Programming with C#

Skills to Build Applications with

Visual Studio and .NET

Vaskaran Sarcar

Apress:

Simple and Efficient
Programming with C#

Skills to Build Applications
with Visual Studio and .NET

Vaskaran Sarcar

Apress’

Simple and Efficient Programming with C#: Skills to Build Applications with
Visual Studio and .NET

Vaskaran Sarcar
Kolkata, West Bengal, India

ISBN-13 (pbk): 978-1-4842-7321-0 ISBN-13 (electronic): 978-1-4842-7322-7
https://doi.org/10.1007/978-1-4842-7322-7

Copyright © 2021 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC, and the sole member (owner)
is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7321-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7322-7

Dear Reader,

You inspire me with your loving comments.

I get upset by your critical comments. But in every case,
you help me grow into a better person and a better author.
So, you are my teachers. I dedicate this work with love to you.
I also try my best to help you grow.

Table of Contents

About the AULNOFccciiiiieemniiisssnnrnssn s aan e ann s e e s s annnensnnns Xiii
About the Technical REVIEWETucussseessrssssnnnssssssnnsssssssssssssssssssssssssssnssssssnnssssssnnnnss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
LT LT] Xix
Part I: Fundamentalsccccnnnnnnnmmnneemmmmmmmmnnnmmmsssssssssssssssssnnsnnn s 1
Chapter 1: Flexible Code Using PolymorphiSm.........cccusermsssmsesssnssssssssssssssssssnsssssnsss 3
2T o7 oSO SO SR 3
T L 0T = L 3

DT 010 1= 0 4
011 0] | OSSO 5

L 1 T 5

L2 Te 1] g o (00 1 RS 7
DT 010 512 0 2 7

LT 1 ST 8
SUMIMAIY....eitierteese e e s e Re e e e e e e e e Re e e e e se e e e e Re e Ra e nen e nnnsnnnns 14
Chapter 2: Abstract Class or Interface?c.cccnmnssemnmmssssssnmnsssssnsnssssssnssssssssnnnns 17
RBCAD ...ttt e n 17
T L LN (0T = 1 21
3L (00 O OSSOSO 25
DT 010 5 1= 0 25
0100 OO 32
ANGIYSIS ... e e e r e nrn 33

E 1] 4= OSSOSO 34

TABLE OF CONTENTS

Chapter 3: Wise Use of Code COMMENTS......ccuuseenrmssssnnnssssssnsssssssssssssssssssssssssssnnsnss 35
3T o7 oSO 35
T E LI o (0T = 1 SO OPTS 37

DL 10 1] (]3I 37
011 0] | SRS PROSN 38
ANGIYSIS ...t e e e e e e e nnn 38
2 TS] 1] g o (00 1 S 39
DEMONSIFALION 2.......cov e 39
ANAIYSIS ...eceereeereecresese s e e R e e e e R e e e e nRn e 40
USE the POWET OF CH......cooeeeeeeeree s e 40
SUMIMAIY ...ttt e e e b e e e e Re e e R e e a e e e Re e be e nr e e e nnnnn s 43

Part 1I: Important PrinCiplesuuuusseeemmmmmmmmmmmmmsssssssssssssssssssssnsnsssssssssssssnnnns 47

Chapter 4: Know SOLID PrinCiplesS......ccuuseumsrssssnnnsssssssssssssssnssssssssssnsssssssssssssssnnnssss 49
Single Responsibility PrinCIiple (SRP)coveoriirecrirerire e se e ses e sessenens 50

INItIAl PrOgramccvceiiicirscne s s p e s s r e nne 51
DEMONSIFAtION T ..o s 51
1] R 53
YT LS 54
3T e gl o (0T | 1S 54
DEMONSIFAtION 2.......cv e 54
1] O 57
0pen/Closed PrinCiple (OCP).......coceceririererenire s ses e e e ss e sas e e s e e sss e ses e e ssesessesessssesessenens 58
NIt PrOgramccoceiincsincne s b r s e e e nne s 59
DEMONSIFAtION 3.......coe e e 61
OUEPUL . e e 64
ANGIYSIS ... e e e e r e ern 65
3T e gl o0 (0T 1S 66
DEMONSIFALION 4 ..o 67

TABLE OF CONTENTS

1] O 70
YT LS 71
Liskov Substitution PrinCiple (LSP)cccuurrnrrnernesesnse s ses st sessesessssessssesenns 72
10TV VI o (0T] - 1 P 77
DeMONSIFAtION B.......covieierce s 79
1] O 81
3T e gl o (0T | 1SS 84
DEMONSIFALION B.......coveeercerce e s 84
1] O 88
Y01 LS 88
Interface Segregation PriNCIipIe (ISP)c.ccccecvrenirnscrssc st 88
NIt PrOgram ..o e s r s e p e s s s e e nne s 89
DEMONSIFALION 7 ... s 93
QUEPUL . e e e e e 94
YT 1T LS 94
3T e gl o (0T | 1S 95
DemMONSIrAtioN 8..........ccoire s 95
1] O 97
YT LS 97
Dependency Inversion PrinCiple (DIP) ... sse e snes 98
T E I o (T - SRS 99
DemMONSIFAtioN ... s 100
OUEPUL . e e 101
ANGIYSIS ..o e R e e e e R e e nnn 102
Better Programcoccociveririersie s s e s s s s a e e s e e s a e s a e s ae e ae e 102
DemOonSIration 10.........coeeriercree s 103
1] O 105
YT 1T LS 105
SUMIMANY ..ttt e e e R e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrin 106

vii

TABLE OF CONTENTS

Chapter 5: Use the DRY PrinCiple......ccccuussemrrsssssnnnssssssnnssssssssnsssssssnnsssssssssssssssnnnnss 109
Reasons fOr DRY ..o s 109
T E= LI o (0T =1 1 OSSPSR PRS SN 112

DL T 1S3 (0] 3 112
{011 0] | OSSOSO 113
ANGIYSIS ..t e e e R e enn 114
L2 TE 1] g o (00 1 O TS 114
DeMONSIFAtION 2.......cceeeeece s 115
011 0] | OSSR 116
ANAIYSIS ...eeereeerreereese s e e sre s se s s ne e e e e s e Re e nRe e e e e nRennes 117
DL T 1] (0] 4 T 118
011 0] OSSOSO 121
DEMONSIFALION 4 ... s 123
011 0] OO OSSR S 127
£ 10T 1117 TS 128

Part Ill: Make Efficient Applications.........ccccciivnnsmmmnnnsssssssssssssnnnssssssssssnsss 129

Chapter 6: Separate Changeable Code Using Factories........ccceusssemnnnssssannssssssnnnns 131

The Problem STatement ... s 132
T E LI o (T =1 1 PSS OO 132
DemMONSIFAtiON T ..o s 133
1] 135
YT 1 LS 135
BeLter PrOgram.......coiviicircc s s b e e p e 136
DEMONSIFALION 2. 138
011 0] OSSOSO 140
ANGIYSIS ... e R E e R e nnn 140
A NeW REQUIFEBMENT ..ot bbb e nne s 141
DL T 1] (0] 4T 141
011 0] | OSSOSO 143
ANGIYSIS ..o e e e E R e nn 144

viil

TABLE OF CONTENTS

DemONSLration 4..........ccoieincre e e 144
QUEPUL . e bR 147
ANGIYSIS ..cvevereirere e e R e r e R e e e nrn 147

£ 11134 7 148
Chapter 7: Add Features Using Wrappers.....ccueusesssssssssssssssnssssssssnsssssssnnssssssnnnnss 149
The Problem Statement ... 150
USING SUDCIASSING......coviiiriririiiirsere st r s et b e st nae 150
Using Object COMPOSITIONccceeeeerise e 153
Class DIAGramcccceerreserrnsesrreserrssesssse s s s ss s s e s sn e s nrn e nnnne e nra s 158
DEMONSIIALION ..o ————————— 159
0110 | OSSO 163
ANAIYSIS .veeerreerreerrese s e e e e s e s e e e e R e e e Re e R e e e rnRe s 165
L1134 RS 166
Chapter 8: Efficient Templates USing HOOKSccuusaesssssnsmsssnsssssnsssssanssssnnssssnnssssns 169
The Problem Statement ... 169
T E= LI o (T =1 1 OSSOSO 170
LTI D T - OO 173
DemONSLration ... ————— 173
1] 176
YT LS 176
Enhanced REQUIrEMENT...........ccvciiiinnsinc s s s p s 177
DeMONSLration 2. s 181
011 0] | OSSOSO 184
SUMIMANY ..ttt b e e e b e e e e e R e R e e e e e Re e R e R e e e e e Re e R e e e e e Renns 184
Chapter 9: Simplify Complex Systems Using Facades........uussseeeenssmmssssssssssnsnnnnnnas 187
The Problem Statementcccoriiririnrr s e s 188
T E= L o (0T = OSSN 189
DemONSIrAtion 1ccciiicrcrrer e ——————— 191
1] U O 192
ANGIYSIS ..eveiverieiriere e s s e e bR e e AR e e e e R R e e e e aeenn 193

ix

TABLE OF CONTENTS

2T =] 0 (00 o o S 193
[TS0 1T Vo - O 193
DemONSIrAtion 2. ———————————— 194
1] O 197
ANGIYSIS ..everrereeiererere s s s rae s r e s e e e s s e e e s e e e R e e e e e R R e e e e e Re R e e e e e Re e Re R e e e e Renan 198

£ 1134 7 198

Part IV: The Road Aheadueeeesmmeemsssmssmssssnssssssssssssssssssssssnsssssssnssnssssnnnns 201

Chapter 10: Memory Managementcccommmssnmnmmssssssnmssssssnnsssssssnsssssssnnnsssssnnnnss 203
LT ST 203
Stack Memory vs. HEap MEMOIYccovvecmrerernesrnesese s srssesesse e e ssssssssssssssssssssssssssssesenns 205

Q&A SESSIONcueucururirsssrssss s e e bbb e e e 208
The Garbage ColleCtor in ACHION...........ccvcererririrre e s sa e sne s 212
Different Phases of Garbage COlIECHIONcccvveveverrniere s enes 213
Different Cases of Invoking the Garbage ColleCtor..........coovvvvninennnninenn e senennes 213
DeMONSTIAtioN 1 ..o ———————— 216
1] S 218
ANGIYSIS ..vuerreeerreerree s s R e E e R e e e rnRe s 219
Disposing of @an ODJECT.......cccvviririrerr e 220
FINAlIZE VS. DISPOSEeeiueririeerteriries st st e st s sae s s s s sa e s s s e e s e sae s e e e e saesae s e e e e snesnenanans 221
DemMONSIrAtioN 2. ————————————— 224
1] O 226
YT 1T L S 226
Memory Leak ANAIYSISccccviirierieresinsirese s s se s s s sn e s s ssa e s snens 231
DemONSIrAtion 3........cooiiirrcrce s 233
Snapshots from DiagnoSEiC TOOISc.ceeeveererverierererserseressesesseressesessessessessesessessesssssssessessens 236
SUMIMANY ..ttt e e R e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 238

TABLE OF CONTENTS

Chapter 11: Leftover DiSCUSSIONScuuvusssensrsssssnnsssssssnsssssssssnssssssssnsssssssnnssssssnnnnss 241
Static Method or Instance Method? ... s 241
31T - oL OSSOSO 241
Learn Design Patterns........cccov it ss s ss s s s st sessesnens 244
Brief History of Design Patterns ... sssssssessesnes 245

Here IS the GOOO NEWS! ...t 248

Q&A SESSIONucueurueurrssssesasesssssss s s s e e e e e e e e R b b e e e e e e 249
AVOid ANi-PALLEINS ...ceeiviicccrccre e e ne s 250
Brief History of Anti-patterns..........ccocovrernnerereserescssesesese s s sennes 251
Examples of Anti-patierns ... 252
Types of Anti-patterns ... ——————— 253

Q&A SESSIONucueururursrsssesssesesssss s s e e e e e e e e b bbb e e e e e 254
Some Common TErMINOIOGYccveerrrserersererreseressesesesesesesessesessess s sesssssssessssssesssssssssssssssssenns 257
Q&A SESSIONcueucururursssessssssssse s s e e e e e e b b b e e e e 259
B30T 111 T o SR 261
Appendix A: Winning NOtescccccummsmmmmmmmssssnmmmsssssnmmsssssssssssssssnsssssssssssssssssssssssnns 263
A Personal APPEAI 10 YOUcevuerierieineineriinsis e sesses e s se s s s s ss s sae s s s s s s s s snesne s s 263
AppendiX B: RESOUICES ..uuuuuissssssmmssmmmmssssssssssnssnsssssssssssssssssnssssssssssssssnnnnssssssssssssnnnns 265
INA@X . iiiiisssnnnnnnnnnnnnssssssssnnnnnnnnmesssssssssnnnnnnnnsssssssssnnnnnnneessssssssnnnnnnnnnssssssssnnnnnnnnnesssssnnn 267

xi

About the Author

Vaskaran Sarcar obtained his Master of Engineering in
software engineering from Jadavpur University, Kolkata,
India, and an MCA from Vidyasagar University, Midnapore,
India. He was a National Gate Scholar (2007-2009) and has
more than 12 years of experience in education and the IT
industry.

Vaskaran devoted his early years (2005-2007) to the
teaching profession at various engineering colleges, and later
he joined HP India PPS R&D Hub Bangalore. He worked
there until August 2019. At the time of his retirement from
HP, he was a senior software engineer and team lead. To

follow his dream and passion, Vaskaran is now an independent, full-time author. His

other Apress books include the following:

Design Patterns in C# Second Edition (Apress, 2020)
Getting Started with Advanced C# (Apress, 2020)

Interactive Object-Oriented Programming in Java Second Edition
(Apress, 2019)

Java Design Patterns Second Edition (Apress, 2019)

Design Patterns in C# (Apress, 2018)

Interactive C# (Apress, 2017)

Interactive Object-Oriented Programming in Java (Apress, 2016)

Java Design Patterns (Apress, 2016)

The following list includes his non-Apress books:

Python Bookcamp (Amazon, 2021)

Operating System: Computer Science Interview Series (Createspace,
2014)

xiii

About the Technical Reviewer

Carsten Thomsen is primarily a back-end developer, but
works with smaller front-end bits as well. He has authored
and reviewed a number of books and created numerous
Microsoft Learning courses, all to do with software
development. He works as a freelancer/contractor in various
countries in Europe; Azure, Visual Studio, Azure DevOps,
and GitHub are some of the tools he works with. Being an
exceptional troubleshooter—asking the right questions,
including the less logical ones, in a most-logical to least-

logical fashion—he also enjoys working with architecture,
research, analysis, development, testing, and bug fixing.
Carsten is a very good communicator with great mentoring and team-lead skills, and
fantastic skills in researching and presenting new material.

Acknowledgments

First, I thank the Almighty. I sincerely believe that with HIS blessings only could I
complete this book. I also extend my deepest gratitude and thanks to the following:

Ratanlal Sarkar and Manikuntala Sarkar: My dear parents,
thanks for all your support towards me.

Indrani, my wife; Ambika, my daughter; Aryaman, my son:
Sweethearts, I love you all.

Sambaran, my brother: Thank you for your constant

encouragement toward me.

Carsten: You are a great technical advisor. Whenever I was in
need, your support was there. Thank you one more time.

Celestin, Laura, and Smriti: Thanks for giving me another
opportunity to work with you and Apress.

Shrikant, Nirmal, Sherly, Sankar and Mohan: Thank you for
your exceptional support to finalize my work. Your efforts are
extraordinary.

Introduction

Welcome to your journey through Simple and Efficient Programming with C#: Skills to
Build Applications with Visual Studio and .NET. C# is an object-oriented programming
(OOP) language. You may already know C# keywords, or even some interesting features.
You may also know how to write simple programs in C#. You can learn these things from
an introductory book or an online tutorial. These are useful things to know, but they are
not sufficient to understand an enterprise codebase. This is why a novice programmer
often finds it difficult to understand an expert’s code. He or she wonders why an
experienced programmer wrote the program differently. It may appear to the novice
that the expert could have used an easier approach to solve the problem. But there are
reasons why an experienced programmer might follow a different approach. The word
“experienced” indicates that these programmers have more experience in programming
and know the pros and cons of different approaches. They know how the C# features
can be used in the best possible way to develop an application. So, the applications

they make are usually powerful. What do I mean by a powerful application? For me, a
powerful application is robust, extensible, and easily maintainable, but simple to use.
This book is an introductory guide to develop such applications. This is the core aim of
this book.

To write better quality programs, senior programmers follow in experts’ footprints.
They learn from collective wisdom and recorded experience from the past. So, instead
of attempting an entirely new solution, you should first consider this knowledge base,
which will help you produce better quality code. It is best to have some idea about why
you should or shouldn’t follow any specific guideline.

Malcolm Gladwell, in his book Outliers (Little, Brown and Company), discussed
the 10,000-hour rule. This rule says that the key to achieving world-class expertise in
any skill is, to a large extent, a matter of practicing the correct way, for a total of around
10,000 hours. I acknowledge that it is impossible to consider all experiences before you
write a program. Also, sometimes it is OK to bend the rules if the return on investment
(ROI) is nice. So, keep in mind the Pareto principle, or 80-20 rule. This rule simply states
that 80% of outcomes come from 20% of all causes. This is useful in programming too.
When you identify the most essential characteristics of top-quality programs and use

Xix

INTRODUCTION

them in your applications, you also qualify yourself as an experienced programmer, and
your application will be robust, flexible, and maintainable. In this book, I share with you
these important principles, which will help you write better programs for case studies.
Some of these principles you may know already, but when you see them in action and
compare the case studies, you'll understand their importance.

How Is the Book Organized?

The book has four major parts, which are as follows:

o The first three chapters form Part I, in which there is a detailed
discussion of polymorphism and the use of abstract classes and
interfaces. Here, code comments will be examined, and you will learn
when to use them effectively. These are the fundamental building
blocks for the rest of the book.

e Inthe world of programming, there is no shortage of programming
principles and design guidelines. Each of these suggestions has its
own benefits. To become a professional programmer, you do not
need to learn everything at the same time. So, in Part II, I discuss
six design principles, which include SOLID principles and the DRY
principle. These are the foundation of well-known design patterns.
Once you understand them, you can consider yourself a better
programmer.

e The best way of learning is by doing and analyzing case studies. So,
in Part III of the book, you will see interesting applications that use
some well-known patterns. This part gives you hints about how a
professional coder develops an enterprise application.

e Thereis no end to learning. So, Part IV includes some interesting
topics such as how to prevent memory leaks, how to choose between
a static method and an instance method, and some common terms
from software development that are not discussed in detail in this
book. A quick overview of these topics will help you to be familiar
with them when you see them in your future endeavors.

INTRODUCTION

e You can download all the source code for the book from the
publisher’s website. I have a plan to maintain the “errata,” and, if
required, I can also make some updates/announcements there.
So, I suggest that you visit those pages to receive any important
corrections or updates.

Prerequisite Knowledge

This book is intended for those who are familiar with the basic language constructs of C#
and have an idea about pure object-oriented concepts like polymorphism, inheritance,
abstraction, encapsulation, and, most important, how to compile or run a C# application
in Visual Studio. This book does not invest time in easily available topics, such as how

to install Visual Studio on your system, or how to write a “Hello World” program in C#,

or how you can use an if-else statement or a while loop, etc. This book is written using
the most basic features of C# so that for most of the programs herein you do not need to
be familiar with advanced topics in C#. The examples are simple and straightforward.

I believe that they are written in such a way that even if you are familiar with another
popular language such as Java, C++, and so on, you can still easily grasp the concepts in
this book.

Who Is This Book For?

In short, you can pick up this book if the answer is “yes” to the following questions:

e Are you familiar with basic constructs in C# and object-oriented
concepts like polymorphism, inheritance, abstraction, and
encapsulation?

e Do you know how to set up your coding environment?

e Have you completed at least one basic course on C# and now are
interested in writing better programs? Are you also interested to know
how a professional programmer designs his or her applications?

e Areyou interested in knowing how the core constructs of C# work
behind standard design patterns?

xxi

INTRODUCTION

You probably shouldn’t pick this book if the answer is yes to any of the following
questions:

e Areyou absolutely new to C#?

e Areyou looking for advanced concepts in C#, excluding the topics
mentioned previously?

e Areyouinterested in exploring a book where the focus is not on
standard design principles?

¢ “Idonotlike Windows, Visual Studio, and/or .NET. I want to learn
and use C# without them only.” —Is this statement true for you?

Guidelines for Using This Book

To use this book more effectively, consider the following:

e This book works best if you've gone through an introductory
course on C# and are familiar with the common terms, such as
polymorphism, and have heard about abstract classes and interfaces.
If this is not the case, please read about these topics before you start
reading this book.

o Isuggestyou go through the chapters sequentially. This is because
some fundamental design techniques may have been discussed in a
previous chapter and I have not repeated those techniques in later
chapters.

o [Istarted this book using Microsaoft Visual Studio Community 2019
(Version 16.8.4) in a Windows 10 environment. This community
edition is free of charge. If you do not use the Windows operating
system, you can use Visual Studio Code, which is also a source-
code editor developed by Microsoft to support Windows, Linux,
or Mac operating systems. This multi-platform IDE is also free.
When I started the book, I started with the latest versions of C# that
were available at that time. In this context, it is useful to know that

xxii

INTRODUCTION

nowadays the C# language version is automatically selected based on
your project’s target framework(s), so you can always get the highest
compatible version by default. In the latest versions, Visual Studio
doesn’t support changing the version value in the user interface, but
you can change it by editing the csproj file.

Later, I also used Microsoft Visual Studio Community 2019 Preview
4.0 and set my target framework to .NET 6.0. As per the new rule,
you can simply say that when your target framework is .NET 5.x (and
later), you'll get C# 9.0 and later by default. If you are interested in
the C# language versioning, you can go to this link: https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/
configure-language-version.

Version updates will come continuously, but I strongly believe that
these version details should not matter much to you because I have
used the fundamental constructs of C#. So, the code in this book
should execute smoothly in the upcoming versions of C#/Visual
Studio as well. Though I also believe that the results should not
vary in other environments, you know the nature of software—it is
naughty. So, I recommend that if you want to see the exact same

output, you mimic the same environment.

You can download and install the Visual Studio IDE from https://
visualstudio.microsoft.com/downloads/. You are expected to see
the screen shown in Figure 1.

xxiii

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

INTRODUCTION

» b visuabtudiomicrosoft comydownioads! b

Visual Studio 2019 Community Professional Enterprise
Release notes >

Full-featured integrated development environment
(IDE) for

Compare editions >

How to install offline >

Visual Studio Preview Get early access 1o latest features not yet in the main release
Release notes > Learn more »
ﬂ o A macos @ macOs

Visual Studio Code Visual Studio for Mac

Release notes »
Release notes >

The fast, free and open-

rece code o B Develop apps and games for iOS,
edditos thal adants 1o vour needs Andinid and web ueing NET

Figure 1. Download link for Visual Studio 2019 and Visual Studio Code

Note At the time of writing, this link works fine, and the information is correct.
But the link and policies may change in the future.

e Thave installed the class designer component in Visual Studio 2019
to draw class diagrams for my programs. But I needed to edit some
of these diagrams for better readability. For example, I added some
valuable notes in some diagrams, so that you can understand them
easily.

Conventions Used in This Book

Here, I will mention only two points: In many places, to avoid more typing, I have used
the word “his” only. Please treat it as “his” or “her,” whichever is applicable for you.

Second, all the outputs and codes of the book follow the same font and structure.
To draw your attention, in some places, I have made them bold. For example, consider
the following code fragment (taken from Chapter 4 when I discuss LSP) and the lines in
bold.

XXiv

INTRODUCTION

// Instantiating two registered users
RegisteredUser robin = new RegisteredUser("Robin");
RegisteredUser jack = new RegisteredUser("Jack");

// Adding the users to usermanager
helper.AddUser (robin);
helper.AddUser(jack);

GuestUser guestUserl = new GuestUser();
helper.AddUser(guestUser1);

// Processing the payments using
// the helper class.
// You can see the problem now.

Final Words

I must say that you are an intelligent person. You have chosen a subject that can assist
you throughout your career. If you are a developer/programmer, you need these
concepts. If you are an architect of a software organization, you need these concepts. If
you are a college student, you need these concepts, not only to score well on exams but
also to enter the corporate world. Even if you are a tester who needs to take care of white-
box testing or simply needs to know about the code paths of a product, these concepts
will help you a lot.

Remember that you have just started on this journey. As you learn about these
concepts, I suggest you write your own code; only then will you master this area. There
is no shortcut for this. Do you remember Euclid’s reply to the ruler? If not, let me remind
you of his reply: There is no royal road to geometry. So, study and code; understand
anew concept and code again. Do not give up when you face challenges. They are the
indicators that you are growing better.

I believe that this book is designed for you in such a way that upon its completion,
you will have developed an adequate knowledge of the topic, and, most important, you'll
know how to go further.

Lastly, I hope that this book can provide help to you and that you will value the effort.

PART |

Fundamentals

Part I consists of three chapters, in which we will discuss the following questions:
e How can we use the power of polymorphism and why is it beneficial?

« How can we combine an abstract class and interfaces to make an

efficient application?

o How can we use meaningful code comments and avoid unnecessary

comments in a program?

Almost every C# application uses comments, the concept of polymorphism, and
abstract classes and interfaces. When we implement these techniques in a better way,
the program is better. I consider them the fundamental techniques for an efficient

application.

CHAPTER 1

Flexible Code Using
Polymorphism

Ask a developer, “What are the fundamental characteristics of object-oriented
programming (OOP)?” and you will get an immediate reply saying, “Classes (and
objects), inheritance, abstraction, encapsulation, and polymorphism are the most
important characteristics in OOP”. In addition, when you analyze enterprise code that
is based on OOP, you'll find different forms of polymorphism. But the truth is, a novice
programmer rarely uses the power of polymorphism. This chapter focuses on this topic.
It shows you some simple but powerful code examples using this principle.

Recap

Polymorphism simply means there is one name with many forms. Consider the behavior
of your pet dog. When it sees an unknown person, it starts barking. But when it sees you,
it makes different noises and behaves differently. In both cases, this dog sees with his
eyes but based on his observations he behaves differently. Polymorphic code can work
in the same way. Consider a method that you might use to add some operands. If the
operands were integers, you would expect to get a sum of the integers. But if you were to
deal with string operands, you would expect to get a concatenated string.

Initial Program

Let’s look at a program that compiles and runs successfully. In this program, there are
three different types of animals: tigers, dogs, and monkeys. Each of them can produce
a different sound. So, there are classes with these names, and in each class, there is a
Sound() method. See whether you can improve this program.

© Vaskaran Sarcar 2021
V. Sarcar, Simple and Efficient Programming with C#, https://doi.org/10.1007/978-1-4842-7322-7_1

https://doi.org/10.1007/978-1-4842-7322-7_1#DOI

CHAPTER 1 FLEXIBLE CODE USING POLYMORPHISM
Demonstration 1

Here is a program that does not use the concept of polymorphism.
using System;

namespace DemoWithoutPolymorphism

{
class Tiger
{
public void Sound()
{
Console.WritelLine("Tigers roar.");
}
}
class Dog
{
public void Sound()
{
Console.WritelLine("Dogs bark.");
}
}
class Monkey
{
public void Sound()
{
Console.WriteLine("Monkeys whoop.");
}
}
class Program
{

static void Main(string[] args)

{
Console.WriteLine("***Sounds of the different animals.***");
Tiger tiger = new Tiger();
tiger.Sound();

CHAPTER 1 FLEXIBLE CODE USING POLYMORPHISM

Dog dog = new Dog();
dog.Sound();

Monkey monkey = new Monkey();
monkey.Sound();
Console.ReadKey();

Output

Sounds of the different animals.
Tigers roar.

Dogs bark.

Monkeys whoop.

Analysis

When you use Tiger tiger = new Tiger(); the tiger is a reference to an object that
is based on the Tiger class. This reference refers to the object but does not contain the
object data itself. Even Tiger tiger; is also a valid line of code that tells you to create an
object reference without creating the object.

Understand that when you use Tiger tiger = new Tiger(); youare
programming to an implementation. Notice that in this case the reference and
object are both of the same types. You can improve this program using the concept of
polymorphism. In the upcoming implementation, I show you such an example. I use an
interface in this example. I can achieve the same thing using an abstract class too. Before
I show you the example, let me remind you of few important points:

* When you use an abstract class or an interface, the first thing that
comes to mind is inheritance. How do you know whether you have
correctly used inheritance? The simple answer is: you do an IS-A test.
For example, a rectangle IS-A shape, but the reverse is not necessarily
true. Take another example: a monkey IS-An animal but not all
animals are monkeys. Notice that the IS-A test is unidirectional.

CHAPTER 1

FLEXIBLE CODE USING POLYMORPHISM

In programming, if you inherit class B from class A, you say that

B is the subclass and A is the parent class or base class. But most
important, you can say B is a type of A. So, if you derive a Tiger
class or a Dog class from a base class called Animal (or an interface,
say, IAnimal), you can say that Dog IS-An Animal (or IAnimal) or
Tiger IS-An Animal (or IAnimal).

If you have an inheritance tree, this IS-A test can be applied anywhere
in the tree. For example, a rectangle IS-A special type of shape. A
square IS-A special type of rectangle. So, a square IS-A shape too.

Let us say we represent rectangles and shapes using the Rectangle
and Shape classes, respectively. Now when we say Rectangle IS-A
Shape, programmatically we mean a Rectangle instance can invoke
the methods that a Shape instance can invoke. If needed, a Rectangle
instance can invoke some additional methods too. These additional
methods can be defined in the Rectangle class.

You know that a superclass reference can refer to a subclass object. Here you see that

each tiger, dog, or monkey is an animal. So, you can introduce a supertype and inherit

all these concrete classes from it. Let’s name the supertype IAnimal.

Here is a code fragment that shows the IAnimal interface. It also gives you the idea of

how you can override its Sound () method in the Tiger class. The Monkey and Dog classes

can do the same thing.

interface IAnimal

void Sound();

class Tiger : IAnimal

public void Sound()

{
}
{
{
}
}

Console.WritelLine("Tigers roar.");

CHAPTER 1 FLEXIBLE CODE USING POLYMORPHISM

Programming to a supertype gives you more flexibility. It allows you to use a
reference variable polymorphically. The following code segment demonstrates such a
usage:

IAnimal animal = new Tiger();
animal.Sound();

animal = new Dog();
animal.Sound();

//remaining code skipped

Better Program

I have rewritten this program, which produces the same output. Let’s have a look at the
following demonstration.

Demonstration 2
This is a modified version of Demonstration 1.
using System;

namespace UsingPolymorphism

{

interface IAnimal

{
void Sound();

}

class Tiger: IAnimal

{
public void Sound()
{

Console.WritelLine("Tigers roar.");

}

}

CHAPTER 1 FLEXIBLE CODE USING POLYMORPHISM

class Dog: IAnimal

{
public void Sound()
{
Console.WritelLine("Dogs bark.");
}
}
class Monkey: IAnimal
{
public void Sound()
{
Console.WriteLine("Monkeys whoop.");
}
}
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***Sounds of the different animals.***");
IAnimal animal = new Tiger();
animal.Sound();
animal = new Dog();
animal.Sound();
animal = new Monkey();
animal.Sound();
Console.ReadKey();
}
}
}
Analysis

Have you noticed the difference? Inside the Main() method, you use the superclass
reference animal to refer to different derived class objects.

CHAPTER 1 FLEXIBLE CODE USING POLYMORPHISM

Now you not only type less, but you also use a program that is more flexible and
easier to maintain. If you want, you could also iterate over a list. For example, you could
replace the following code segment inside Main():

IAnimal animal = new Tiger();
animal.Sound();

animal = new Dog();
animal.Sound();

animal = new Monkey();
animal.Sound();

with the following code:

List<IAnimaly> animals = new List<IAnimal>

{

new Tiger(),
new Dog(),
new Monkey()

b

foreach (IAnimal animal in animals)
animal.Sound();

If you run the program again with these changes, you will see the same output.

POINT TO REMEMBER

When you use List<Animaly, do not forget to include the following namespace at the
beginning of the program:

using System.Collections.Generic;

This discussion is not over yet. Here, I have used one of the simplest forms of
polymorphism. In this case, a thought may come into your mind: we know a supertype
reference can refer to a subtype object in C#. So, when I use the following lines:

IAnimal animal = new Tiger();
animal.Sound();

