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Preface

The definition of Natural Resource Engineering proposed in the previous edition has become fairly well accepted. One

could easily call the Natural Resources Engineer an Ecological Engineer, particularly at the basin scale. The difference

between the two designations is mainly one of starting point. Most of those pursuing Natural Resources Engineering

began with a physics view of engineering and have since picked up much ecology along the way. Many Ecological

Engineers started their careers in ecology and then incorporate necessary physical processes as they practice. The end

is often similar for both pathways except that registration as a Professional Engineer (PE) is easier to obtain via the

physics-based engineering route.

The goal of this revision is threefold. The text reflects new developments in discipline knowledge and ever-changing

regulation. The book now more thoroughly presents the similarity of many agricultural and urban processes. The

text introduces up-to-date and accessible software tools. The text includes manual calculation examples for clearly

demonstrating solution methods. We have simplified the writing. The revised edition incorporates comments received

from instructors and students in programs across the United States and around the world.

As in the first edition, this revision first provides a quantitative overview of the hydrologic processes. We then

discuss runoff, erosion, and water-quality implications. The book moves to field-scale water management, including

structures, drainage, and some irrigation topics.

At the basin scale the text covers some stream and lake ecology topics for supporting the Ecological Engineering

discipline. A summary of Ecological Engineering, as viewed by an ecologist, concludes the book. The goal remains to

aid students and practicing professionals help their clients reach rural and urban environmental stewardship objec-

tives. The text is a survey of the field of Natural Resources Engineering. Chapters in the latter half of the book support

detailed topical instruction when coupled with indicated web resources.

Online Supplementary Material contains access to Excel spreadsheets and other selected software: Appendix B con-

tains additional details. Internet links are provided relating to the main topics. Users may obtain current information

on each subject using the revised Internet links.

It became evident in the revisions that the physics of hydraulics and sedimentation is nearly identical, be it on

the farm or in the city. The universal physical principles at work in the farm and urban environments guided the

revision of many chapters. There is an increased emphasis on the urban environmental problems. However, traditional

agricultural problems remain. The common physics is a potential venue for kindling the urban student’s desire to

consider agricultural topics. Likewise, the rural student can see how practices applied on the farm can contribute to

environmental stewardship in urban environments.

Climate change potentially influences economic well-being and holistic satisfaction. The climate-change

phenomenon thereby impacts Natural Resources Engineering practices. Thus, a revisit of the robustness of civil,

environmental, and agricultural engineering designs on the landscape is in order. Reflecting on process commonalities

should engender stronger, more robust design concepts over the scope of the text.

The desired outcome of this book is to provide the background for using the standard references associated with

each subject area of the text. This background includes online resources such as the National Engineering Manual of

the US Natural Resources Conservation Service (NRCS). A second desired outcome is to develop skills to move the

content towards more urban and ecological engineering applications (as the NRCS is now doing incrementally). A

third desired outcome is to prepare one for applying sophisticated public domain and commercially available software

packages for natural resources engineering design and watershed assessment.

As the author, I am solely responsible for errors and omissions. Please notify me of errors in text or the artwork. I

would also welcome input regarding significant omissions.
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CHAPTER 1

Natural resources engineering opportunities

Evaporation

Rainfall

Infiltration
Runoff, erosion and water quality

Groundwater

Drainage Water storage or channel

and associated structures

Channels and structures

Wind

Lake

To ocean

Well Tile

P
P

Pump 

Irrigation or bioremediation

P

Water, soil, air, plants, animals, other people, are each necessary for our existence. They form our collective

environment. Since the dawn of history, humankind has been cultivating food and fiber, domesticating animals,

and developing resources. Providing tools facilitating “dressing and keeping” the planet while meeting feed,

food, and fiber needs is the overarching vision for this text. Since the 2002 edition, bioenergy production, sustain-

ability, and climate-change pressures have stimulated increased realization of the necessity for responsible natural

resource engineering.

Where do we begin? The study of natural resources engineering starts primarily with the study of the physical, bio-

logical, and chemical modalities operating in the environment. Physical effects are manifest in the hydrologic cycle

(see NOAA, 2014). In a survey of the holdings of the University of Georgia Libraries under “land use change,” some

8000 articles discuss the hydrologic cycle. The near uniform distribution of books and microfilms dated from 1833

to 2014. There were an additional 500 items going back to 1569. Land-use change has exercised public debates for

many years. According to Biswas (1970), philosophers have documented natural forces since the time of Hammurabi

(circa 1700 B.C.E.). Solomon (circa 900 B.C.E.) made one of the most elegant statements pointing toward the hydro-

logic cycle:

A generation goes, and a generation comes, but the earth remains forever. Also, the sun rises and the sun sets; and, hastening to

its place, it rises there again. Blowing toward the south, then turning toward the north, the wind continues swirling along. On it

circular courses the wind returns. All the rivers flow into the sea yet the sea is not full. To a place where the rivers flow, there they

flow again.

Ecclesiastes (1:4-7)

Humankind establishes boundaries in time and space not respected by water, soil, and air. People cannot completely

control the biotic or chemical components. We focus mainly on water and soil. Impacts spread across humankind’s

Engineering Hydrology for Natural Resources Engineers, Second Edition. Ernest W. Tollner.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/Ernest/EHNRE
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2 Engineering hydrology for natural resources engineers

boundaries, spatially and temporal. Effects become manifest in the face of population increases. Developing nations

desire to achieve a standard of living of developed countries, which results in additional pressure. Society looks

for the path of moderation between development and conservation. Engineers and other professionals contribute

to the identification of that moderate path. The text omits the components of natural resource engineering that

link heavily to the airshed.1 The text also does not present other well-developed topics in classic environmental

engineering curricula such as waste management, even though all these satisfy the adapted definition of Natural

Resources Engineering.

GOALS

• To define fundamental issues and scales associated with Natural Resources Engineering.

• To evaluate how land use is changing in response to societal forces and visualize the resulting opportunities for

Natural Resource Engineering.

• To overview the scope of Natural Resources Engineering.

1.1 Definitions

Natural Resources Engineering – the design of planned activities complementary to or in opposition to physical and

societal forces leading to modifications of the soil, water, biota, and air environment. The natural forces relate to the

hydrologic cycle. Societal forces stem from the desires of people. The Natural Resources Engineer practices on scales

ranging from the field, farm, to basins. The purpose is resource development and environmental management.

Ecological Engineering – natural resources engineering practiced largely at the basin scale. Ecological Engineers

come from an ecology background, but practice the same art and science as a Natural Resources Engineer.

The foregoing definition of Natural Resources Engineer broadens the scope of natural resources from resource

extraction. The text emphasizes more general activities such as crop production and urban development, while the

definition also includes activities such as bioremediation and bioconversion. The following terms often appear in the

Natural Resources Engineering literature.

Biological remediation (bioremediation) – the application of plant materials, organic amendments, and microbial

organisms in order to sequester or transform toxins.

Bioconversion – the biologically mediated physical and chemical conversion of municipal, agricultural, and indus-

trial organics to useful products.

Climate change – the established notion that temperature and precipitation patterns evolve over time as a rsult

of solar irradiation changes, volcanism, and other earth movements, and possibly human-induced changes: urban

heat islands, impacts of reservoir installation, sea-level rise, and changes in monsoonal rainfall timing appear to be

the documented climate-change effects that directly or indirectly intersect topics discussed in this text.

Farm, field, and factory scale – refers to typical problem size: the problem scope lies among the regional and green-

house, room, or microbial scales.

Hydrology – the scientific study of water: the properties, distribution, constituents, and transport in the atmo-

spheric, surface, and subsurface realms.

Urban agriculture – the development of organic agricultural production, often within urban areas or on the urban

fringe.

1Works such as Cooper and Alley. (1994) provide an excellent overview of the physical, biological, and chemical forces at work in
predominantly urban settings. Principles, however, are broadly applicable to any region.
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Natural resources engineering opportunities 3

1.2 The hydrologic cycle and the water--soil--air--biotic continuum

Water and wind are the driving forces for production and pollution. Thus, one must be concerned with the hydrologic

cycle. For example, consider the continental United States. The equivalent depth of water passing over the United

States in the atmosphere is 300 in. Average annual precipitation over the US land mass is about 30 in (762 mm),

partitioned as follows:

• 26 in (660 mm) as rain;

• 4 in (102 mm) as snow, sleet, hail;

• 9 in (229 mm) percolate to groundwater or runs off;

• 21 in (533 mm) returns to the atmosphere;

• 0.73 in (18.5 mm) is consumptively used.

Agriculture consumes 83% of the consumptively used water, but competition is increasing. Agricultural irrigation

requires about 40% of consumptively used water. About 40% of the atmospheric return is due to inefficient irrigation.

Some corresponding partitions for the world are (Maidment, 1993):

• 31 in (800 mm) falls as precipitation;

• 12 in (320 mm) as runoff to the land;

• 5 in (130 mm) as runoff to the oceans.

Figure 1.1 schematically shows the hydrologic cycle and highlights water management engineering addressed in

this work.

• Water falls to earth as precipitation: rain, drizzle, snow, sleet, hail; water also forms directly by condensation – dew.

• Plants may intercept precipitation reaching the ground surface. Water may infiltrate and percolate into the soil, run

off the surface, or evaporate.

• Evaporation may occur directly from the precipitation, from plant leaves (wetted leaves and due to transpiration),

from the soil surface, from storage structures, from streams and water bodies and the ocean.

• Winds transport moisture, wind-eroded and human-activity-sourced particulates, and odors.

• Plants use infiltrated water (transpiration).

Water may seep into the groundwater, streams, and surface water bodies. It may also move laterally after infiltrating

and reappear on the surface at some point downslope (interflow). A complete development of wind erosion and air

quality aspects are left to other texts.

Evaporation

Rainfall

Infiltration
Runoff, erosion and water quality

Groundwater

Drainage Water storage or channel

and associated structures

Channels and structures

Wind

Lake

To ocean

Well Tile

P
P

Pump 

Irrigation or bioremediation

P

Figure 1.1 Schematic view of the hydrological cycle and related engineering topics associated with Natural Resources Engineering.
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Standard hydrologic measurements include the following:

• precipitation, by rain and snow gages;

• accumulated snow, by snow surveys;

• runoff at outlets, using various weirs or related devices;

• evaporation measured using evaporation pans;

• evapotranspiration, by lysimeters or more advanced techniques;

• groundwater level, with monitoring wells and piezometers;

• wind speed and direction, with anemometers and wind vanes;

• humidity, with hygrometers or other electronic means; and,

• solar radiation, with radiometers.

Class A weather stations and some state environmental networks contain instrumentation for many of these mea-

surements. A visit to the US Geological Survey (USGS) home page provides much information relating to runoff and

groundwater levels at sites around the United States.

1.3 Changing land uses due to societal forces

In the United States we are diverting forests and prime farmlands to urban developments, designated wetlands, reser-

voirs, and the like. Change in land use implies a change in land ownership. Change in land use may trigger legally

mandated assessments related to environmental appropriateness for the intended use. Requests for financial assistance

for making the change may trigger assessments. A visit to the National Resources Inventory of the US Department of

Agriculture (USDA, 2013) provides a summary of current trends in the United States.

The application of soil conservation practices to cropland area in the United States is increasing. Total rural land in

the United States has decreased about 3% from 1982 to 2010: from approximately 1.41 × 109 to 1.37 × 109 acres. Of

the cropland, pastureland, rangeland, and other rural land categories, only forestland coverage increased. Bioenergy

mandates apply pressure to cropland resources. In a study of resources required for meeting bioenergy targets, the US

Environmental Protection Agency (USEPA, 2009) anticipated significant demand for converting traditional farmland

to bioenergy plant production. Thus, the observed decline in cropland would likely level or reverse.

Urbanization results in cover removal and exposure to erosive rainfall. Urbanization and the need to bioremediate

environmental spills go together. Urbanization also increases the population segment having heightened sensitivities

to unhealthy streams. The change of land use in and around another owner’s real estate provides opportunities for Nat-

ural Resource Engineers. Outcomes of management changes on soil, water, air, and biotic state must be anticipated. In

an agricultural sense, management change may only apply to crop rotations. In contrast moving from agricultural use

to residential, commercial, waste treatment or environmental remediation application requires management system,

as opposed to individual, responses.

Accelerated land-use change is a worldwide phenomenon due to population increasing 2% annually. Along with

all the US land-use-change motivators, developing nations around the world face major problems related to infras-

tructure development. Increased needs for increased food, fiber, and energy apply stress to production agriculture

around the world. Environmentally conscious production and manufacturing are now becoming a priority, although

many regions are struggling valiantly to catch up even with tremendous population growth.

The climate-change debate is forcing revisits to current ways of interacting with the environment. The transfor-

mation from coal to “green” energy sources is impacting land use in coal-mining regions. The “fracking” boom is

significantly influencing land use in many areas of the United States. Proven oil reserves in the United States have

increased 7.1% in 2013 alone.2 Solar and wind energy transitions are pointing to effects only now beginning to unfold

in natural resources engineering.

2See http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/review-by-energy-
type/natural-gas/natural-gas-reserves.html.

http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/review-by-energy-type/natural-gas/natural-gas-reserves.html
http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/review-by-energy-type/natural-gas/natural-gas-reserves.html
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Figure 1.2 Land development relating to the social development of human societies.

World land-use and climatic indicators have been changing since the dawn of human civilization. Deforestation

began to happen on a large scale at the birth of modern agriculture. As machine power replaced human power,

energy demands of agriculture increased dramatically. Foley et al. (2005) provide a summary graphic of worldwide

land-use change that is shown as Figure 1.2. These patterns include outward expansion of the rural–urban “fringe,”

the increasing concentration of animal production, and the applications of agricultural and municipal wastes to land.

Changing land ownership and use creates a demand for engineering services.

The Global Harvest Initiative 2014 GAP Report (Zeigler, 2014) provides a concise summary of forces driving the

need for sustainability and productivity in our worldwide food supply. These same forces, along with environmental

stewardship, mandate that we dress and keep planet Earth.

1.4 Natural resources and ecological engineering scope addressed in this text

The purpose of this section is to establish technological pathways available to natural resources engineers to meet

global feed, food, and fiber needs in a sustainable way. Each example listed below ties in with one or more components

of the hydrological cycle. We primarily address humid, regions in this text. Of the water–soil–air continuum, the book

does not address air quality due to space constraints.

1.4.1 Flood prevention
Flooding in upstream watersheds results in loss of life, property damage, and crops. Flooding causes loss of services and

blocks access to remote areas. Flood damage in rural areas costs an estimated $2 billion annually in the United States.

Losses are even more problematic with continued development. Flood losses are catastrophic in terms of human life

and property around the world. As an extreme example, in 1998 the country of Bangladesh was 70% inundated

by floodwater of the Ganges River, with tens of millions of people homeless and thousands dying by drowning or

from disease. Deforestation and mountainside cultivation in the Himalayas has increased the amount of sediment
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carried by the rivers to three billion tons annually, raising the rivers beds, and increasing the likelihood of flooding.

Deforestation due to population pressure often precedes catastrophic flooding events.

1.4.2 Erosion control
Erosion occurs when rainfall or wind dislodges soil particles, which are then transported by water or wind. Here we

confine the discussion to water erosion.3 Figure 1.3 shows an example of catastrophic flooding and sediment depo-

sition. Estimates of rates of global soil loss range from 0.09 mm/yr to 0.3 mm/yr (Lal, 1994). Terracing, conservation

tillage, and application of soil stabilizers are useful strategies for erosion control in urban or rural settings. The annual

erosion from agricultural fields and pastures is about 4 189 500 000 tons. Erosion from cropland and construction

is declining due to control measures (NRCS, 1998). Chemical-based no-tillage systems effectively address the ero-

sion problem in many field crops. Challenges remain for specialty crops such as vegetables. Urban construction sites

generate some 48 000 tons of soil per square mile annually. Urban construction, mining reclamation, and forestry

production pose issues germane to Natural Resources Engineers.

1.4.3 Water quality renovation and management
Water quality suffers when it contains dissolved or suspended pollutants. Researchers have detected at least 16 dif-

ferent pesticides in the groundwater in 26 different states (Leeden et al., 1990). Poor water quality is a consequence

of runoff transporting surface or subsurface pollutants. The development and adoption of best management practices

have resulted in improving water quality in the United States. Water quality is a continuing problem in much of the

developing world. Wetlands, riparian zones, and vegetation strips trap sediments and remove nutrients and organics.

Erosion due to urban construction is an issue of water quality. The usual approach for dealing with these problems is

Figure 1.3 Flooding in 2011 near the entrance of the Nzoia River to Lake Victoria near Kisumu, Kenya.

3Wind erosion in the humid eastern United States is not a predominant concern like it is in the western states. However, damage to
crops in the emergence phase is sometimes significant in the US Coastal Plain (van Donk and Skidmore, 2003; Wagner, 2013).
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to extend the extensive experience base for agriculture to include these activities. Research is identifying technologies

for reducing inputs and conserving resources, or that lead to useful byproducts, all of which involve Natural Resources

Engineers.

1.4.4 Drainage
Surface and subsurface drainage is often beneficial for timely field operations and high yields. Figure 1.4 shows the

result of attempted operations of large equipment in wet areas. In arid areas, salinity potential also demands subsurface

drainage. Of 260 million irrigated hectares worldwide, 60 million suffer from salinization (Jensen, 1993). Drainage

was a primary tool for increasing cropland area in the middle of the last century. Drainage decreased in importance for

conventional agriculture in the mid-1980s in response to environmental pressures to protect wetlands. Drainage has

many uses in the urban environment. Irrigation projects usually require drainage for managing salinity build-up. We

present an introductory treatment of well hydraulics and tile line drainage as potential components of bioremediation

systems.

1.4.5 Irrigation
The irrigated area of the world approaches 270 million hectares. It is expanding at 2% per year. The United States

has approximately 22.5 million irrigated hectares (Hoffman et al., 2007). Less than an estimated 2% of potentially

productive land receives irrigation in many developing countries. Worldwide, surface irrigation is predominant, even

though it is much less efficient compared to sprinkler or drip irrigation. Developing countries are potential markets

for irrigation engineering, particularly as they move towards sprinkler and drip modalities. Bioremediation schemes

employing irrigation would most likely use a sprinkler system. This chapter covers traditional sprinkler irrigation (see

Figure 1.5), because the sprinkler entails a comprehensive treatment of infiltration, soil storage, and water usage, The

reader can then easily bridge to systems more thoroughly discussed in other water management or irrigation texts

referenced in Chapter 14.

Figure 1.4 Tractor and trailer in a very wet field, reflecting that lack of drainage negatively affects the accomplishing of timely field
operations. (Courtesy of https://www.youtube.com/watch?v=NHKTbT8fYYM, where additional images are also available.)

https://www.youtube.com/watch?v=NHKTbT8fYYM
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Figure 1.5 Center pivot-irrigated peanut production in South Georgia.

1.4.6 Bioremediation
Bioremediation is an emerging new application of drainage and irrigation. The purpose is to apply nutrients and col-

lect effluents from contaminated spaces. The in situ bioremediation technique is shown schematically in Figure 1.6.

This scheme employs microbes to convert contaminants into innocuous constituents. The Natural Resources Engineer

designs drainage and irrigation projects. Specifications of the amendments to the system remain with the microbi-

ologist and other specialists. Our immediate interest is in surveying tools and techniques for providing the required

nutrients and water.

1.4.7 Watershed--stream assessment
A discipline of watershed assessment is emerging which serves as a bridge between the field and basin scales. Prichard

et al. (1998, 2003) provide an easily read overview of watershed assessment methods. Pollution abatement and water-

shed aesthetic improvement require coordinated physical and model-based assessment. The discipline Ecological

Engineering received much impetus from this desire. Assessment of watershed health focuses on streams conveying

runoff. A healthy watershed is one with a high number of species and ecosystems within the terrestrial and aquatic

realms. Other indicators of health include ratios of organisms attracted to polluted waters versus those attracted to

nonpolluted waters. Jorgensen et al. (2010) provide a concise compilation of indicators useful for the assessment

of ecosystem health. Engineers assist in developing comprehensive nutrient management plans (CNMPs) for large

animal-based agriculture (see Figure 1.7). CNMPs provide for the safe application of manures. Engineers likewise

assist in restoring natural streams following exhaustive guidelines in NRCS (1998). See Figures 1.8 and 1.9).

1.4.8 Ecological Engineering
The Ecological Engineer (or, the Natural Resources Engineer at the basin scale) focuses on holistic approaches.

Self-design within broadly defined units is fostered (Mitsch and Jorgenson, 2004). Ecological Engineering mini-

mizes the classical linear, unit operations approach. The Natural Resource Engineer works with ecologists and other


