Using the
C++ Standard
Template
Libraries

lvor Horton

ApPress

Using the C++
Standard Template
Libraries

lvor Horton

APIess®

Using the C++ Standard Template Libraries
Copyright © 2015 by Ivor Horton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0005-6
ISBN-13 (electronic): 978-1-4842-0004-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Marc Gregoire

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Mark Powers

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)

is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is for my dear wife, Eve.

Contents at a Glance

About the AUNOFccouusemmmsnnmmssnmsssssmssssssssssssssssnsssssnsssssnnesssnnssssnnesssnnsssnnnnsssnnnsss xvii
About the Technical ReVIEWEFsvcssissmssssssmssssssmssssssssssssssssssssnsssssssssssssssnsassnsass Xix
Acknowledgments........cccciuiissssmmmnmmmmmmsssssssssssnmnmmsssssssssssssnsseesssssssssnnnnnnnsessssssnnnnnnns XXi
INtroductionccuuieemmssennmsssnnsssansmsssnnmsssnsssssnnssssnnssssnnnsssnnnsssnnesssnnnsssnnnsssnnnsssnnnsssnnns Xxiii
Chapter 1: Introducing the Standard Template Libraryccccccccnnssnsssssssnnsnenssnnes 1
Chapter 2: Using Sequence Containersccucemmmnsssesnmmmsssssssssssssssssssssssssssssssnnnss 33
Chapter 3: Container Adaplersccccunsemmmmmsssssnmmmsssssnnmsssssssssssssssssessssssssssssssnnns 91
Chapter 4: Map Containers......ccceemmmmsssssnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnsssssnnnnss 135
Chapter 5: Working with Sets........ccciummmmmmmssesnmmmmsennmmmsssnmmssssnsssmm———ms 201
Chapter 6: Sorting, Merging, Searching, and Partitioning...........c.ccssennrisssnnnnns 249
Chapter 7: More Algorithmsccccivineesnnnmmsssnmmmsssssmmsssssmmssssssssssssssnn 285
Chapter 8: Generating Random NUMDErSccccvvnneemmmmisssnnmmssssssnmmssssssessssnnn 329
Chapter 9: Stream 0perationsccccuemmmmnsssssnmmmssssnmmsssssnmmsssssss——— 389
Chapter 10: Working with Numerical, Time, and Complex Data..........cccussnnnnnns 417
INdeX.ciiiiiirri s —————————_——————_———_—_—_ 483

Contents

About the AULNOFcccceiiiiiemmnmmissssnmssssssnrssss s ass s s sannnessssnnnnesssnnnnnnsssnnns Xvii
About the Technical REVIEWETccuxsssesrsssnsssssnsssssnsssssnnssssnsssssnnssssnnssssnsssssanssssnnssssas Xix
AcknOwIedgmENtS......ccceeermssssssnnsnnmnmssssssssssssssssssessssssssssnsnssssssssssssnnnnnnsssssssssssnnnnnns XXi
INtroduCtionccccurissssnnnmmssssnnnmmssssnnnnnsssnnnnsssssnnnnnnsssnnnnnssssnnnnnssssnnnnnssssnnnnnsssnnnnnnnssn xxiii
Chapter 1: Introducing the Standard Template Libraryccucccmmnnsennnnnssssnsnnnns 1
BASIC IABASccceverererersesse s n s 2
TEMPIALES.....ceeeeerer e r e r e r e nn e nnennennenan 2
THE CONTAINEISccveeiceeeecrerere e eas s a s ae e re e nn e s ne e e e 6

1 05T 10 S 7
ODtAINING HEIALOS......c.covieieccrieire e e bbb e e bR e e bbb b e n e as 8

1 G2z (0 g2 T[0T OO ST 9
SIEAM HEIALOIS.covireecerirrr et e e e e et e e e e b e s 11
LCE] s LCO T F= 0] (0] S SSSS 12
Operations 0N RErators..........coceeeererererese e sr e nnen e 15
SMANT POINTEISecveeccererre e sn s as s ne s en s e nn s nnenn s 16
USiNg UNIQUE_PLr<T> POINTEIScceeeerereeerrererresererereres e saesessesessesessesassesaesessssesaesessesassessenessssesaenanaens 17

Using Shared_ptr<T> POINEISccccverererrerercre e rereres e ree s se e se e ssesas e saesesaesesaesesaesassessesesassesasanaens 20

LT L 01U I o1 1 £ 22
AIGOITENMS ... e re s a e s s e resr e aena e s rensesaennensesnenrennenrennnnnnnnnnnns 24
Passing a Function as an Argument..........c.cccvvrrrnnsrsnss s 25
FUNCEION ODJECTS.......ceceeceeceereee ettt e s 25
LamBAa EXPIESSIONS.......c.coceererueeeresseesesesssssessssssesesesssss e e sss s e e sas e s e sssesssesesssssssssssssssssssssssssssssnsaes 26
1141 1P 2SS 30

vii

CONTENTS

Chapter 2: Using Sequence Containerscccemmnssmmmnmmssssssnmmssssssnmssssssssssssssssnnes 33

The Sequence CONTAINEISccccveerieresrerr e ns e 33
Function Members That Are Common Between CONtainers ..o 35
Using array<T,N> CONtAINEISccccceererererere e snesn e snesn s snennennas 38
ACCESSING EIBMENTS ...t 39
Using lterators with array CONTAINEIS..........cccocvireeeercrerneererr e 42
Comparing array CONTAINEIS..........ccoceverierrrererere et se s se s e s s se s se s e s s ae e ae e aesesaesanaens 44
Using vector<T> CONTAINEISccccvererererc e sessae s sae s e snssassassnenes 44
Creating VeCtor<T> CONTAINEISccoveererrerrerererererereressersesessesessesessessssesassesssssssessssesassessesesssnssassanaens 44
The Capacity and Size 0f @ VECLOKccoeeereeererererere e sereeseree s saeses e res e ssesesaesessesessesassesassessssesasenaes 46
ACCESSING EIBMENLS ...ttt e e rae e s e e e e e e sae e sae e sae e e e e e e e ae e naen 47
Using Iterators with @ veCtor CONTAINETcccoueeireeercrrse et rae s s ae e saenanaens 48
Adding New Elements t0 @ vECtOr CONTAINETccccverererrererere e se e sa e e saenenaes 52
DElEtiNg EIBMENTS.......cceceeerereeere et res s e rse e saesesaeses e sae e aesesaesesaesassesaesesas e saesesaerassesassesasnesasanaens 55
VECtOr<bOOl> CONAINEIS.......cccoivirririiii 59
Using deque<T> CONTAINEIScccceriernnircrnere e sn s sn s sne e 60
Creating deque CONTAINETSc..ccceerreriiereere e se e s s s s e e n e s r s ae e re e ne e snnnnnneas 60
AcCCeSSING EIBMENLS ... e 61
Adding and Removing EIEMENTS........ccccoiiieciernerr e s sns e sss e s e e snnes 61
Replacing the Contents of a deque CONtAINErcoccovverereecniennere e 62
Using a list<T> CONTAINETc.coeeeeeecc e n s 64
Creating list CONTAINETScoiueceerereeerre e e s e p s 64
AdAING EIBMENTS........ccoeeeieeeeirireeserese e e s s ne e se e e nnns 65
ReMOVING EIBMENTS.........cccceeecccrire et e e nenp s 67
Sorting and Merging EIBMENTS ..o 68
ACCESSING EIBMENTS ...t s e 70
Using forward_list<T> CONTAINEIS........ccccoererererereree e ses s e e e e e nes 73
Defining Your OWn HErators..........coccevveeeneriennscnesncss e s s e ssesss e ssesessessssensens 78
STL terator REQUIFEMENTS.ccuiiie et sae s e e sa e st sae e sa e e e sa e a e sa e e e e e sa e saena e naenan 78
LTS LI o]0 (0 U £ S 79
114 1] 1P SRS 88

viii

CONTENTS

Chapter 3: Container Adaptersccccivrrmmmmmnssssnnnmmmmmmssssssssnesssssssssssssesssnnnss 91

What Are Container Adapters? ... s s s e sss e snes 91
Creating and Using a stack<T> Container Adapter...........ccccveervrrierverrensessessesssesseesaens 92
STACK OPEIALIONScvveeccirieecririe et e e s e e e s s R e e s se s e e npn s 93
Creating and Using a queue<T> Container Adapter.........ccocvevevrrrrsvensessessessessensenens 98
QUELE OPEIALIONSceeeerereereerereesereererseras e ssesessesesaesaraesas e saesessesesaesesaesassesaeseraenssassnseransessesesssnenaeanaens 98
A Practical Use of @ QUEUE CONLAINETccourrerininsiinisissss s 99
Using a priority_queue<T> Container Adapterccccveervernseniennsesesessessssessesessenns 105
Creating @ Priority QUEUE..........coveeeicccrer s n e r e sr s s p e r e 106
Operations for @ Priority QUELEcceereericrnrere e sn e sre s 107
3 T 0L SRS 110
Creating @ HBAPccceeeereeeecresieeeees s e s ne s ne s e e ne e e e 111
HEAP OPEIALIONS ...ttt e e e s s e e s ne e e nn e e nns 112
Storing Pointers in @ CONTAINETccccvvrvrrrrrrer e 118
Storing Pointers in SEqUENCE CONTAINEISccovererrerrerereerererereresersesersesersesessesessessssessesesssssssesasaens 119
Storing Pointers in @ Priority QUEUEccceeverererrerterereesereseresesessesessesessesessessssessssessssessssessesanaens 125
Lo 1oL 1] (=T 127
Containers of Base Class POINTEIS..........cuvinimnnisssss s 128
Applying Algorithms to a Range of POINTEISccceeeveeerererererrere e se e e saeneenes 131
SUMMEAIY ...ttt ae s e s s ae e e e ae e s n e ae e s nernaens 132
Chapter 4: Map Containerscccseesssmmmmmmmmmssssssssnnss 139
Introducing Map CONAINErS........ccoeceverrirenre e e 135
USing @ Map CONAINETcoeeeeeerererere e sre e ssesnssne s e snssnssnssnesnesnssnesnesnnnnns 136
Creating @ Map CONTAINETcccoceerreecreree e e s na s nnas 138
Inserting EIeMents iN @ MaAP.......ccccerreererirrsesesisse s e e s sn e sssnssnnns 140
Constructing map EIEments iN PIACE...........ccoeeerrrrrenerirnccseses s ssssssssssens 147
Accessing EIEments iN @ MAD.......cocoveeerrneesereseesesess s s se s s ssssns 148
Deleting EIBMENTS........cccoviecrireeccir et s e e sn e e 157
Using pair<> and tuple<> ODJECTSccoeverererrrr s 158
Operations With @ PAITcceeeeeerrerre s s e s s ae e s s e saese s e s e sae e ae e sae e saesanaenaenees 158

ix

CONTENTS

Operations With @ TUPIEcceveereerererere e res e rae s e sa e sae e s e sae e s e sas e sa e e sae e sae e saesasaesaeneres 161
tuples and Pairs iNACHON ... e nn s 163
Using @ multimap CONtaINErcccoeeeeecescce e sn e snesna e 168
Changing the Comparison FUNCLIONcccoeveverere e sessae e saenens 173
Using a greater<T> ODJECL........ccccceerrreiererrrrssesesrsssese s se s se s e e s e e e sassnsnnnnes 174
Defining Your Own Function Object for Comparing EIeMents.........c.ccovceeerernenesesenesesessssssesesesssssenens 174
g £ 1111 o SRR 176
Functions That Generate Hash ValUES ... ssssssssssssssssssssesssssssens 177
Using an unordered_map CONTAINEN.........cccceeeeeeererece e sne e sne e e snesnesnennns 179
Creating and Managing unordered_map CONAINES..........ccccvureierererniencrernese s 180
Adjusting the BUCKEE COUNT ..ot 182
INSEItING EIBMENTS........coveieieee et 183
ACCESSING EIBMENTS ... e 185
ReMOVING EIBMENTS.....ccoeiccericecir e 186
ACCESSING BUCKELS ..ot et 186
Using an unordered_multimap CONtaINETccccevererererrns s seesenseens 190
SUMMEAIY ...t as s e s e s ae e e re e s n e e e ae e s nnnrnaeas 199
Chapter 5: Working with Sets........cccrumemmmmssnmmsssnsmssnnssssssmsssssssssssssssnsssssanssssanssss 201
Understanding Set CoNtainers...........ccceoverennicrsninsesnse s s sesseens 201
UsSing Set<T> CONAINEIScccceeererererrerre s e sre s e ssesaesaesresresnssnssnesnesnesnesnesnannns 202
Adding and Removing EIBMENTS.........cccooiieirirerrecriseesese s 204
ACCESSING EIBMENTS ...t 205
WOTKING WIth SBES.....cccoeieiecerire s e nn s 205
SEEREIALONSeeet i ————————————— 215
Storing Pointers in @ St CONTAINEN ... 216
Using multiset<T> CONTAINEIScccvcerrierenrnsere e 222
Storing Pointers to Derived Class ODJECTSucuceeerrrerererernsesesesssesesssssss s ssssssssessssssssessssssenes 224
unordered_set<T> CONtAINErS.......c.covinnnnn s 230
D0 o T T T T 0SS 231

RetrieViNg EIBMENTS......ccuo i a e st s r e e a e s r e a e a e e n e e s 232

CONTENTS

Deleting EIBMENTS. ..o s s a e s a e s e e a e s r e e e e e e e e e e e e e r e e s 233
Producing @ BUCKET LiSt........ccooeriieiiririrere s sse s s s sssssssnesasssssssssssassssssssssssssssssssssssnses 234
Using unordered_multiset<T> CONtAINEIS........ccccreeerereresererre e see e e snssnssnesnnnnns 234
OPErations 0N SELSccccvrerierrerrerrerree s s e s e e sae s e e sae s e ssesnesaessaesaessnesseesnessnesnesns 240
The set_union() AlGOFtNM........cccceerecrrr s a s nesp e nnnn s 241
The set_intersection() AIGQOrthm.........cccoeieceerrecscrr s nnns 242
The set_difference() AIGQOrithm...........ccceeiecrrecsr e s 242
The set_symmetric_difference() AIgOrithm..........ccccoereiennnnnescssse s sesnns 243
The inCludes() AIGOFTItMcccovieeeerrecrr e ne s p e nnnr s 243
Set OperationS iNACHIONcccocerieercrrrre e r s e r e nenp s 244
E3 1111 P2 7 246
Chapter 6: Sorting, Merging, Searching, and Partitioning..........cc.ccssenrrnssnannnns 249
L0 [0 T 1T T 249
Sorting and the Order of EQUAl EIBMENLScccvceverrereererererenereresersssessesessesessesessessssessssesssssssesasaens 252
12T (1o 253
Testing for SOrted RANGEScovverrerererererereressersesersesessesessersssessesessssessessssessssessssssssssssessssessssssenssaes 256
Merging RANGESc.ccvcerrerreriersessesses s sesses s s e s e se s e s e s e e s e s sn e s snssnssnssnssnssnssnssnnnnns 258
Searching @ RANQEccouciernrmrenrne e s s s sn s sne e s sss s snsnsnens 266
Finding an Element in @ RANGE........cccoveeererrnsenesrnssssesesssssese s ssssssssesssssssssssssssssssssssssssssssssssssnns 267
Finding any of a Range of Elements in @ RANGEcccoveeeeerereesenenrsesesessssse e sessssssenns 268
Finding Multiple Elements from @ RANGE..........ccocvrrererernenesessnssesesesssssesssssssssssssssssssesssssssssssssssssnnns 270
Partitioning @ RANGE...........ccceriiirrirrnr et s 274
The partition_copy() AIGOritNM.........ccv i sr e e nr e es 276
The partition_point() AIGOFTRMcoere s 277
Binary Search Algorithms..........ccocecrcrircrsrsrse s sne e 278
The binary_search() AIgOrthm...........coo e 279
The lower_bound() AIgOFTRM..........ccocer e s sr e s r e enas 280
The equal_range() @lgorithm...........o.ocircee e 280
SUMMEANY ...t r e a s e a s saer s e re e s e ae e e nennnsnnnnnnnnas 283

xi

CONTENTS

Chapter 7: More Algorithmsccccininsemmmnnnsssnmmmsssssmmssssnmmsssssssssssssann 285
Testing Element Propertiesccccvcvevvrsensnsessessesssssss s sss s ssssssssssssssssssssssssssnnes 285
ComMPAring RANQEScceeerererrerrerresse e ssessessessessessessesssssssssssessssssssssssssssssssssssssssnns 287
Finding Where Ranges Differc.covecerrinencsnnescsisisee e sessssssssessssssssesssssssssnns 289
Lexicographical Range COMPANISONSceeerererreresesersssesesessssessesessssssessssssssssssssssssssssssssssssssssssssens 293
Permutations 0f RANGESccovurueererrreecriree e e 294
COPYING @ RANGEcveeeereereereereeriesseree e ssessessessessssassaesassassassassaesassaesassassassassassnsssnnnnns 298
Copying @ NUMDEr Of EIBMENTS ..o s 298
CONAItIONAl COPYING.....veuererererereerereerersererersssersesersesessssessessssessssessesessesessessssessssessesessssssesassesssserssnees 299
REVEIrSE Order COPYING.....ecereerereerereererserereressersesersesessssessessssessssessesessssessessssessssessesessssssesassesssserseneres 300
Copying and Reversing the Order of Elements..........ccccoeeniernnniennscsesness e 302
Copying a Range Removing Adjacent Duplicates.........ccceevererrrssssessesses s ses s sensenns 304
Removing Adjacent Duplicates from @ RaNgecccvvrverrerversensessessesses s sessessessessenns 305
Rotating RANQESc.cvceicerircerir s sn e sr s sn s nn e nnann 306
MOVING @ RANGE......cceirirreriseresrse s ss s s sn s s s sn s 308
Removing Elements from @ RANQEcccvvrverierierrrserses s sss e e sas e sesnns 310
Setting and Modifying Elements in @ RANGEccccvereereerercscsces e 311
Generating Element Values with @ FUNCLION ..o 312
Transforming @ RANGEccveerciecrcrererir e e a s s r e r e s s p s p s s p e 313
Replacing EIements in @ RANGEccccoierriennscns e sn e s sn s e e snssessssenns 317
ApplYing AlGOrItNMSocueeeeceecee e sr e n e sr e sn e sr e n e n s 318
E3 1111 P2 7 322
Chapter 8: Generating Random NUMDErSccccnieemmmnmssnmnmmssssssnmmssssssnssannn 329
What Is @ Random NUMDEI?..........ccoierrcrerscse s 329
Probability, Distributions, and ENtropy..........cccceeversrsrsnssssses s sessns s sesenns 330
WAL IS PrODADIIIEY?...vvvooreveessseresssssnssessnns 330
What IS @ DIStHDULIONT? ... e 330
WRAL IS ENIFOPY 2.t e s s p e r e e e p e e a e e nennnnas 332

xii

CONTENTS

Generating Random Numbers with the STL.......cccveircnncrese e 332
Seeds in Random NUMDEr GENEIALiON...........ccviuieieirr e 333
0btaining RANAOM SEEAScoveveeeerereeerirre e ne e 333
SEA SEUUBNCES ...cveeruerrrerte e str e ses e sae s se e s e se s e s as s s et s e e s aesesae s e s ae s ee e e R e e e R et eRe e s aesee e sae st eae e naesenanes 334

Distribution CIaSSES........ccceverererirmiiiii s 337
The Default Random NUmber GENErator............covrnnns 338
Creating DistribDUtion ODJECLS.......cccvererererererrerrererresereesereresersesessesessesessesassesassessesessesessssassesassesseneres 339
Uniform DiStriDULIONS.......cccvuveiiiiisiss s 339
Normal DiStriDULIONS. ..o ——— 352
Lognormal DiStrDULIONScoveeeeeercre ettt s s sa e ae e s e sae e s e sae e sae e sae e saesas e naenens 357
Other Distributions Related to the Normal DiStribution ... 361
SaMPIINgG DISTHDULIONS ...cueeveerecrere st re s e s e se e saesas e saesesae e saesassesas e saenesaenenaeanaens 362
Other DiStriDULIONS.......ccciiiirir i ——— 376

Random Number Engines and GENEratorscocverrersessessessessesssssessessssssssssssssssnenns 382
The Linear Congruential ENGINe.........ccooeiiiniinicnre s ss s ssssessssessesesnes 383
The Mersenne TWISEer ENQINEccoeeereinicnnrcsesine s ses s e sss e sss e e ssssessssessssessesssnes 384
The Subtract With Carry ENQINE.........ccceceevrinninesne s sss e e sessessssessssessssssnes 384

Shuffling a Range of EIBMENtS..........ccoeoiveeiiirenscressress e 385

E3 1111 P2 7 386

Chapter 9: Stream 0perationsccccuuseemmmisssssnmmsssssnmmsssssnmesssssne s ——— 389

Stream RErators ... ——— 389
1T oTU LAY (=T (0 (0] 389
OUEPUL STream HEFALOrScoeereerereerererere s erre e ree s rae s ra s ra e sae e s ae e sae e saesa s e sae e sae e saenanaeransenanneres 393

Overloading the Insertion and Extraction Operators...........ccceceeeeenessseseesessessessennnens 395

Using Stream Iterators With Files.........ccccvveeiineniicnn e 396
File SIrBAMS.......cccee e 397
File Stream Class TEMPIALES.........ccovrrerrernrererirse s se s ss e s enes 397
File Input USing @ Stream HErator...........ccovecercrenescsrseseseses s sss s sssssssssnens 399

xiii

CONTENTS

Repeated File Reads Using @ Stream IErator............cccvveeveriererreresesesesssessesessessssessssessssessesessessssenes 401
File Output USing @ Stream IEratorccocvveverererersseseresersssessesessesessessssessssessssesssssssssassessssessesenes 402
Stream Iterators and AlgOrithms ... 404
Stream Buffer RErators ... 408
Input Stream BUffer REIators.........ccviecceerinsescrsse e sn s nnns 408
Output Stream BUFfer IREratorscoceoceerrssesesrssssesesssssese e sese s ssssssssssssssssssssssssssnes 409
Using Stream Buffer Iterators with File Streams..........ccoceceevnniesnnsesessse e 410
String Streams and Stream and Stream Buffer lterators..........ccocvevvrvrvrrncnsensensennnns 412
1111 112 SRS 415
Chapter 10: Working with Numerical, Time, and Complex Data..........ccccussunnnnns 417
Numerical CalCulAtions ... ———— 417
NUmeric AlgOrthmS.......ccociviirrrr e nens 418
Storing Incremental Values in @ RANQE..........ccoeererrrerrcererre e sesesseses e sassesaesessssessesasaens 418
SUMMING @ RANGEvoveeeerrrreccsissse s s s e s e s se s s ss s s ssesssensssssnessssnsnnes 419
INNEE PIOAUCT ... 420
AdJaCeNt DIffEIBNCES ...veveeeererrrreererrreese s e e s e s s e e r e e nnnrans 425
Lo L (E 1T 1 1 426
Maxima and MINIMA ... e 427
Storing and Working with Numerical ValUESccccvvrverrerrersessessenses s sessessessessessensens 428
Basic Operations on valarray ODJECES........ccovveverererrr s sa e sas e sa e s 429
1 T T 00 T=T = (0] £ 433
Compound Assignment Operators for valarray ObJECES.......c.ccvvverererererererserereree e sesessesseenes 434
Binary Operations on valarray ODJECESccccccverererrrrre s sa e sa e e e 434
Accessing Elements in valarray ODJECTS........ccvvvvererererererenieressersesersesesesesessssessssessessssessssessssesssssnses 436
Rational ArithmetiC.........cocccviri 459
Temporal TEMPIALESccoveerrirrirrirrrir e e s n e s sae e e e snesneenaness 462
DefiNiNg DUFALIONSccovevieecrerrreeesesrsse e e s s ss e s s s e s se e e nnnsnnnnnnes 463
Clocks @nd TimMe POINTS........cccocoeeererercrereere e 468

xiv

CONTENTS

COMPIEX NUMDEIS ..ot rsessessessessessessessessesasssssaesassassssssssassassassassassnssssssnnsnns 475
Creating Objects That Represent Complex NUMDEIS.........cccovrrcernrcicccrsreeser e 476
COMPIEX AFTNMETICcveeeecrerircce e s e e s e e 477
Comparisons and Other Operations on Complex NUMDEIS.........ccoevrecrerriernrenn e 477
A Simple Example Using ComplexX NUMDEIS ..o sessns 478
T 111 T2 PP 481

11T - 483

XV

About the Author

Ivor Horton graduated as a mathematician and was lured into
information technology with promises of great rewards for very little
work. In spite of the reality being a great deal of work for relatively modest
rewards, he has continued to work with computers to the present day.
He has been engaged at various times in programming, systems design,
consultancy, and the management and implementation of projects of
considerable complexity.

Ivor has many years of experience in designing and implementing
systems for engineering design and manufacturing control. He
has developed occasionally useful applications in a wide variety of
programming languages, and has taught primarily scientists and
engineers to do likewise. His currently published works include
tutorials on C, C++, and Java. At the present time, when he is not writing
programming books or providing advice to others, he spends his time
fishing, traveling, and enjoying life in general.

xvii

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated
from the Catholic University of Leuven, Belgium, with a degree in
“Burgerlijk ingenieur in de computer wetenschappen” (equivalent to
master of science in engineering in computer science). The year after, he
received the cum laude degree of master in artificial intelligence at the
same university. After his studies, Marc started working for a software
consultancy company called Ordina Belgium. As a consultant, he worked
for Siemens and Nokia Siemens Networks on critical 2G and 3G software
running on Solaris for telecom operators. This required working in
international teams spanning from South America and the United States
to Europe, the Middle East, Africa, and Asia. Now, Marc is working for
Nikon Metrology on 3D laser scanning software.

His main expertise is C/C++, specifically Microsoft VC++ and
the MFC framework. Next to C/C++, Marc also likes C# and uses PHP
for creating web pages. In addition to his main interest of Windows
development, he also has experience in developing C++ programs running 24/7 on Linux platforms (e.g., EIB
home automation software).

Since April 2007, he has received the yearly Microsoft MVP (Most Valuable Professional) award for his
Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org) and an active member on the
CodeGuru forum (as Marc G). He also creates freeware and shareware programs that are distributed through
his web site at waw. nuonsoft. com, and maintains a blog on www.nuonsoft.com/blog/.

Xix

www.becpp.org
www.nuonsoft.com
www.nuonsoft.com/blog/

Acknowledgments

I'd like to thank Mark Powers and the rest of the Apress editorial and production teams for their help and
support throughout. I would especially like to thank Marc Gregoire for his usual outstanding technical
review. His many comments and suggestions have undoubtedly made the book much better that it
otherwise would be.

xxi

Introduction

Welcome to Using the C++ Standard Template Libraries. This book is a tutorial on the class and function
templates that are contained within a subset of the header files that make up the C++ Standard Library.
These are generic programming tools that offer vast capability, are easy to use, and make many things simple
to implement that would otherwise be difficult. The code they generate is usually more efficient and reliable
than you could write yourself.

I'm usually unhappy with explanations of just what things do, without an elaboration of what things
are for. It’s often difficult to guess the latter from the former. My approach therefore, is not just to explain the
functionality of the class and function templates, but as far as possible to show how you apply them in a practical
context. This leads to some sizeable chunks of code at some points, but I believe you'll think that it’s worth it.

The collection of header files from the C++ Standard Library that are the subject of this book have often
been referred to in the past as the Standard Template Library or simply the STL. I'll use "the STL" in the book
as a convenient shorthand to mean the set of headers containing templates that I discuss in the book. Of
course, there’s really no such thing as the STL - the C++ Language Standard doesn’t mention it so formally it
doesn’t exist. In spite of the fact that it is undefined, most C++ programmers know roughly what is meant by
the STL. It's been around in various guises for a long time.

The idea of generic programming that is embodied in the STL originated with Alexander Stepanov
back in 1979 - long before there was a standard for the C++ language. The first implementation of the STL
for C++ was originated by Stepanov and others around 1989 working at Hewlett Packard, and this STL
implementation was complementary to the libraries that were provided with C++ compilers at that time.
The capability offered by the STL was first considered for incorporation into the first proposed C++ language
standard in the early 1990s, and the essentials of the STL made it into the first language standard for C++
that was published in 1998. Since then the generic programming facilities that the STL represents have been
improved and extended, and templates are to be found in many header files that are not part of what could
be called the STL. All the material in the book relates to the most recently approved language standard at the
time of writing, which is C++ 14.

The STL is not a precise concept and this book doesn’t cover all the templates in the C++ Standard
Library. Overall, the book describes and demonstrates the templates from the Standard Library that I think
should be a first choice for C++ programmers to understand, especially those who are relatively new to C++.
The primary Standard Library header files that are discussed in depth include:

For data containers: <array>, <vector», <deque>, <stack>, <queue>, <list>,
<forward_list>, <set>, <unordered_set>, <map>, <unordered map>

For iterators: <iterator>

For algorithms: <algorithm>

For random numbers and statistics: ~ <random>

For processing numerical data: <valarray>, <numeric>

For time and timing: <ratio>, <chrono>

For complex numbers: <complex>

xxiii

INTRODUCTION

Templates from other headers such as <pair>, <tuple>, <functional>, and <memory> also get dragged
in to the book at various points. The templates for data containers are fundamental; these will be useful in
the majority of applications. Iterators are a basic tool for working with containers so they are included also.
Algorithms are function templates that operate on data stored in containers. These are powerful tools that
you can also apply to arrays and they are described and illustrated with working examples. I have included
a chapter that explains the templates that relate to random number generation and statistics. While some of
these are quite specialized, many are widely applicable in simulations, modeling, and games programs. The
templates for compute-intensive numerical data processing are discussed, and those relating to time and
timing. Finally, there’s a brief introduction to the class templates for working with complex numbers.

Prerequisites for Using the Book

To understand the contents of this book you need to have a basic working knowledge of the C++ language.
This book complements my Beginning C++ book, so if you have worked through that successfully, you're in
good shape to tackle this. A basic understanding of what class templates and function templates are, and
how they work is essential, and I have included an overview of the basics of these in Chapter 1. If you are
not used to using templates, the syntax can give the impression that they are lot more complicated than
they really are. Once you get used to the notation, you'll find them relatively easy to work with. Lambda
expressions are also used frequently with the STL so you need to be comfortable with those too.

You'll need a C++ 14-compliant compiler and of course a text editor suitable for working with program
code. There has been quite a renaissance in C++ compiler development in recent years, and there are several
excellent compilers out there that are largely in conformance with C++ 14, in spite of it being a recently
approved standard. There are at least three available that you can use without charge:

e GCCisthe GNU compiler collection that supports C++, C, and Fortran as well as
other languages. GCC supports all the C++ 14 features used in this book. You can
download GCC from gcc.gnu.org. The GCC compiler collection works with GNU and
Linux, but there’s a version for Microsoft Windows that you can download from
Www.mingw.org.

e The ideaone online compiler supports C++ 14 and is accessible through ideaone.com.
The compiler it uses for C++ 14 is GCC 5.1 at the time of writing. ideaone.com also
supports a wide range of other programming languages, including C, Fortran,
and Java.

e The Microsoft Visual Studio 2015 Community Edition runs under the Microsoft
Windows operating system. It supports C++ as well as several other programming
languages and comes with a complete development environment.

Using the Book

For the most part, I have organized the material in this book to be read sequentially, so the best way to

use the book is to start at the beginning and keep going until you reach the end. Generally, I try not to use
capabilities before I have explained them. Once I have explained something, I plug it in to subsequent
material whenever it makes sense to do so, which is why I recommend going through the chapters
sequentially. There are a few topics that require some understanding of the underlying mathematics, and
I have included the maths in these instances. If you are not comfortable with the maths, you can skip these
without limiting your ability to understand what follows.

XXiv

http://dx.doi.org/10.1007/978-1-4842-0004-9_1
www.mingw.org

INTRODUCTION

No one ever learned programming by just reading a book. You'll only learn how to use the STL by
writing code. I strongly recommend that you key in all the examples - don’t just copy them from the
download files - and compile and execute the code that you've keyed in. This might seem tedious at times,
but it’s surprising how much just typing in program statements will help your understanding, especially
when you may feel you're struggling with some of the ideas. It will help you remember stuff, too. If an
example doesn’t work, resist the temptation to go straight back to the book to see why. Try to figure out from
your code what is wrong.

Throughout the chapters there are code fragments that are executable for the most part if the
appropriate header files are included. Generally you can execute them and get some output if you put them
in the main() function. I suggest you set up a program project for this purpose. You can copy the code into
an empty definition for main() and just add further #include directives for the header files that are required
as you go along. You'll need to delete previous code fragments most of the time to prevent name conflicts.

Making your own mistakes is a fundamental part of the learning process and the exercises should
provide you with ample opportunity for that. The more mistakes that you make and that you are able to find
and fix, the greater the insight you’ll have into what can and does go wrong using the templates. Make sure
you complete all the exercises that you can, and don’t look at the solutions until you're sure that you can’t
work it out yourself. Many of these exercises just involve a direct application of what’s covered in a chapter -
they’re just practice, in other words - but some also require a bit of thought or maybe even inspiration.

I wish you every success with the STL. Above all, enjoy it!

—Ivor Horton

XXV

CHAPTER 1

Introducing the Standard
Template Library

This chapter explains the fundamental ideas behind the Standard Template Library (STL). This is to give
you an overall grasp of how the various types of entities in the STL hang together. You'll see more in-depth
examples and discussion of everything that I introduce in this chapter in the book. In this chapter you'll
learn the following:

What is in the STL

How templates are defined and used

What a container is

What an iterator is and how it is used

The importance of smart pointers and their use with containers
What algorithms are and how you apply them

What is provided by the numerics library

What a function object is

How lambda expressions are defined and used

Besides introducing the basic ideas behind the STL, this chapter provides brief reminders of some C++
language features that you need to be comfortable with because they will be used frequently in subsequent
chapters. You can skip any of these sections if you are already familiar with the topic.

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

Basic Ideas

The STL is an extensive and powerful set of tools for organizing and processing data. These tools are all
defined by templates so the data can be of any type that meets a few minimum requirements. I'm assuming
that you are reasonably familiar with how class templates and function templates can be defined and how
they are used, but I'll remind you of the essentials of these in the next section. The STL can be subdivided
into four conceptual libraries:

e The Containers Library defines containers for storing and managing data. The templates
for this library are defined within the following header files: array, vector, stack,
queue, deque, list, forward_list, set, unordered_set, map, and unordered_map.

e The Iterators Library defines iterators, which are objects that behave like pointers
and are used to reference sequences of objects in a container. The library is defined
within a single header file, iterator.

e The Algorithms Library defines a wide range of algorithms that can be applied to a
set of elements stored in a container. The templates for this library are defined in the
algorithmheader file.

e The Numerics Library defines a wide range of numerical functions, including
numerical processing of sets of elements in a container. The library also includes
advanced functions for random number generation. The templates for this library
are defined in the headers complex, cmath, valarray, numeric, random, ratio, and
cfenv. The cmath header has been around for a while, but it has been extended in
the C++ 11 standard and is included here because it contains many mathematical
functions.

Many complex and difficult tasks can be achieved very easily with remarkably few lines of code using
the STL. For instance, without explanation, here’s the code to read an arbitrary number of floating-point
values from the standard input stream and calculate and output the average:

std: :vector<double> values;

std::cout << "Enter values separated by one or more spaces. Enter Ctrl+Z to end:\n ";

values.insert(std::begin(values), std::istream iterator<double>(std::cin),
std::istream_iterator<double>());

std::cout << "The average is "

<< (std::accumulate(std::begin(values), std::end(values), 0.0)/values.size())

<< std::endl;

It requires only four statements! Long lines admittedly, but no loops are required; it’s all taken care of
by the STL. This code can be easily modified to do the same job with data from a file. Because of the power
and wide applicability of the STL, it’s a must for any C++ programmer’s toolbox. All STL names are in the std
namespace so [won’t always qualify STL names explicitly with std in the text. Of course, in any code I will
qualify names where necessary.

Templates

A template is a parametric specification of a set of functions or classes. The compiler can use a template to
generate a specific function or class definition when necessary, which will be when you use the function
template or class template type in your code. You can also define templates for parameterized type aliases.
Thus a template is not executable code - it is a blueprint or recipe for creating code. A template that is

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

never used in a program is ignored by the compiler so no code results from it. A template that is not used
can contain programming errors, and the program that contains it will still compile and execute; errors in a
template will not be identified until the template is used to create code that is then compiled.

A function or class definition that is generated from a template is an instance or an instantiation of
the template. Template parameter values are usually data types, so a function or class definition can be
generated for a parameter value of type int, for example, and another definition with a parameter value
of type string. Parameter arguments are not necessarily types; a parameter specification can be an integer
type that requires an integer argument. Here’s an example of a very simple function template:

template <typename T> T8 larger(T& a, T& b)

return a > b ? a : b;

This is a template for functions that return the larger of the two arguments. The only limitation on the
use of the template is that the type of the arguments must allow a > comparison to be executed. The type
parameter T determines the specific instance of the template to be created. The compiler can deduce this
from the arguments you supply when you use larger (), although you can supply it explicitly. For example:

std::string first {"To be or not to be"};
std::string second {"That is the question."};
std::cout << larger(first, second) << std::endl;

This code requires the string header to be included. The compiler will deduce the argument for T
as type string. If you want to specify it, you would write larger<std: :string>(first, second).You
would need to specify the template type argument when the function arguments differ in type. If you wrote
larger(2, 3.5), for example, the compiler cannot deduce T because it is ambiguous - it could be type int or
type double. This usage will result in an error message. Writing larger<double>(2, 3.5) will fix the problem.
Here’s an example of a class template:

template <typename T> class Array

private:
T* elements; // Array of type T
size t count; // Number of array elements
public:
explicit Array(size t arraySize); // Constructor
Array(const Arrayd other); // Copy Constructor
Array(Array8& other); // Move Constructor
virtual ~Array(); // Destructor
T& operator[](size t index); // Subscript operator
const T& operator[](size t index) const; // Subscript operator-const arrays
Array8 operator=(const Arrayd rhs); // Assignment operator
Array& operator=(Arrayd8 rhs); // Move assignment operator
size t size() { return count; } // Accessor for count
};

The size_t type alias is defined in the cstddef header and represents an unsigned integer type. This
code defines a simple template for an array of elements of type T. Where Array appears in the template
definition Array<T> is implied and you could write this if you wish. Outside the body of the template - in

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

an external function member definition, you must write Array<T>. The assignment operator allows one
Array<T> object to be assigned to another, which is something you can’t do with ordinary arrays. If you
wanted to inhibit this capability, you would still need to declare the operator=() function as a member of
the template. If you don'’t, the compiler will create a public default assignment operator when necessary for
a template instance. To prevent use of the assignment operator, you should specify it as deleted - like this:

Array8 operator=(const Arrayd rhs)=delete; // No assignment operator

In general, if you need to define any of a copy or move constructor, a copy or move assignment operator,
or a destructor, you should define all five class members, or specify the ones you don’t want as deleted.

Note A class that implements a move constructor and a move assignment operator is said to have
move semantics.

The size() member is implemented within the class template so it’s inline by default and no external
definition is necessary. External definitions for function members of a class template are themselves templates
thatyou put in a header file - usually the same header file as the class template. This is true even if a function
member has no dependence on the type parameter T, so size() would need a template definition if it was not
defined inside the class template. The type parameter list for a template that defines a function member must
be identical to that of the class template. Here’s how the definition of the constructor might look:

template <typename T> // This is a function template with parameter T
Array<T>::Array(size t arraySize) try : elements {new T[arraySize]}, count {arraySize}
{(}
catch(const std::exception& e)
{
st::cerr << "Memory allocation failure in Array constructor."” << std::endl;
rethrow e;

}

The memory allocation for elements could throw an exception so the constructor is a function try
block. This allows the exception to be caught and responded to but the exception must be rethrown - if you
don’t rethrow the exception in the catch block, it will be rethrown anyway. The template type parameter is
essential in the qualification of the constructor name because it ties the function template definition to the
class template. Note that you don’t use the typename keyword in the qualifier for the member name; it’s only
used in the template parameter list.

Of course, you can specify an external template for a function member of a class template as inline -
for example, here’s how the copy constructor for the Array template might be defined:

template <typename T>
inline Array<T»>::Array(const Array& other)
try : elements {new T[other.count]}, count {other.count}

{
for (size t i {}; i < count; ++i)
elements[i] = other.elements[i];

}
catch (std::bad alloc8)

{
std::cerr << "memory allocation failed for Array object copy." << std:: endl;

}
4

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

This assumes that the assignment operator works for type T. Without seeing the code for a template
before you use it, you may not realize the dependency on the assignment operator. This demonstrates how
important it is to always define the assignment operator along with the other members I mentioned earlier
for classes that allocate memory dynamically.

Note The class and typename keywords are interchangeable when specifying template parameters so
you can write either template<typename T> or template<class T> when defining a template. Because T is
not necessarily a class type, | prefer to use typename because | feel this is more expressive of the possibility
that a template type argument can be a fundamental type as well as a class type.

The compiler instantiates a class template as a result of a definition of an object that has a type
produced by the template. Here’s an example:

Array<int> data {40};

An argument for each class template type parameter is always required, unless there is a default
argument. When this statement is compiled, three things happen: the definition for the Array<int> class
is created so that the type is identified, the constructor definition is generated because it must be called
to create the object, and the destructor is created because it's needed to destroy the object. That’s all the
compiler needs to create and destroy the data object so this is the only code that it generates from the
templates at this point. The class definition is generated by substituting int in place of T in the template
definition, but there’s one subtlety. The compiler only compiles the member functions that the program uses,
so you don’t necessarily get the entire class that would result from a simple substitution of the argument for
the template parameter. On the basis of the definition for the data object, the class will be defined as:

class Array<int>
{
private:
int* elements;
size t count;

public:
explicit Array(size_t arraySize);
virtual ~Array();

};

You can see that the only function members are the constructor and the destructor. The compiler won't
create instances of anything that isn’t required to create the object, and it won’t include parts of the template
that aren’t needed in the program.

You can define templates for type aliases. This can be useful when you are working with the STL. Here’s
an example of a template for a type alias:

template<typename T> using ptr = std::shared ptr<T>;

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

This template defines ptr<T> to be an alias for the smart pointer template type std: : shared_ptr<T>. With
this template in effect you can use ptr<std: : string> in your code instead of std: : shared_ptr<std::string>.
It’s clearly less verbose and easier to read. The following using directive will simplify it further:

using std::string;

Now you can use ptr<string> in your code instead of std: : shared_ptr<std: :string>. Templates for
type aliases can make your code easier to understand and much easier to type.

The Containers

Containers are the bedrock of the STL capabilities because most of the rest of the STL relates to them.

A container is an object that stores and organizes other objects in a particular way. When you use a
container you'll inevitably be using iterators to access that data so you'll need a good understanding of those
too. The STL provides several categories of container:

e Sequence containers store objects in a linear organization, similar to an array, but
not necessarily in contiguous memory. You can access the objects in a sequence by
calling a function member or through an iterator; in some cases you can also use the
subscript operator with an index.

e Associative containers store objects together with associated keys. You retrieve an
object from an associative container by supplying its associated key. You can also
retrieve the objects in an associative container using an iterator.

e Container adapters are adapter class templates that provide alternative mechanisms
for accessing data stored in an underlying sequence container, or associative container.

It’s important to appreciate that unless the objects are rvalues - temporary objects - of a type that
has move semantics, all the STL containers store copies of the objects that you store in them. The STL
also requires that the move constructor and assignment operator must be specified as noexcept, which
indicates they do not throw exceptions. If you add an object of a type that does not have move semantics to
a container and modify the original, the original and the object in the container will be different. However,
when you retrieve an object, you get a reference to the object in the container so you can modify stored
objects. The copies that are stored are created using the copy constructor for the type of object. For some
objects, copying can be a process that carries a lot of overhead. In this case, it will be better to either store
pointers to the objects in the container, or to move objects into the container assuming that move semantics
have been implemented for the type.

Caution Don’t store derived class objects in a container that stores elements of a base class type.
This will cause slicing of the derived class objects. If you want to access derived class objects in a container
with a view to obtaining polymorphic behavior, store pointers to the objects in a container that stores base class
pointers — or better still — smart pointers to the base type.

Containers store the objects they hold on the heap and manage the space they occupy automatically.
The allocation of space in a container storing objects of type T is managed by an allocator, and the type of
the allocator is specified by a template parameter. The default type argument is std: :allocator<T>, and an
object of this type is an allocator that allocates heap memory for objects of type T. This provides the possibility
for you to supply your own allocator. You might want to do this for performance reasons, but this is rarely
necessary and most of the time the default allocator is fine. Defining an allocator is an advanced subject and

6

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

Iwon’t be discussing it further in this book. I'll therefore omit the last template parameter for template types
when it represents an allocator. The std: :vector<typename T, typename Allocator> template has a default
value for Allocator specified as std: :allocator<T> so I'll write this as std: :vector<typename T>.This
explanation is just so you'll know the option to provide an allocator is there.

A type T must meet certain requirements if T objects are to be stored in a container, and these
requirements ultimately depend on the operations you need to perform on the elements. A container will
usually need to copy elements and may need to move and interchange elements. The bare minimum for
type T objects to be stored in a container in this case looks like this:

class T
{
public:
T0); // default constructor
T(const T& t); // Copy constructor
~T(); // Destructor
T& operator=(const T& t); // Assignment operator
b

Considering that the compiler provides default implementations for all the members above in many
circumstances, most class types should meet these requirements. Note that operator<() hasn't been
included in the definition for T, but objects of a type without operator<() defined will not be usable as keys
in any of the associative containers such as map and set, and the ordering algorithms such as sort () and
merge() cannot be applied to sequences where the elements do not support the less-than operation.

Note If the type of your objects does not meet the requirements of a container that you are using, or you
misuse the container template in some other way, you will often get compiler error messages relating to code
that is deep in a Standard Library header file. When this occurs, don’t rush to report errors in the Standard
Library. Look for errors in your code that is using the STL!

Iterators

An iterator is an object of a class template type that behaves like a pointer. As long as an iterator, iter, points
to a valid object you can dereference it to obtain a reference to the object by writing *iter. If iter points to a
class object you can access a member, member, of the object by writing iter->member. Thus you use iterators
just like pointers.

You use iterators to access the elements in a container when you are processing them in some way, and
in particular when you are applying an STL algorithm. Thus iterators connect algorithms to the elements in
a container regardless of the type of the container. Iterators decouple the algorithm from the data source;
an algorithm has no knowledge of the container from which the data originates. Iterators are instances of
template types that are defined in the iterator header, but this header is included by all of the headers that
define containers.

You typically use a pair of iterators to define a range of elements; the elements can be objects in a
container, elements in a standard array, characters in a string object, or elements in any other type of object
that supports iterators. A range is a sequence of elements that is specified by a begin iterator that points to
the first element in the range, and an end iterator that points to one past the last element. Even when the
sequence is a subset of the elements in a container, the second iterator still points to one past the last element
in the sequence - not the last element in the range. The end iterator for a range that represents all the

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

elements in a container will not point to anything and therefore cannot be dereferenced. Iterators provide

a standard mechanism for identifying a range of elements in the STL, and elsewhere. The specification of a
range of elements is independent from where the elements originate so a given algorithm can be applied to
a range of elements from any source as long as the iterators meet the requirements of the algorithm. I'll have
more to say about the characteristics of different kinds of iterators later.

Once you understand how iterators work, it’s easy to define your own template functions to process
data sequences that are specified by iterators as arguments. Instances of your function templates can then be
applied to data from any source that can be defined as a range; the code will work just as well with data from
an array as it does with data from a vector container. You'll see examples of this in action later in the book.

Obtaining Iterators

You can obtain iterators from a container by calling the begin() and end() function members of the
container object; these return iterators that point to the first element and one past the last element
respectively. The iterator that the end() member of a container returns does not point to a valid element
so you can'’t dereference it or increment it. The string classes such as std: : string also have these function
members so you can obtain iterators for these, too. You can obtain the same iterators as those returned

by the begin() and end() function members of a container by calling the global functions std: :begin()
and std: :end() with the container object as the argument; these are defined by templates in the iterator
header. The global begin() and end() functions work with an ordinary array or a string object as the
argument and therefore offer a uniform way of obtaining iterators.

Iterators allow you to step through the elements in a range by incrementing the begin iterator to move
from one object to the next, as shown in Figure 1-1; ‘container’ in the figure implies a string object or an
array, as well as an STL container. By comparing the incremented begin iterator with the end iterator you can
determine when the last element has been reached. There are other operations you can apply to iterators,
but this depends on the type of iterator, which in turn depends on the kind of container you are using. There
are global cbegin() and cend() functions that return const iterators for array, containers, or string objects.
Remember—a const iterator points to something that is constant and you can still modify the iterator itself.
I'll introduce other global functions that return other kinds of iterators later in this section.

auto begin_iterator = std::begin(container); auto end_iterator = std::end(container);
container l
object | object | object | object | object | object | object | object +

T

begin_iterator+3 one past the last element

the first element o
begin_iterator+2

begin_iterator+1

Figure 1-1. Operation of iterators

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

Iterator Categories

All iterator types must have a copy constructor, a copy assignment operator, and a destructor. The objects
that an iterator point to must be swappable; I'll explain what this implies further in the next chapter. There
are five categories of iterators that reflect different levels of capability. Different algorithms may require
different levels of capability for the iterators that identify the range of elements they are to operate on. The
categories are not new iterator template types; the category that an iterator type supports is identified by an
argument value for a type parameter for the iterator template. I'll explain more about this a little later in
this section.

The category of the iterators you get for a container depends on the type of the container. The
categories enable an algorithm to determine the capabilities of the iterators that you pass to it. An
algorithm can use the category of an iterator argument in two ways: first, it can establish that the minimum
functional requirements for the operation are met; and second, if the minimum requirement for iterators
is exceeded, the algorithm may use the extended capability to carry out the operation more efficiently. Of
course, algorithms can only be applied to elements in containers that provide iterators with the required
level of capability.

The iterator categories are as follows, ordered from the simplest to the most complex:

1. Inputiterators have read access to objects. If iter is an input iterator, it must
support the expression *iter to produce a reference to the value to which iter
points. Input iterators are single use only, which means that once an iterator has
been incremented, to access the previous element that it pointed to you need
anew iterator. Each time you want to read a sequence, you must create a new
iterator. The operations that you can apply to input iterators are:
++iter or iter++; iteri==iter2 and iteri!=iter2; and *iter Note the absence
of the decrement operator. You can use the expression iter->member for input
iterators.

2. Output iterators have write access to objects. If iter is an output iterator, it allows
anew value to be assigned so *iter=new_value is supported. Output iterators
are single use only. Each time you want to write a sequence, you must create a
new iterator. The operations that you can apply to output iterators are:
++iter or iter++; and *iter Note the absence of the decrement operator.
You only get write access with output iterators. You cannot use the expression
iter->member for output iterators.

3. Forward iterators combine the capabilities of input and output iterators and add
the capability to be used more than once. Therefore you can reuse a forward
iterator to read or write an element as many times as necessary. The operation
to be performed determines when forward iterators are required. The replace()
algorithm that searches a range and replaces elements requires the capability of
a forward iterator, for example, because the iterator that points to an element that
is to be replaced is reused to overwrite it.

4. Bidirectional iterators provide the same capabilities as forward iterators but allow
traversal through a sequence backward as well as forward. Therefore in addition to
incrementing these iterators to move to the next element, you can apply the prefix and
postfix decrement operators, --iter and iter--, to move to the previous element.

CHAPTER 1 " INTRODUCING THE STANDARD TEMPLATE LIBRARY

5. Random access iterators provide the same capabilities as bidirectional iterators but
also allow elements to be accessed at random. In addition to the operations permitted
for bidirectional iterators, these support the following operations:

e Incrementing and decrementing by an integer: iter+n or iter-nand iter+=n
oriter-=n

e Indexing by an integer: iter[n], which is equivalent to * (iter+n)

e The difference between two iterators: iter1-iter2, which results in an integer
specifying the number of elements.

e Comparing iterators: iteri<iter2, iteri>iter2, iteri<=iter2, and
iteri>=iter2.

Sorting a range of elements will require the range to be specified by random
access iterators.

You can use the subscript operator with random access iterators. Given an iterator,
first, the expression first[3] is equivalent to *(first+3) so it accesses the fourth
element. In general, in the expression iter[n] with an iterator, iter, nis an offset
and the expression returns a reference to the element at offset n from iter. Note that
the index you use with the subscript operator applied to an iterator is not checked.
There is nothing to prevent the use of index values outside the legal range.

Each iterator category is identified by an empty class called an iterator tag class that is used as a type
argument to the iterator template. The sole purpose of the iterator tag classes is to specify what a particular
iterator type can do so they are used as an iterator template type argument. The standard iterator tag
classes are:

input_iterator_tag

output_iterator_ tag

forward_iterator_ tagwhich is derived from input_iterator_tag

bidirectional iterator_ tagwhich is derived from forward iterator_ tag
random_access_iterator tagwhich is derived from bidirectional iterator tag

The inheritance structure for these classes reflects the cumulative nature of the iterator categories.
When an iterator template instance is created, the first template type argument will be one of the iterator
tag classes, which will determine the capabilities of the iterator. In chapter 2 I'll explain how you can define
your own iterators and how you specify their category.

If an algorithm requires an iterator of a given category, then you can’t use an inferior iterator; however
you can always use a superior iterator. The forward, bidirectional, and random access iterators can also
be constant or mutable, depending on whether dereferencing the iterator produces a reference, or a const
reference. Obviously you can’t use the result of dereferencing a const iterator on the left of an assignment.

The characteristics of the iterators that you get for a container depend on the container type. For
example, vector and deque containers provide random access iterators; this reflects the fact that the
elements in these containers can be accessed randomly. On the other hand the 1ist and map containers
always supply bidirectional iterators; these containers don’t support random access to elements. Input
and output iterator and forward iterator types are typically used to specify parameters for algorithms to
reflect the minimum level of capability required by the algorithm. I'll be explaining iterators further with
working examples in the context of applying algorithms to the contents of containers later in the book - they

10

http://dx.doi.org/10.1007/978-1-4842-0004-9_2

