linking are often carried out in a single operation, in which case it is usually
described as a build operation. When the source code has been compiled successfully, the linker will
add code from the standard libraries that your program needs and create the single executable file for
your program.

Finally, you can execute your program. Remember that you can do this in several ways. There is the
usual method of double-clicking the . exe file from Windows Explorer if you’re using Windows, but you
will be better off opening a command-line window and typing in the command to execute it because the
window showing the output will disappear when execution is complete. You can run your program from
the command line in all operating system environments. Just start a command-line session, change

the current directory to the one that contains the executable file for your program, and then enter the
program name to run it.

If everything worked without producing any error messages, you've done it! This is your first program,
and you should see the following output:

Hello world!




