

Riesgos Físicos II

ILUMINACIÓN

Fernando Henao Robledo

RIESGOS FÍSICOS II

Iluminación y Radiaciones

Fernando Henao Robledo

Henao Robledo, Fernando

Riesgos físicos II: iluminación / Fernando Henao Robledo. --

Bogotá: Ecoe Ediciones, 2008

202 p.: il.; 24 cm.

ISBN 978-958-648-483-1

- 1. Alumbrado eléctrico Medidas de seguridad
- 2. Radiación ionizante Medidas de seguridad 3. Radiaciones ionizantes Efectos fisiológicos 4. Seguridad industrial I. Tít.

621.320289 cd 21 ed.

A1159117

CEP-Banco de la República-Biblioteca Luis Ángel Arango

Colección: Textos universitarios

Área: Ingeniería, arquitectura e informática

Edición: Bogotá, D.C., febrero de 2007

Primera edición: Bogotá, D.C., mayo de 2008

ISBN: 978-958-648-483-1

© Fernando Henao Robledo

E-mail: fernandohenaoster@gmail.com

© Ecoe Ediciones

E-mail: correo@ecoeediciones.com

www.ecoeediciones.com

Carrera 19 No. 63C-32, Pbx. 2481449, fax. 3461741

Coordinación editorial: Alexander Acosta Quintero.

Autoedición: Yolanda Madero T.

Carátula: Patricia Díaz

Impresión: Digiprint Editores

Calle 63 bis No. 70-49, Tel. 4307050

Impreso y hecho en Colombia

A mi esposa LUZ MARY y a mis hijos PAULA ANDREA y JUAN FELIPE motivos de mi vida

Tabla de contenido

Introducción	1
Radiaciones	1
Radiaciones electromagnéticas	4
Espectro electromagnético	5
CAPÍTULO I	
ILUMINACIÓN	13
Introducción	13
El ojo y la visión	14
El mecanismo visual	15
Anatomía y fisiología de la visión	15
El ojo	16
La retina	20
Medios transparentes	20
Cristalino	20
Cuerpo vítreo	21
Humor acuoso	21
Anexos del globo ocular	21
Párpados	21
Aparato lagrimal	23
Características visuales del ojo	24
Acomodación	24
Adaptación	24
Curva de sensibilidad del ojo	24
Efecto purkinje	26
El campo visual	26
Defectos estructurales del ojo	27
Tres tipos de visión	28
Factores objetivos del proceso visual	28
Tamaño	29
Brillo fotométrico (luminancia)	29

Contraste	29
Tiempo	29
El espectro radiante	30
Longitud de onda	30
Período	30
Frecuencia	30
Velocidad de propagación	32
Temperatura del color	32
Magnitudes y unidades luminosas	33
Intensidad luminosa	34
Flujo luminoso	35
Nivel de iluminación	35
Brillo (luminancia) (B)	36
Ecuaciones fundamentales	38
Características de la radiación luminosa	39
Reflexión	39
Valores de reflexión o reflectancia	40
Transmisión	42
Refracción	42
Índice de refracción	43
Polarización	43
Calidad de la iluminación	44
Deslumbramiento	44
Efectos que produce el deslumbramiento	45
Normas para evitar el deslumbramiento	45
Relación de brillo	45
Color	46
El color como fenómeno físico	47
El color de los cuerpos opacos.	47
Sensibilidad a los colores	47
El color como sensación	48
Cualidades del color	48
El color como elemento expresivo	49
Factores de modificación del color aparente	55
Preferencias cromáticas y tipo de personalidad	55
Tipos de iluminación	56
Métodos de alumbrado	58
Reglamento Técnico Colombiano	65

Campo de aplicación	6
Requisitos y procedimientos	6
Número de puntos y número de muestras por punto	6
Luminancia y brillo en los puestos de trabajo	6
Equipos de medición	6
Pruebas de verificación	6
Medida de campo	7
Cálculos	7
Determinación de la iluminación promedio	7
Niveles de iluminación representativos	7.
Resultados	9.
Análisis y determinación de las condiciones de riesgo	9
Medidas de control	9
Diseño de iluminación artificial	10
Vigilancia y control	10
Régimen sancionatorio	11
Anexos	11
THE ACC	
CAPÍTULO II	
OTRAS RADIACIONES NO IONIZANTES	12
Radiación ultravioleta	12
Efectos de la radiación ultravioleta	12
Fuentes de emisión de radiación ultravioleta	12
Fuentes artificiales de radiación ultravioleta	12
Detección y medición de la radiación ultravioleta	13
Detectores químicos y biológicos	13
Detectores físicos	13
Instrumentos de medida	13
Evaluación de los riesgos para la salud humana	13
Valores límites permisibles para radiaciones no ionizantes	13
Radiación infrarroja	13
Microondas	14
Medidas de control y protección	14
Radiofrecuencias (RF) y microondas	14
Aplicaciones de las radiofrecuencias	14
Detectores y medidores	14
Características de los medidores	14
Efectos biológicos de la radiación RF	15

Efectos de los campos de RF sobre la salud	152
Efectos no térmicos de los campos de RF	156
Cáncer y exposición a campos de RF	156
Valores a los que estamos sometidos	157
Aplicaciones médico-terapéuticas de las ondas de radio	160
Valores límites permitidos	163
Valoración del riesgo higiénico	164
Peligros del radar	164
Medidas de protección	165
Campos electromagnéticos de frecuencia extremadamente baja (E.L.F.)	168
Características físicas	169
Fuentes naturales de campos ELF	169
Campos eléctricos naturales	170
Campos magnéticos naturales	170
Fuentes artificiales de campos ELF	171
Efectos biológicos de los ELF sobre los seres vivos	174
Determinación de dosis de exposición en campos ELF	175
Campos electrostáticos elevados	175
Generación de cargas electrostáticas	176
Radiación láser	176
Límites máximos permisibles	184
CAPÍTULO III	
RADIACIONES IONIZANTES	202
	203 215
Características de las salas de Rx	_
Radiación gamma	216
Usos de la radiación gamma	216226
	230
Efectos biológicos de las radiaciones ionizantes	235
Efectos genéticos	236
Efectos estocásticos o aleatorios	238
Radio sensibilidad de las células	238
Síndrome de irradiación	239
Síndrome hematopoyético	240
Síndrome gastrointestinal	240
Síndrome del sistema nervioso central	240
Efectos somáticos crónicos	240
Irradiación y contaminación radiactiva	241
madiación y contaminación radiactiva	471

Irradiación externa	242
Contaminación radiactiva	242
Límites máximos permisibles	242
Diseño de la instalación	247
Medicina nuclear	255
Gammagrafia industrial	256
Técnicas de medición	265
Protección del técnico	282
Protección del médico	283
Protección de los equipos móviles	283
Protección en medicina nuclear	283
Eliminación de desechos radiactivos	284
Manejo de los pacientes	285
Manejo de cadáveres	285
Legislación colombiana	285
Anexo 1. Monitoraje de instalación radiactiva	303
Anexo 2. Guía sobre criterios de valoración de condiciones medioam-	
bientales de una instalación radiactiva	307
Anexo 3. Criterios de valoración de condiciones medioambientales	
de una instalación radiactiva	309
Anexo 4. Evaluación y control de radiaciones ionizantes	310
Bibliografía	313
Lista de figuras	
Introducción	
Figura 1. Clasificación radiaciones	3
Figura 2. El campo eléctrico (E) y el campo magnético (H), componente	es
de la radiación electromagnética	5
Figura 3. Espectro de radiación electromagnética	7
Figura 4. El espectro electromagnético, incluyendo las radiaciones	
ionizantes y no ionizantes	9
Figura 5. Longitud de onda en centímetros	11
Capítulo I	
Figura 1. Vista del ojo	16
Figura 2. Estructura muscular del iris	18
Figura 3. La retina	19

	22
Figura 4. Diagrama de los músculos motores del ojo	22
Figura 5. Curva de sensibilidad del ojo medio	25
Figura 6. Luminancia	37
Figura 7. Tipos de iluminación	57
Figura 8. Alumbrado general	59
Figura 9. Alumbrado general localizado	60
Figura 10. Alumbrado individual	61
Figura 11. Alumbrado combinado	62
Figura 12. Alumbrado suplementario	63
Capítulo II	
Figura 1. Espectro ultravioleta	124
Figura 2. Espectro infrarrojo	137
Figura 3. Diagrama de equipo generador de rayos láser	178
Figura 4. Medio, tipo y longitudes de onda operativas de un láser típico	182
Figura 5. Factor de corrección de TLV	187
Figura 6. TLV para visión dentro del rayo láser directo	188
Figura 7. TLV para visión dentro del rayo láser OC directo	189
Figura 8. TLV para exposición de piel y ojos a láser para radiación	
del infrarrojo lejano	192
Figura 9. Exposición de piel y ojos a láser OC para radiación	
infrarroja lejana	193
Figura 10.TLV para fuentes extensas o reflexiones difusas de radiación	
láser	194
Figura 11. Duración de la exposición (seg.)	195
Figura 12. Frecuencia de repetición de pulso (FRP Hz)	195
Figura 13. Penetración de radiación electromagnética de diferentes	
longitudes de onda en el ojo	201
Capítulo III	
Figura 1. Espectro electromagnético que muestra la energía y	
longitud de onda de distintos tipos de radiación	209
Figura 2. Poder de penetración de las radiaciones ionizantes	210
Figura 3. Esquema de un tubo generador de rayos X	213
Figura 4. Modelo básico del átomo	217
Figura 5. Poder de penetración relativo de las radiaciones alfa,	~ 1/
beta y gamma	220
Figura 6 Efecto fotoeléctrico	222

Tabla de contenido XIII

Figura 7	Efecto Compton	222
_	Absorción y dispersión de radiación electromagnéticas	224
Figura 9.	Formación de pares	225
	O. Actitud ante las radiaciones	273
	Lista de tablas	
Capítulo	οI	
Tabla 1.	Relaciones entre la constante del salón y el número mínimo	
	de puntos de medición	67
Tabla 2.	Categorías iluminancia y valores de iluminancia por tipos	
	genéricos y actividades en interiores	75
Tabla 3.	Niveles de iluminación recomendados	76
Tabla 4.	Relaciones de brillo recomendadas	94
	Eficiencia mínima recomendada para lámparas	98
Tabla 6.	Factores de uso mínimo recomendados	98
Tabla 7.	FDLS para luminarias en varias condiciones ambientales	99
Tabla 8.	Precauciones a tomar cuando se quiere minimizar el	
	consumo de energía	102
Capítul	o II	
Tabla 1.	Aberturas límite aplicable a los TLVs para láseres	185
Tabla 2.	Valores límite fuentes intermediasy mayores	186
Tabla 3.	TLVs para la exposición de la piel	191

INTRODUCCIÓN

En la clasificación general de factores de riesgo se encuentran los factores de riesgo físicos que se definen como cantidades de energía presentes en el medio ambiente que pueden afectar al trabajador, luego de haber analizado en el primer grupo en Riesgo físicos I: ruido, vibraciones y las presiones anormales, se analizarán la iluminación y las radiaciones en general dentro de este segundo grupo.

Las radiaciones constituyen hoy en día un problema de salud pública e higiene industrial de primera magnitud. Y es realmente la radiación artificial creada por el hombre la que ofrece mayor riesgo a los trabajadores y a la población en general.

De los diferentes tipos de radiaciones, las ionizantes representan el mayor peligro desde el punto de vista sanitario. Las artificialmente producidas, fueron introducidas a comienzos del siglo pasado, habiéndose generalizado su uso en forma dramática por los ya conocidos avances de la fisica atómica y la tecnología nuclear en los últimos años.

Los riesgos potenciales, por ser muy grandes sin embargo, exigen que se extremen las medidas de protección y seguridad no sólo para cuidar la salud de los trabajadores, sino también de la comunidad y sobre todo de las futuras generaciones.

RADIACIONES

Al consultar el diccionario Larousse de ciencias y técnicas sobre la definición de radiación encontramos: emisión de ondas electromagnéticas, de partículas atómicas o de rayos de cualquier índole. Las radiaciones pueden ser de naturaleza electromagnética (radiaciones ondulatorias) o consisten en la emisión y propagación rectilínea de partículas (radiaciones corpusculares).

Todas las radiaciones ondulatorias se deben a la propagación simultánea de un campo magnético y de un campo eléctrico a la velocidad de 300.000 km/ seg. Solamente difieren por la frecuencia y la longitud de sus ondas u oscilaciones, cuyo valor determina los efectos que ejercen en la materia dichas radiaciones: elevado poder de penetración y de ionización de las radiaciones de mayor frecuencia y menor longitud de onda (Rayos gamma, X, Ultravioleta); excitación de la retina, generadora de fenómenos de visión (Luz); efectos caloríficos (Radiaciones infrarrojas), Reflexión de las ondas cortas de telecomunicaciones por la ionosfera.

Las radiaciones corpusculares se deben a los movimientos de partículas muy rápidas, cuya velocidad es a veces próxima de la de la luz, aunque nunca superior a ella. Son electrones, protones, neutrones, de origen estelar o cósmico (radiaciones cósmicas) o emitidas por la materia radiactiva o en el curso de otros fenómenos nucleares.

Desde el punto de vista biológico y ocupacional las radiaciones pueden dividirse en ionizantes y no ionizantes. Entre las ionizantes se consideran las radiaciones alfa, beta gamma, y X, mientras que entre las no ionizantes se consideran la radiación ultravioleta, la visible, la infrarroja, la radiofrecuencia y la de frecuencia extremadamente baja y láser.

Por su origen se puede afirmar que las radiaciones ionizantes lo tienen básicamente en el interior de los átomos como consecuencia de varios fenómenos entre ellos la desintegración natural y/o artificial de los mismos, como ocurre con las partículas alfa y con las radiaciones beta y gamma que emergen del núcleo de los átomos; mientras que las X se produce por las transiciones de los electrones de las capas internas de los átomos y en ciertos casos por el frenado abrupto de partículas eléctricas de alta velocidad.

Las radiaciones no ionizantes tienen diferentes formas de generarse. De manera general, por los movimientos acelerados de partículas eléctricas. Sin embargo pueden ocurrir otros fenómenos que las generan en las transiciones de los electrones en las capas medias y externas de muchos átomos que es lo que genera la radiación ultravioleta y la visible, mientras que otras como la infrarroja, en las vibraciones atómicas y moleculares.

En su forma más simple la radiación electromagnética consiste en ondas léctricas vibratorias que se trasladan en el espacio acompañadas por un campo magnético vibratorio que tiene las características de un movimiento ondulatorio.

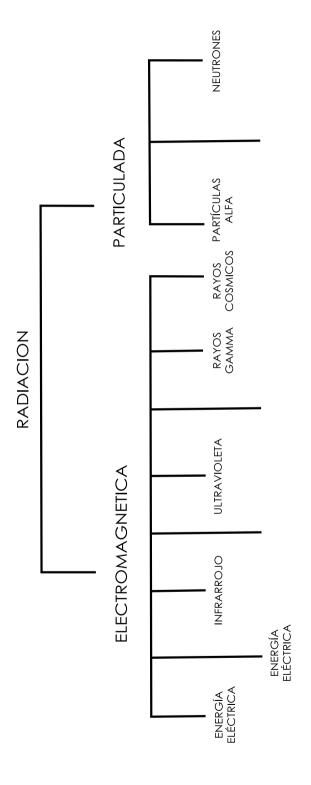


Figura 1. Clasificación radiaciones

Las radiaciones ionizantes poseen alta energía y su efecto sobre los tejidos vivos en general es destructivo, originando consecuencias letales a corto, mediano o largo plazo, dependiendo del tipo de tejido y de la dosis recibida.

Las radiaciones no ionizantes poseen menor energía y su efecto sobre los seres vivos es diferente en cuanto a penetración; en ellos es menor y la lesión no es tan severa como en las ionizantes. Sin embargo los efectos pueden tener un espectro amplio que depende del tipo de radiación y del tiempo de exposición.

RADIACIONES ELECTROMAGNÉTICAS

Tipo radiación	Frecuencia	Longitud de onda	Energía/Fotón	
Ionizante	>3000 THz	< 100 nm	>12.4 eV	
NO IONIZANTES	d"3000 THz	e" 100 nm	d"12.4 eV	
Ultravioleta	3000-750 THz	100-400 nm	12.4-3.1 eV	
Visible	750-385 THZ	400-780 nm	3.1-1.59 eV	
Infrarroja	85-0.3 THz	0.78-1000 μm	1.590-1.24 meV	
Microondas	300-0.3 GhHz	1-1000 mm	1.240-1.24 μeV	
Radiofrecuencias	300- 0.1 MHz	1-3000 m	1.240-0.41 neV	

Las radiaciones no ionizantes tienen algún poder de penetración en los tejidos vivos y durante su viaje a través de ellos va siendo absorbida, originando diferentes fenómenos a escala molecular, los cuales pueden ser de tipo térmico, fotobiológico, fotoquímico, etc. Esto explica el hecho de que tejidos muy sensibles a estos fenómenos sean los más afectados, como es el caso de los tejidos de la retina en el ojo de muchas especies vivas, en particular en el hombre.

Esto ocurre especialmente con las radiaciones comprendidas entre el ultravioleta y las microondas; las radiaciones de mayor longitud de onda, tales como las de radiofrecuencia y las de frecuencia extremadamente baja producen efectos a nivel de órganos, siendo más notable su efecto a nivel del sistema nervioso central.

ESPECTRO ELECTROMAGNÉTICO:

El ente físico más común y extendido en el universo es la radiación electromagnética. El hombre aprendió a generar y a utilizar las radiaciones para diversos fínes, desde conocer mejor el universo hasta fabricar instrumentos de muerte, pasando por toda la utilización en comunicaciones, fabricación de infinidad de artículos, tratamientos médicos, entretenimiento, etc, al punto de que prácticamente no existe actividad humana que no requiera el uso de las radiaciones electromagnéticas.

Las ondas electromagnéticas pueden diferir en tres propiedades básicas: a) fuerza, es decir, la intensidad de las fuerzas electromagnéticas; b) frecuencia, que es el número de veces que vibran o el número de ciclos completos que cumplen en cada segundo; y c) longitud de onda, que es la menor distancia entre puntos similares consecutivos de la serie de ondas.

Como se ha explicado, las radiaciones electromagnéticas son ondas formadas por la existencia de campos eléctricos y magnéticos cuyas direcciones son perpendiculares entre sí y a su vez perpendiculares a la dirección de propagación: Una de sus características es que se propagan en el vacío pues no necesitan medio material como soporte. La velocidad con que viaja la energía transmitida de esta forma, es de 300.000 Km/seg, en el vacío y esto es una constante.

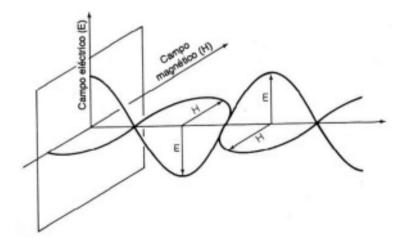


Figura 2. Componentes de la radiación electromagnética

Las ondas electromagnéticas se diferencian entre si por su longitud de onda y su frecuencia. La relación entre estas dos características es la siguiente:

 λ = c/f, siendo λ la longitud de onda, c la velocidad (constante) y f la frecuencia

La energía de una onda electromagnética, que en definitiva determina en gran parte su peligrosidad para el ser humano, es directamente proporcional a su frecuencia e inversamente proporcional a su longitud de onda, por lo que las radiaciones electromagnéticas más peligrosas son aquellas de mayor frecuencia y menor longitud de onda.

La determinación de esa energía se lleva a cabo mediante la siguiente ecuación:

E= h x f. Siendo E la energía en Julios, f la frecuencia en Hertzios y h una constante (constante de Planck) que vale 6.63 10⁻³⁴ Julios.seg.

Para alterar estructuras moleculares, es decir para que una radiación sea ionizante, debe poseer una energía superior a $12.4~\rm eV$, es decir $2.10~\rm X~10^{-18}$ Julios

Esto significa que las radiaciones electromagnéticas ionizantes son aquellas cuya frecuencia es superior a 3 X 10 ¹⁵ Hz que como puede comprobarse en el espectro electromagnético abarca las radiaciones correspondientes a una franja de la banda de los ultravioletas, rayos X y rayos gamma.

La radiación electromagnética también puede actuar como partículas discretas (o quanta) de radiación teniendo cada quantum (paquete de energía) un valor definido de energía y de momento. A mayor longitud de onda, menor energía del quantum. La región no ionizante del espectro electromagnético es aquella donde la energía de los quanta incidentes es insuficiente, en circunstancias normales, para desalojar electrones en los tejidos del cuerpo humano y provocar pares iónicos.

Todas las radiaciones electromagnéticas, aunque puedan diferir ampliamente en longitud de onda y frecuencia, tienen un origen común en cargas eléctricas en movimiento, que pueden surgir en muchas formas diferentes que incluyen distintas acciones atómicas o moleculares.

Las ondas eléctricas y de radio más largas pueden ser producidas por circuitos eléctricos oscilantes

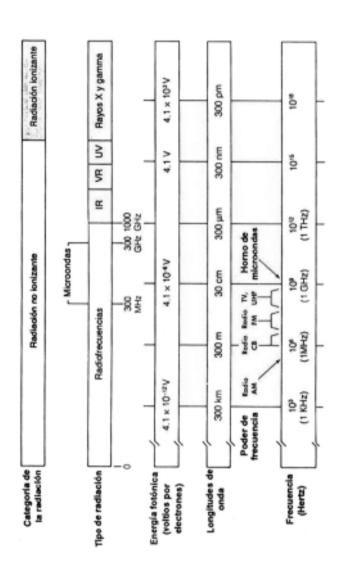


Figura 3. Espectro de radiación electromagnética: RI = radiación infrarroja, RV = Radiación visible (luz); UV = radiación ultravioleta (Tomado de Manual de fundamentos de higiene industrial, CIAS, 1981)

Las ondas infrarrojas son emitidas por las rotaciones y vibraciones de los átomos que componen el cuerpo caliente. La luz visible es emitida a medida que asciende la temperatura del cuerpo caliente: cierta luz visible también puede ser producida por transiciones electrónicas. La luz visible y ultravioleta también se observa cuando pasa una corriente eléctrica a través de un gas. Las frecuencias del ultravioleta se deben a excitaciones electrónicas de los átomos y moléculas.

A medida que aumenta la energía de excitación existe una superposición en el límite de menor frecuencia de la región de rayos X. Los electrones de alta velocidad que chocan contra blancos de metales pesados pueden producir rayos X. A medida que aumenta la energía de estos electrones de alta velocidad, las frecuencias de radiación aumentan y se superponen con la zona de rayos gamma.

De mayor a menor energía transportada por el fotón, las radiaciones electromagnéticas se clasifican en siete ámbitos o regiones:

Gamma: los que transportan más energía, emitidos por núcleos atómicos.

Rayos X: emitidos por electrones de los átomos, se usan para hacer radiografías.

Ultravioleta: aún muy energéticos, capaces de producir cáncer en piel.

Visible: de energía intermedia, capaz de estimular el ojo humano, con longitud de onda entre 380 y 760 nm (nanómetros).

Infrarrojo: responsables del bronceado de la piel y de la sensación de color.

Microonda: usados en radar, telecomunicaciones y para calentar alimentos.

Radio: los de menor energía, se usan en las transmisiones de radio y televisión.

De todos los siete componentes del espectro electromagnético, solamente los fotones del visible tienen la capacidad de estimular las células de la visión (conos y bastones) que tenemos en el fondo de la retina. Los otros seis componentes también nos afectan, no solo en los ojos, sino en otros órganos del cuerpo y podrían ser muy perjudiciales, si nos exponemos en exceso. Pero no pueden ser detectados y discriminados por la retina y, entonces, no los vemos.

En resumen se puede plantear que las radiaciones no ionizantes son aquellas radiaciones que por interacción con la materia no generan iones debido a que su contenido energético es relativamente bajo. Las radiaciones electromagnéticas vienen determinadas por la frecuencia, la longitud de onda y la energía. La energía es proporcional a la frecuencia.

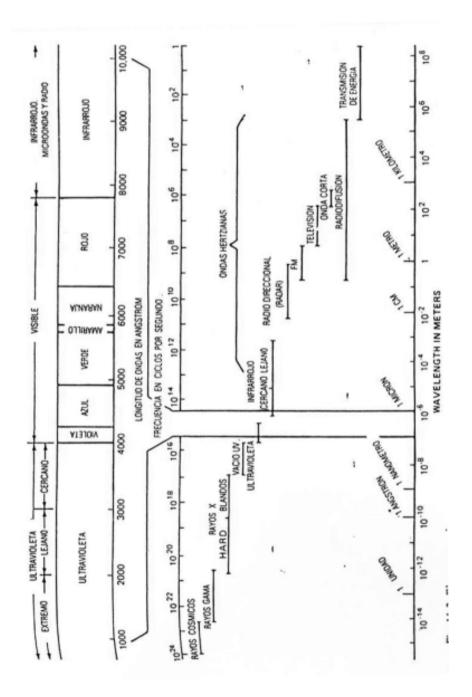


Figura 4: El espectro electromagnético, incluyendo las radiaciones ionizantes y no ionizantes. (Tomado de Manual de Fundamentos de higiene industrial, CIAS, 1984)

En orden creciente de frecuencia y, por tanto, de energía encontramos a lo largo del espectro:

Campos electromagnéticos de extremadamente baja frecuencia (ELF) de 0 a 300 Hz

Campos electromagnéticos de muy baja frecuencia (VLF) de 300 a 30.000 Hz

Fuentes de exposición: transporte de energía eléctrica (50/60 Hz) y aparatos que consumen energía eléctrica. Algunos sistemas de trenes eléctricos funcionan a 16 67 Hz

Radiofrecuencias (RF) de 10⁴ a 10⁸ Hz

Microondas (MO) de 109 a 1011 Hz

Fuentes de exposición: emisiones de radio y televisión entre 3 y 3.10⁸ KHz y la telefonía móvil entre 800 y 1800 MHz, hornos de microondas

Radiaciones Infrarrojas (IR). Según su longitud de onda se subdivide en:

IR-A:	750-	1400	nm.
IR-B:	1400- 3	000	nm.
IR-C:	3000-	1	mm.

Fuentes de exposición: emitido por objetos calientes, es un factor que contribuye al estrés por calor

Radiación visible (Luz): longitud de onda entre 400 y 760 nm. Radiación Ultravioleta (RU). Según la longitud de onda se subdivide en:

UV-A: 315-400 nm. Luz negra; produce fluorescencia en distintas sustancias.

UV-B: 280-315 nm: La mayor parte de las UV; produce eritema cutáneo.

UV-C: 100-280 nm: Produce efectos germicidas.

Radiaciones inmediatamente inferiores a las radiaciones ionizantes.

Fuentes de exposición: la principal fuente natural es el sol. Fuentes artificiales: soldaduras, lámparas solares

Láser: dispositivo capaz de producir radiación visible, IR o UV, caracterizada por ser monocromática

Campos electromagnéticos estáticos: imanes, conductores eléctricos de corriente continua, etc.

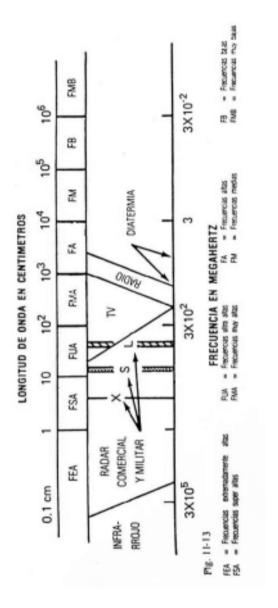


Figura 5. Longitud de onda en centímetros (Tomado de Manual de fundamentos de higiene industrial, CIAS, 1981)

CAPÍTULO **I** ILUMINACIÓN

INTRODUCCIÓN

La iluminación industrial es uno de los factores ambientales de carácter micro climático que tiene como principal finalidad el facilitar la visualización de los objetos dentro de su contexto espacial, de modo que el trabajo se pueda realizar en unas condiciones aceptables de eficacia, comodidad y seguridad.

Si se consiguen estos objetivos, las consecuencias no solo repercuten favorablemente sobre las personas, reduciendo la fatiga, la tasa de errores y de accidentes de trabajo, sino además contribuyen a aumentar la cantidad y calidad del trabajo y por lo tanto consecuentemente, sobre las condiciones ambientales y sociales que repetidamente los estudios ergonómicos han demostrado.

Los requisitos primordiales de la iluminación industrial atañen a la cantidad y calidad de la iluminación en los lugares de trabajo, de forma que el personal sea capaz de observar y controlar con eficacia el funcionamiento y conservación de las máquinas y procesos de elaboración.

De acuerdo con la Resolución 02400 de Mayo 22 de 1979 expedida por el Ministerio de Trabajo y Seguridad Social en su Título III artículo 79 "Todos los lugares de trabajo tendrán la iluminación adecuada e indispensable de acuerdo a la clase de labor que se realice según la modalidad de la industria; a la vez que deberán satisfacer las condiciones de Seguridad para todo el personal. La iluminación podrá ser natural o artificial, o de ambos tipos......".

Desgraciadamente en el medio se piensa que iluminar es colocar lámparas, llegando incluso a crear nuevos riesgos por sobrecarga de circuitos y sobre todo incrementando los costos por desperdicio de electricidad sin mejorar para nada los ambientes laborales

El ojo humano ha evolucionado a través de los tiempos, desde cuando usaba casi por completo al aire libre, a la luz brillante del día y para una visión simple, de largo alcance. En la actualidad, el hombre vive y trabaja corrientemente en el interior de edificios y utiliza sus ojos con demasiada frecuencia y durante largas horas en condiciones de iluminación artificial inadecuadas y en trabajos delicados que exigen una constante acomodación. Un buen alumbrado puede hacer mucho para mejorar las condiciones de trabajo del ojo y aliviar el esfuerzo visual necesario para el ejercicio de trabajos visuales difíciles.

Estudios estadísticos revelan que las ventajas de los niveles de alta iluminación son incluso más patentes en los ojos de personas mayores que en los ojos de jóvenes normales.

La mayoría de las tareas visuales son muy complejas y en ellas entran en consideración no sólo éstos factores fundamentales sino muchos otros, todos ellos relacionados entre sí. La situación se complica aún más por factores sicológicos y fisiológicos que condicionan la respuesta del observador a cualquier estímulo luminoso y que varían no solo de un individuo a otro, sino también en el mismo individuo en diferentes momentos.

Dentro de las actividades que realiza el hombre a lo largo de su vida, una de las que ocupa la mayor parte de ella, no sólo en el tiempo sino también en el espacio, es el trabajo. En este sentido la actividad laboral, para que pueda desarrollarse de una forma eficaz, precisa que la luz (característica ambiental) y la visión (característica personal) se complementen, ya que se considera que el 50% de la información sensorial que recibe el hombre es de tipo visual, es decir, tiene como origen primario la luz. Un tratamiento adecuado del ambiente visual permite incidir en los aspectos de: Seguridad, Confort, Productividad, disminuyendo la fatiga, tasa de errores y accidentes de trabajo y elevando la cantidad y calidad del trabajo.

Provee dimensión estética e informativa complementaria, señalización.

La integración de estos aspectos comportará un trabajo seguro, cómodo y eficaz.

ELOJO Y LA VISIÓN

Puesto que el propósito del alumbrado es hacer posible la visión, cualquier estudio del mismo debe empezar con unas consideraciones sobre el ojo y el proceso visual, Solo cuando se entiende el mecanismo del ojo y la forma en que éste opera, se puede llevar a cabo satisfactoriamente su función principal, cual