Pointers in
Programming

A Modern Approach to Memory
Management, Recursive Data Structures,
Strings, and Arrays

Thomas Mailund

Apress’

Pointers in C
Programming

A Modern Approach to Memory
Management, Recursive Data
Structures, Strings, and Arrays

Thomas Mailund

Apress’

Pointers in C Programming: A Modern Approach to Memory Management, Recursive
Data Structures, Strings, and Arrays

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-6926-8 ISBN-13 (electronic): 978-1-4842-6927-5
https://doi.org/10.1007/978-1-4842-6927-5

Copyright © 2021 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Engin Akyurt on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484269268. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6927-5

Table of Contents

About the AULNOFcoiiiiiieenriiieenrinss s an s nnn e s annn e e s nnnnnes ix
About the Technical REVIEWETucussseessrssssnnnssssssnnsssssssssssssssssssssssssssnssssssnnssssssnnnnss xi
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xiii
Chapter 1: Introduclion..........ccccunrinsennnmnssssnnmssssssnsessssssssesssssssesssssssessssssssessssnnnnsnss 1
Chapter 2: Memory, Objects, and AddreSSescccrrrssssnnsrsssssnssrsssssnnsesssssnsssssssnnnssssss 3
The Memory 0f @ GENEIIC PrOCESScccvvererererieierireseresesss s es e ses e ss e sessesessssesss e ssssessenes 6
Objects, Sizes, ANA AUUIrESSESceverreerererrirreerererressee s s rsesssessesesseessessesesssessesaessesssessessesnenns 9
MEMOrY AlIOCALIONc.vecereeeeree s r e s e e 13
AlIGNMENT.....c.eiee s e e e p e e e e e R e e s 19
Call Stacks and the Lifetime of Local Variablesc.ccovevrnirncnnnsnsse s sessesessenens 28
Chapter 3: POINtersuuseeeesmmmmmmmmssssssssssnmsssssssssssssssssssssssssssssnssssessssssssnnnnnssssssssssnnn 33
(0TI ST T =T T 36
Lo S 49
L0 T3 s T T 53
e T (0 I o0) (=T 66
Chapter 4: Pointers and TYPeSc.uucerrrusssnnnssssssnsnssssssssnssssssnsnsssssssnnssssssnnnsssssnnnnsssss 69
Pointers, Types, and Data Interpretation ... 70
Casting Between Pointers of Different TYPESccvcevevvrririenn s sessese e sesse e sessessesse s 79
VO0Id POINEEIS.....civec it e 79
QUALITIEA TYPES wervereerererie s s s se s s b e e s ae s b e s e e e s e e e e e e eaesaene e e naennens 80

L1 0] TSSOSO 80
STIUCE POINETS ...t e 81

iii

TABLE OF CONTENTS

CharacCter POINTES.......ccieereririrsessise s 81

L g0 TE s] TS 82

L 0T I 0T 1T TN 85
Chapter 5: ArrayS....ccccusssrsssssmssssnsssssnsessansessansessansesssnsesssnsesssnsesssnnessnnesssnnesssnnssssnns 91
Arrays, Indices, and Pointer Arithmetic.........ccvvvrvniicncnr 94
OUE-0F-BOUNGS EFTOIS .. cveeerecerresersesesesesse e s e s s sesssssssssssessssssssssssssssesssssssssssssssenns 100
POINTEIS 10 ArTAYS.....civireerieerisesssse s e s np e ne e r s 101
Arrays and FUNCLiON ArgUMENES........ccvcviriirire s sae e saesnens 102
MUltidimenSioNal AITAYScccoeiiriennieniriersie s s s e s s r e s st a e s s e e saesae s e ans 106
Chapter 6: Working wWith Arrayscccousssssssesssssnssssssssnssssssssssssssssssnssssssssnssssssnnnnss 123
Sieve Of EratoStNENES ..o 128
AITAY SOIULION ... e p s nn e 128
POINTEr SOIULION ... 130
28210 QT 4 11 T OO 135
Generic FUNCHIONS ON AITAYSccccviniiiirene e e s e s 147
Chapter 7: SIrings......ccccmmsmmmmssnsmmsssnmmsssssmsssssmsssssmsssssssssnsssssnsssssnsssssnsssssnnssssnnnnnsns 157
Strings as SequUENCES OF BYIESc.cccvvermrinmrnesrse s ses e 158
INTEYEIS 10 SIMNUS ...cviveecce e e 165
RUN-Length ENCOUING......ccccreiriririerieresirserese s s sse e s e ssessesessessessessssessessesssssssesaesaesssssssesnens 174
FINAING WOKASoieriee ittt se e s s s s a e s e e e n e 177
COMPACTING WOPHS ...t e et e e e e et 186
BUffer OVEIfIOW EITOISccorioeeeresc e 190
Chapter 8: Substrings Through Rangescuusmsmsssmnsmsmsssmsmsssssmsmsssssssssasasasanas 195
BaSiC OPEratiONSccvcrcererisirsire e e e et 200
Revisiting WOord [Erators.........ucuveeeresernsesinesessse s sesse s s ss s e e sessssenns 206
RePIACING SIHINGS....civiiieieriererrrerrerre s e sa e e s s ae e e e s aesae st e e s e nne e 213

iv

TABLE OF CONTENTS

Chapter 9: Dynamic Memory Managementccccuseemnmnssssnnnmssssssnssssssssssssssssnnnss 219
Functions for Dynamic Memory AllOCALtIONccoceviinrnenesn s snens 220
1F 1 oo) O O VPR 220

ot Y oo () TP 223
LT e o () TRV 225
A11gNed A110C() wrrrrermrrrerrirrissesrs s 228

L =T (TP 229
StriNG OPEIALIONSccvecercrerie s r s s e e p e e nnn 230
DYNAMIC AITAYS ...cveueerreerreerenesessesessesesesesessesessssessssesesssssssessssssesssssssssssssenssssssssssssssensesssssnns 239
GAPPEU BUFFEIS ...ueiueiieciecirer sttt e nne 250
Chapter 10: Generic DyNamic ArrayS...cc.usesmmmsssssssssssssnsssssssssnsssssssnnsssssssnnssssssnnnnss 259
V0I0 POINTELScvviicie e s 260
GENEIIC MEMOIY BUFEEciviieeierierese s sere s e s s e s sa e e s sae e s e s saesa e e s saesaese s e saenaes 265
Code Generating MACK0S.........covirernierirenire s et e e 270
INHNING IMACKOScuciviiiircr s st e e s s b e b e e e nne 275
Heap-Allocated INIINEU AITAYccoveeerriererererese s s nns 286
Chapter 11: Linked ListScocuvsmmsmsmsmsmsmsmsmsmsmsmsmssssssssssssssssssssssssssssssssssssssasasasanas 305
SiNGIY LINKEA LISTS ...ccveervierrnsesesenessssesesessssssessssessssesssss e sessessnns 307
Adding a Level of INAITECHIONcccvievcerirrir s sre e saennens 321
Adding a DUuMmMY EIBMENL.........cocriierrcr s e 329
DOUDIY LINKEA LISEScveereesssssssssssssssssssnssssssssssssssesesesesssnsnes 334
LiNK OPEIatioNScoeiriiiiiiire s s b e s st e s s r e e s be b e e nne 338
LiSt OPEIatioNSccccieiricircierr e 345
Sorting DOubly LINKEA LISEScccueerrreererenereserisessse s sessesessess s sessesesssssssssssessssssssssssssssnns 358
SEIBCTION SOMT.......cceeeeerieerr e e nenre e 359
INSEIION SOM ... e nr s 362
L= 0TI 0 o SRS 364
QUICKSOIT ...t e bbb e e e 367

TABLE OF CONTENTS

Chapter 12: Search TreeS....cuueurrrmsssnrrsssssnnsesssssnnsssssssnssssssssnnsssssssnnssssssnnnssssssnnnnss 371
Tree OPEIALIONSc..ceeeeeeerie et e e e s e e st e ae e s e seeae e ene e 372
L0031 T T 372

] TS o 373

D] 373

T T 375
Recursive Data Structures and Recursive FUNCLIONScccovvvenenennensnesesesesesssssssesenens 375
Direct IMplementation ... ———————— 377
L 0T T =] T 383
(3123 2T (0] 3o SRS 389
Iterative FUNCHIONS.......ccoccvecerese s 390
EXPHCIE STACKS.....ccvieetrrceriec et 392
MOITIS TrAVEISALcvvecccesesisece e 399
Freeing Nodes Without Recursion and Memory Allocation.........cccovcvvrievnnensenieresenseniennes 403
Adding @ Parent POINTEK ..o s s s 404
Chapter 13: Function PoIintersccccivumnmmmmmmssssssnmmssnnnss 411
Function Pointers for High-0rder FUNCLIONSccoooirenmreserecrrce e 413
(0211172 TS 416
(ETe] T Te] (T L] L OSSO 418
Function Pointers for Abstract Data STruCtUres ... 421
Function Pointers for Polymorphic Data StruCtUIES.........ccvceveverrrrereresensesesesessessessessssessenaens 428
Single Inheritance Objects aNd ClASSESccvvevrererreriererseserserere s sesessessesessessessessssessessens 429

A Hierarchy of EXPresSion CIASSEScururrererrererserseressesessessessessssessessessesssssssessessensssessesses 431
GENerating FUNCHIONSccvevereriere s ser s s e s v e se s e s s sae e s s sae s s e s saesae e s e naenaes 440

B 1010 T I 0T 1 T S 444
Chapter 14: Generic Lists and Treesuuserrrrssssnssssssssnssssssssnnssssssssnsssssssnnssssssnnnnss 449
L Te] LTy T 450
CaSting 10 LINKSccccvceiiiiircre et s st st e e 456
USING OFFSEESeveircrc s 459
GENEIIC SEAICH TIBEScveeereceree e ne e 463

TABLE OF CONTENTS

Chapter 15: Reference Counting Garbage Collection...........cccevsssemmnrssssnnnsssssssnnns 477
Immutable Links with Reference Counting..........cccovvvrevriesrnscsnscnnse s sens 480
Adding a Compiler Extension (Not Portablel)..........ccccrnvnninnnnnnie s sesesesesseens 492

A Generic Reference COUNTENcccveiinininine s s n e ss s nne s 495
Search Trees with Reference Countingccovevrenerenrnsessssesese s sesesenns 500
CIrCUIAN STTUCTUES? ... ettt bbb e 507
Chapter 16: Allocation POOISccccurmsssnenmmmsssssnnmsssssssnmssssssssessssssnssssssssnsessssnnnnss 509
A Simple POOI fOr TFEE NOUEScceverierererirrirsere s s e s s sss e sae s se s saesaeses e saesaens 510
X0 o [T o =74 o S 511
Adding DealloCationccueerieriinininese e e e ne s 514
A GENEIIC POOL......ceierecectc ettt d e e b e e nne s 517
Chapter 17: CONCIUSIONS......ccuuieemsssnnsssssnsssssnsssssnsmsssnsssssnsssssnsssssnsssssnsssssnnsnssnnssnsns 525
INAEX . eeiiiiisnnnnnrnsssnnnnnssssnnnnnssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnessssnnnnsssssnnnnnssssnnnnessss 527

vii

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University,
Denmark. He has a background in math and computer science. For the past decade,

his main focus has been on genetics and evolutionary studies, particularly comparative
genomics, speciation, and gene flow between emerging species. He has published
String Algorithms in C, R Data Science Quick Reference, The Joys of Hashing, Domain-
Specific Languages in R, Beginning Data Science in R, Functional Programming in R, and
Metaprogramming in R, all from Apress, as well as other books.

ix

About the Technical Reviewer

Juturi Narsimha Rao has 9 years of experience as a software developer, lead engineer,
project engineer, and individual contributor. His current focus is on advanced supply
chain planning between the manufacturing industries and vendors.

xi

Acknowledgments

I am grateful to Helge Jensen, Anders E. Halager, Irfansha Shaik, and Kristian Ozol for
discussions and comments on earlier drafts of this book.

xiii

CHAPTER 1

Introduction

Pointers and memory management are considered among the most challenging issues
to deal with in low-level programming languages such as C. It is not that pointers are
conceptually difficult to understand, nor is it difficult to comprehend how we can obtain
memory from the operating system and how we return the memory again so it can be
reused. The difficulty stems from the flexibility with which pointers let us manipulate the
entire state of a running program. With pointers, every object anywhere in a program’s
memory is available to us—at least in principle. We can change any bit to our heart’s
desire. No data are safe from our pointers, not even the program that we run—a running
program is nothing but data in the computer’s memory, and in theory, we can modify
our own code as we run it.

With such a power tool], it should hardly surprise that mistakes can be fatal for a
program, and unfortunately, mistakes are easy to make when it comes to pointers. While
pointers do have type information, type safety is minimal when you use them. If you
point somewhere in memory and pronounce that you want “that integer over there,” you
get an integer, no matter what the object “over there” really is. Treat it like an integer,
and it behaves like an integer. Assign a value to it, and may the gods have mercy on your
soul if it was supposed to be something else and something you need later. You have just
destroyed the real object you pointed at.

If you are not careful, any small mistake can crash your program—or worse. If you
accidentally modify the incorrect data in your program, all your output is tainted. If you
are lucky, it is easily detectable, and you are in for a fun few days of debugging. If you
are less fortunate, you can make business decisions based on incorrect output for years
to come, never realizing that the code you wrote is fooling you every time it runs—or
maybe not every time, just on infrequent occasions, so rare that you can never chase
down the problem. When you have bugs caused by pointers (or uninitialized memory),

© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_1

https://doi.org/10.1007/978-1-4842-6927-5_1#DOI

CHAPTER 1 INTRODUCTION

they are not always reproducible. Your program’s behavior might depend on which other
programs are running concurrently on the computer. If you start debugging it, any code
you add to the program to examine it will affect its behavior. Loading the program into a
debugger will definitely change the behavior as well. I hope that you will never run into
such bugs—known as Heisenbugs after Heisenberg’s uncertainty principle—but if you
mess around with pointers long enough, you likely will.

It sounds like pointers are something we should stay away from, and many high-level
programming languages do try to avoid them. Instead, they provide alternative language
constructions that are safer to use but provide much of the same functionality that we
need pointers for in C. They are not as powerful but alleviate many of the dangers that
raw memory pointers pose. In low-level languages such as C, we are programming much
closer to the machine. The computer doesn’t understand high-level constructions; it
understands memory and chunks of bits, and in low-level languages, we can manipulate
the computer at this fundamental level. We very rarely need to, nor do we want to, but
when we choose to program in low-level languages, it is to get close to the machine,
where we can write more efficient programs, measured in both speed and memory
usage. And at this level, we get pointers—more efficient, more fundamental, and more
dangerous. If, however, we approach using pointers in a structured manner, we can
achieve the safety of high-level languages and the efficiency of low-level languages. The
burden is on the programmer, rather than the language designer, but we can get the best
of both worlds for anything that you can do in a high-level language—while maintaining
the real power of pointers in the rare cases where you need more.

In this book, I will explain the basic memory model that C programs assume about
the computer they run on and how pointers let us access data anywhere in memory. I will
explain how you get safe access to memory, by allocating blocks of memory you need, so
they are yours to manipulate, and how you can release memory when you no longer need
it, so you do not run out of memory before your computations are done. I will explain how
pointers are essential for building complex data structures and how you can approach this
in a structured way, so they are safe to use. And I will show you how you can use pointers to
functions to implement higher-order functions and polymorphic data structures.

I'will not cover basic C programming. This is not an introduction to programming or
the language. I will assume that you already know the basics and will jump directly into
memory and pointers. I will not cover issues related to concurrency and interruptions
and such either. That would lengthen the book substantially, and there are already
excellent books where you can explore this further.

CHAPTER 2

Memory, Objects, and
Addresses

Everything you manipulate when you run a computer program, and the program itself,
has to reside somewhere in your computer’s memory—on a disk, in its RAM circuits,
in various levels of cache, or in a CPU’s or GPU’s registers. It is not something we
necessarily think about when we write programs, but it is an obvious truth: if objects
aren’t found somewhere, we cannot work with them. The reason we can get away with
not worrying about memory is that our programming language handles most of the
bookkeeping.

Consider the classical “Hello, world!” program:

#include <stdio.h>

int main(void)

{
printf("Hello, world\n");
return 0;

We don’t need to think about the computer’s memory when we write it (or execute
it). Still, many objects must necessarily be represented in memory before we can run
the program—the program itself, including the main() function we write ourselves
and the printf() function we get from the runtime system. The two arguments we
give tomain(), argc and argyv, are stored somewhere, as is the constant string "Hello,
world!\n".

© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_2

https://doi.org/10.1007/978-1-4842-6927-5_2#DOI

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES
Or consider a simple function for computing the factorial of a number:

int factorial(int n)
{
if (n <= 1) return 1;
else return n * factorial(n - 1);

When we call the function, we must store the argument, n, somewhere. In the
recursive case, we call the function again, and in the second call, we need another
parameter n. We need another one because we need to remember the current n so we
can multiply it to the result of the recursion. Each recursive call must have its own n
stored somewhere in memory.

We don’t have to worry about where the functions, variables, and constants live in
memory when we write this code because the C compiler will generate the necessary
machine code to handle it for us. It will allocate the space for constants and variables,
and it handles writing function parameters and assignments to variables into the correct
memory locations. When we read the value in a variable, it handles getting it from the
right memory location for us as well.

However, when we choose to program in a low-level language, like C, the raw
memory is never too far away. It is possible to hide memory entirely from the
programmer, to pretend that objects are floating around somewhere and never wonder
about where that is. However, it comes at a computational overhead, and it limits what
we can do with a program in some ways. Low-level languages do not do this. They let
us get the memory of objects and manipulate the memory directly. We do not do this
willy-nilly because if we did, we would write unmaintainable software. Still, we have the
power, and when we use this power carefully, and in a structured way, we can build the
features that high-level languages provide using a single mental framework and with
little computational overhead.

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

RAM 10 devises (e.g. disks)

caches

Registers L—J j : j C

Figure 2-1. Computer memory hierarchy

Even though we work with low-level languages, we work with an abstraction of the
computer’s memory. A modern computer’s memory is an immensely complex system,
where data lives at different locations, and the time it takes to access it varies widely.

A simplified model of a modern computer can look like that in Figure 2-1.

Objects that reside in a CPU’s or GPU'’s registers are incredibly fast to access and
manipulate. In comparison, accessing an object on a RAM chip takes geological ages. We
cannot hold all the data we operate on in registers, there are too few of them, so we need
to move data in and out of the CPU. To alleviate the long delay you get when the CPU has
to access objects, the computer moves data you are currently working on into a cache,
which the CPU can access faster than the main memory. When you switch to working
on some other data, that goes into the cache, and the previous data goes back to main
memory. When we need data from files, we usually write code that explicitly gets it from
there, but if the computer runs out of main memory, it might also use the file system to
swap data you are not using out of and data you are using into RAM.

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

Your hardware, operating system, and compiler work together to optimize the
computational cost of memory access. Your compiler will analyze your programs and
put objects in registers when possible. The computer’s hardware will move objects from
RAM into different levels of cache for faster access. If you are so unlucky that data needs
to move to a disk, the operating system will handle that for you. We do not usually write
programs that work on memory at this level of detail. It would be incredibly tedious to
do, and we would write programs optimized for specific platforms. If you change the
hardware, you have different levels of cache, with different performance trade-offs.
Writing programs with an abstract memory model is hard enough; writing programs
with the full complexity in mind would be close to impossible. We write programs with a
simpler conceptual model of computer memory and let the compiler and hardware map
from the simple model to the more complex.

In this book, we will pretend that there is only one level of memory, RAM. All
data manipulation happens in the CPU, but the compiler will generate the necessary
code to move data in and out of the CPU. We will not worry about this, but trust that it
does this efficiently. An optimizing compiler is likely better at it than we are anyway,
and it certainly is more efficient to write code if we do not worry about such low-level
programming. So we will only worry about what our data is doing in that big block of
RAM. This is close to how C’s memory model work. If you write portable C, the language
standard does not make many promises about what the memory looks like. Still, all
objects sit in some memory, they have addresses that you can get, and if you have the
address of an object, then you can manipulate that object. What you can actually do with
the object depends on how you define it, but whatever you can do with an object, you
can also do through its address.

The Memory of a Generic Process

The C standard doesn’t specify how memory should be organized for running programs,
but a typical process, that is, a running program, can look like Figure 2-2. At the lowest
memory addresses, at the bottom, you have the code that the process runs. Code is data
as well, it is the instructions that the CPU should follow, and it is part of the process’
memory. Above that, you have the data that exists throughout the process’ lifetime.
When you declare global variables, they live as long as the program runs, and this is
where they sit in memory. Some of this data will be read-only. There are constants

defined in a program that you cannot change. String literals, those you define with "...",

6

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

are usually immutable, they live in read-only memory, and your program might crash if
you try to write to them. Global variables you define yourself, if not declared const, are
mutable, and you can write to them. In the figure, I do not make a distinction between
the two, but your data usually comes as both read-only and read-write.

On top of that, you have the memory that the program allocates (and deallocates)
while it runs. We call this memory area the heap, and in Chapter 9 we see how you can
allocate memory from it in C. When the process needs more memory, the heap grows
upward. When it gets rid of memory, the situation is more complicated. We do not
remove a block in the middle and move all the data above it down, that would be time-
consuming, and we cannot move objects we have the address of—then they would
have moved away, and so accessing the data through an address would not work. Not
to worry, though, it is something that C’s runtime system will handle for you. At the top,
we have the stack. The stack handles function calls, and it is where local variables and
function arguments live. It typically grows downward. Between the stack and the heap,
there is usually a barrier, a piece of memory that you are not allowed to access. It is there
to prevent the stack and heap to grow into each other.

The memory that a process sees is rarely the physical memory the computer has.
Between a running process and the physical memory, the CPU creates a “virtual”
memory. That is the memory space that the program works with, and each time it needs
to access memory, the hardware will map the virtual address to a physical one. In the
old days, physical and virtual memory was the same, and any program could read and
write data anywhere and execute any code from anywhere. This is, obviously, highly
unsafe. The virtual memory protects processes from each other and provides a more
straightforward address interface to programs.

Programs need to allocate memory for the stack and heap to use it, which typically
involves asking the operating system to get a chunk of memory, which in turn will set
up this virtual to physical mapping. That is the addresses that the program can freely
access. Even though you could, in theory, address the full address space, in practice, the
hardware will cause an interrupt if you access data outside of the memory the program
got allocated by the operating system. This will typically result in the OS terminating the
process. Thus, if you haven’t gotten permission to read or write from somewhere, and
you do it anyway, then it can be the death of your program.

Similarly, there is usually protection on which memory you can execute. You should
not execute random data, so you are prevented from that. And since there are obvious
security problems if you allow a program to write into its code, modifying it potentially
based on user input, the executable memory is often read-only.

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

When you write a C program, you are not given any guarantees for how the data is
positioned in memory. You have the register keyword to tell the compiler that you
would like a given variable stored in a register, but this is an anachronism more than
anything else. It is only a suggestion to the compiler, and it is allowed to ignore it. Your
compiler is better at allocating registers than most programmers, and it will likely ignore
the keyword altogether. The only practical consequence of using it is that you are then
not allowed to take the address of the variable (that would be inconsistent with wanting
to keep it in a register). I suggest you never use this keyword. If you do not take the
address of a local variable, then the compiler will put it in a register if that makes the
most efficient code. Don’t interfere with its register allocation.

Stack

DYna mie memory

(heap)

Pata

Codle

Figure 2-2. A process’ memory layout
8

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

You likely have access to the system calls that lets you manipulate memory at the low
levels described, but they are platform dependent, and code you write for one platform will
not work on another. The interface to memory that C provides handles the interaction with
the operating system, and if you want to write portable code, you should stick with that.
Unless you have particular needs, that interface will do everything you need.

In portable C, you cannot assume that your program will run with a memory layout
like that described earlier. C is designed to run on practically any hardware and any
operating system, and the C standard thus makes few assumptions about the underlying
platform. That being said, it is a useful mental model for thinking about your program’s
memory. You cannot assume that the stack lies at higher memory locations than the
heap or that it grows downward instead of upward (and I honestly don’t see when that
would be relevant for you to worry about).

Even if you write your code in machine code, with full power to access memory as
you please, you probably won't see exactly this layout. Addresses are usually scrambled
by the architecture, as a defense against hacking attacks (it prevents an attacker from
knowing where your code and data are, by randomizing it). If you write multithreaded
programs, you need a stack per threat, and they can’t all lie at the top of the process’
address space. If you dynamically load libraries while executing your program, they need
to go somewhere as well. That is code, but the code’s location and size are already fixed
in this model.

Still, there is a stack, and there is a heap—if not in reality, then conceptually—and I
will present memory in this book as if we had processes like these. As long as you don't
write your programs with this strong an assumption about the memory layout, it is a
useful mental model of the memory you use and manipulate.

Objects, Sizes, and Addresses

While the C language doesn’t describe how memory is organized, it does specify that
each object has an address and a size. The address is where it sits, conceptually if not

in fact, and its size is how many memory locations it takes up. By the C standard, each
memory cell takes up one char, and larger objects take up more cells of memory. The C
standard doesn’t say what size a char actually is; it is just the minimum size of an object
that we can put into one block.

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

You can get the size of an object using the sizeof operator. Try running this
program:

#include <stdio.h>

int main(void)

{
char c;
printf("%zu %zu\n", sizeof(char), sizeof c);
int i;
printf("%zu %zu\n", sizeof(int), sizeof i);
double d;
printf("%zu %zu\n", sizeof(double), sizeof d);
return 0;
}
I got
11
44
8 8

but the result will depend on your platform.

When we use sizeof on a type or a variable, we get the size of the type/object. Your
result might vary from mine (I got size 1 for char, 4 for int, and 8 for double). The size of
char is always one. That is guaranteed by the C standard. There are no other guarantees
about the absolute size of other types, although there are some guarantees about the
relative size of objects. For practically all modern hardware, a char is 8 bits, but the
standard doesn’t guarantee it. The constant CHAR_BIT will tell you how many bits a char
contains in your own development environment, but I will be surprised if it isn’t 8. If it
isn’t, then you are working on unusual hardware. If a char is 1 byte, that means that for
my output, an integer is 32 bits (4 bytes) and a double is 64 bits (8 bytes).

All sizes are relative to the minimal size that C works with, and that is the size of a
char. For the variables, you do not need the parentheses. You can write sizeof cinstead
of sizeof(c). For the types, you do need the parentheses. If you want the size of an
object or type related to a variable, that is, the variable itself or something it refers to in
cases of structures or arrays, you should prefer to get the size through the variable.

10

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

You have specified the type when you declared the variable, and if you use the type once
more with sizeof, you have two references to it. If you change one and not the other, you
can get in trouble. It is better to specify the type once and get it automatically from the
variable after that.

If you want to know the address at which a variable sits, you can put an ampersand,
&, before the variable:

#include <stdio.h>

int main(void)

{
char ¢ = 1;
printf("%d %p\n", c, (void *)&c);
int i = 2;

printf("%d %p\n", i, (void *)&i);
double d = 3.0;

printf("%f %p\n", d, (void *)&d);
return 0;

The program prints the (integer) value of a character, the value of an integer, and
the value of a double, together with the memory addresses where the variables sit. The
formatting code %p gives us the text representation of the address when we call printf().
It will print the memory addresses. The (void *) cast is there because the %p wants a
void pointer. We see more to those in the next chapter.

There are no hard rules for where C should put variables, nor is there any rule that
says that you can meaningfully compare the address of objects you haven’t allocated
together. That being said, if you see that the printed addresses are numbers close
together, then the addresses probably are. If your memory addresses are laid out in the
process’ memory locations as described in the previous section, the preceding program
gives you where they sit. I got the result:

1 0x7ffee0d888ff
2 0x7ffee0d888f8
3.000000 0x7ffee0d888f0

11

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

which tells us that the double was put first in memory, then the integer, and then the
character; see Figure 2-3. The memory locations are ordered from the bottom and up, so
the integer, for example, sits at address 0x7ffee0d888{8 (bottom) to 0x7ffee0d888b (top).
The 8 bytes from 0x7ffee0d88f0 contain the double. Immediately after the double,
we have the int. From the sizeof(int) call in the previous program, we know that an
int takes up four memory cells on my machine, but there is a gap, the gray area, up to
the char, found at address 0x7ffee0d888f0. C can put the variables where it wants, and
you have no guarantee that they are consecutive for two separate variables. This layout is
what I got on my computer when I translated the program with the compiler and options
that T used. If I change any of the options, for example, change the optimization settings,
things could look very different. Do not make assumptions about where individual
variables are put in memory; the C standard does not make any promises. It only
promises that your objects have an address and a size that is determined by its type.

oxFffeeodgeff 1
oxFffeeodgfe
oxFffeeodgefa
oxFfeeodggfe
oxFffeeodggfo
oxFffeeodggfa 2
oxFffeeodgef9
oxFffeeodggfe
oxFfeeodge{
oxFffeeodggfe
oxFffeeodgefs
oxFffeeodggf4 2.0
oxFffeeodggf=
oxFfeeodgg{=

oxFffeeodgefr
oxFffeeodggfo

Figure 2-3. Memory locations for a char, int, and double

12

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

More technically, a block of memory you have allocated in a single operation has an
address and a size. From the beginning of the allocated memory and up to its size, you
have consecutive addresses, and you can meaningfully compare these addresses and
reason about the memory layout. Memory that you have allocated independently, you
should not make any assumptions about. Maybe you can use their addresses to work
out where the memory sits relative to each other, or maybe you cannot. If you want to
compare addresses, stick to looking at addresses within one allocated block.

Memory Allocation

What does it mean to allocate memory? How do we get the memory that our variables sit
in? And how do we get more when we need it? Most memory management is automatic
in C. When you declare a variable, the compiler generates code for allocating the
memory to hold it. For global and static variables, it sets aside memory that will last as
long as the program runs. For local variables and function arguments, which you can
think of as the same thing, the compiler generates code to get memory for them when
you call a function. This memory is allocated on the stack, and it only lives as long as the
function call that allocated it. We return to stack-allocated memory later in the chapter.

Although it is a good bet that local variables sit near each other on the stack, you
cannot make assumptions if you want your code to run everywhere. Individual variables
are independently allocated, and then the language makes no promises about how they
relate. But you can allocate more than one value at the same time, and then we get a few
more promises.

There are different ways that we can allocate multiple objects at the same time.
The simplest is through arrays that we will cover in detail in Chapters 5 and 6. An array
allocates several objects of the same type and put them, one after another, in consecutive
memory locations. In the following program, we allocate an array of five integers and get
the addresses of the individual integers:

#include <stdio.h>

int main(void)

{
int array[5];
printf(" array == %p\n", (void *)array);
for (int i = 0; i < 5; i++) {

13

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

printf("8array[%d] == %p\n", i, (void *)&array[i]);
}
printf("sizeof array == %zu\n", sizeof array);
printf("5 * sizeof(int) == %zu\n", 5 * sizeof(int));

return 0;

An integer takes up sizeof(int) memory addresses, so five of them takesup 5 *
sizeof(int), and that is the size of the array. The integers lie in contiguous memory,
with array[i + 1] sizeof(int) after array[i]; see Figure 2-4. The value of an array,
the preceding array, is the address of the first of the integers.

The integers in the array are part of the same memory allocation, and you are
guaranteed that they are structured this way in memory.

With dynamic memory allocation, the topic for Chapter 9, you explicitly allocate
memory blocks of the desired size. There, as well, you have a block of memory where the
addresses are contiguous. You can use them more freely than you can with arrays, but in
practice, you use them either to store array-like data or to store structs and unions.

14

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

AlL4]

oxFffeebog1900
Al=]

oxFffeebog1efe
Al=2]

oxFffeebog12fg
Al1]

oxFffeebog1ef4
Alol

oxFfeebog12fo

Figure 2-4. Memory layout of an array

With both struct and union, you have a single memory allocation when you declare
avariable, but a struct usually contains more than one data type, and so does a union
although its purpose is to store different types in the same memory location. When you
define a variable of a struct or union type, you are guaranteed to get a chunk of memory
of the relevant type’s size that you can index as consecutive memory addresses. For
unions, you get a block of memory that is large enough to hold the largest element, and
all the elements sit at the first address in the union.

15

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES
If you run this program
#include <stdio.h>

union data {
char c;
int i;
double d;
};

#define MAX(a,b) (((a)>(b))?(a): (b))
#define MAX3(a,b,c) MAX((a),MAX((b), (c)))

int main(void)
{
union data data;
printf("sizeof data == %zu\n", sizeof data);
printf("max size of components == %zu\n",
MAX3(sizeof data.c, sizeof data.i, sizeof data.d));

printf("data at %p\n", (void *)8&data);

printf("data.c at %p\n", (void *)&data.c);
printf("data.i at %p\n", (void *)&data.i);
printf("data.d at %p\n", (void *)&data.d);

return 0;

}

you might get something like

sizeof data == 8

max size of components ==
data at ox7ffeebd2c900
data.c at ox7ffeebd2c900
data.i at ox7ffeebd2c900
data.d at ox7ffeebd2c900

16

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

A double is the largest of the three types (on my machine), and the union gets that
size—but see the next section for more details about union sizes. All the elements in the
union sit at the same address, the address of the union itself, but of course you cannot
use them all at the same time. That is not the purpose of unions. You can treat the
memory block that the union holds as all three of the types, but a union only holds one
of the types at any given time. Therefore, they can store their data in the same memory
block and at the same address.

For structures, you get the memory to hold all of the components at the same time,
so their size is at least enough to hold all of them. The elements come, one after another,
in the order you define them, and the first element is at the first address of the structure.
However, between the elements in the struct, there might be unused memory.

When I run this program

#include <stdio.h>

struct data {

char c;
int i;
double d;

};

int main(void)

{
struct data data;
printf("sizeof data == %zu\n", sizeof data);
printf("size of components == %zu\n",

sizeof data.c + sizeof data.i + sizeof data.d);

printf("data at %p\n", (void *)&data);
printf("data.c at %p\n", (void *)&data.c);
printf("data.i at %p\n", (void *)&data.i);
printf("data.d at %p\n", (void *)&data.d);
return O;

}

17

CHAPTER2 MEMORY, OBJECTS, AND ADDRESSES

I get the output

sizeof data == 16

size of components == 13
data at 0Ox7ffeec6988f8
data.c at ox7ffeec6988f8
data.i at ox7ffeec6988fc
data.d at ox7ffeec698900

So the struct variable data takes up 16 memory addresses, even though the data in it
only take up 13 bytes (or technically 13 sizeof(char)). The components come in order;
first we have ¢, then i, and then d with c at the same address as the struct, but there is
some padding between c and i; see Figure 2-5. If you rearrange the order of the elements,
you get them in a different order in memory, but there is likely always some padding.

d

oxFffeen=24g900
L

oxFffeeaz4g2fc
c oxFffeeaz422fL

Figure 2-5. Memory layout of a struct
18

CHAPTER 2 MEMORY, OBJECTS, AND ADDRESSES

The padding might not only be between the components of the struct. You are
guaranteed that the first address is where the first component sits, but there can be
padding after the last components. If I move c to the bottom of the struct

struct data {
int i;
double d;
char c;

};
I get the output

sizeof data == 24

size of components == 13
data at ox7ffeef73a8fo
data.c at ox7ffeef73a900
data.i at ox7ffeef73a8fo
data.d at ox7ffeef73a8f8

shown in Figure 2-6. The structure is now 24 long, with a gap between i and d and a
segment of unused memory after c.

C does not give you many promises about how struct memory should look. The
first element at the first address, the elements in order, and that is it. Why does it add this
padding? It is not to be malicious. It has to do with memory alignment.

Alignment

In the abstract memory model, an address is just an address, and we can put any object
there. An object takes up a certain amount of memory, say 4 bytes for a 32-bit integer, so
if we put an integer at address a, then that address and the following three bytes is where
the integer lives. However, on actual hardware, there is more structure to a computer’s
memory. The memory is not a sequence of bytes, but rather computer words of some
given size, for example, 64 bits. The bus that carries data from memory to the CPU

works with words of certain sizes. If you ask to get an integer from memory, and it sits

in a single word, the computer needs to fetch that single word. If you put an integer at a
location that spans more than one word, the computer has to fetch both words and then
do some bit manipulation to put it into a register. And even if you ask for a 32-bit integer
that sits inside a 64-bit integer, there might be more work for the computer to represent it
as an integer in the CPU, if it doesn’t sit at a certain offset in its word.

19

