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Preface

T his book provides the fundamentals of Bayesian methods and their
applications to students in finance and practitioners in the financial

services sector. Our objective is to explain the concepts and techniques that
can be applied in real-world Bayesian applications to financial problems.
While statistical modeling has been used in finance for the last four or
five decades, recent years have seen an impressive growth in the variety of
models and modeling techniques used in finance, particularly in portfolio
management and risk management. As part of this trend, Bayesian methods
are enjoying a rediscovery by academics and practitioners alike and growing
in popularity. The choice of topics in this book reflects the current major
developments of Bayesian applications to risk management and portfolio
management.

Three fundamental factors are behind the increased adoption of Bayesian
methods by the financial community. Bayesian methods provide (1) a the-
oretically sound framework for combining various sources of information;
(2) a robust estimation setting that incorporates explicitly estimation risk;
and (3) the flexibility to handle complex and realistic models. We believe
this book is the first of its kind to present and discuss Bayesian financial
applications. The fundamentals of Bayesian analysis and Markov Chain
Monte Carlo are covered in Chapters 2 through 5 and the applications are
introduced in the remaining chapters. Each application presentation begins
with the basics, works through the frequentist perspective, followed by the
Bayesian treatment.

The applications include:

■ The Bayesian approach to mean-variance portfolio selection and its
advantages over the frequentist approach (Chapters 6 and 7).

■ A general framework for reflecting degrees of belief in an asset pricing
model when selecting the optimal portfolio (Chapters 6 and 7).

■ Bayesian methods to portfolio selection within the context of the
Black-Litterman model and extensions to it (Chapter 8).

■ Computing measures of market efficiency and the way predictability
influences optimal portfolio selection (Chapter 9).

xv
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■ Volatility modeling (ARCH-type and SV models) focusing on the vari-
ous numerical methods available for Bayesian estimation (Chapters 10,
11, and 12).

■ Advanced techniques for model selection, notably in the setting of
nonnormality of stock returns (Chapter 13).

■ Multifactor models of stock returns, including risk attribution in both
an analytical and a numerical setting (Chapter 14).
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CHAPTER 1
Introduction

Q uantitative financial models describe in mathematical terms the relation-
ships between financial random variables through time and/or across

assets. The fundamental assumption is that the model relationship is valid
independent of the time period or the asset class under consideration.
Financial data contain both meaningful information and random noise. An
adequate financial model not only extracts optimally the relevant informa-
tion from the historical data but also performs well when tested with new
data. The uncertainty brought about by the presence of data noise makes
imperative the use of statistical analysis as part of the process of financial
model building, model evaluation, and model testing.

Statistical analysis is employed from the vantage point of either
of the two main statistical philosophical traditions—‘‘frequentist’’ and
‘‘Bayesian.’’ An important difference between the two lies with the inter-
pretation of the concept of probability. As the name suggests, advocates of
frequentist statistics adopt a frequentist interpretation: The probability of
an event is the limit of its long-run relative frequency (i.e., the frequency
with which it occurs as the amount of data increases without bound). Strict
adherence to this interpretation is not always possible in practice. When
studying rare events, for instance, large samples of data may not be available
and in such cases proponents of frequentist statistics resort to theoretical
results. The Bayesian view of the world is based on the subjectivist inter-
pretation of probability: Probability is subjective, a degree of belief that is
updated as information or data are acquired.1

1The concept of subjective probability is derived from arguments for rationality of
the preferences of agents. It originated in the 1930s with the (independent) works of
Bruno de Finetti and Frank Ramsey, and was further developed by Leonard Savage
and Dennis Lindley. The subjective probability interpretation can be traced back to
the Scottish philosopher and economist David Hume, who also had philosophical
influence over Harry Markowitz (by Markowitz’s own words in his autobiography

1
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Closely related to the concept of probability is that of uncertainty.
Proponents of the frequentist approach consider the source of uncertainty
to be the randomness inherent in realizations of a random variable. The
probability distributions of variables are not subject to uncertainty. In
contrast, Bayesian statistics treats probability distributions as uncertain and
subject to modification as new information becomes available. Uncertainty
is implicitly incorporated by probability updating. The probability beliefs
based on the existing knowledge base take the form of the prior probability.
The posterior probability represents the updated beliefs.

Since the beginning of last century, when quantitative methods and
models became a mainstream tool to aid in understanding financial markets
and formulating investment strategies, the framework applied in finance
has been the frequentist approach. The term ‘‘frequentist’’ usually refers
to the Fisherian philosophical approach named after Sir Ronald Fisher.
Strictly speaking, ‘‘Fisherian’’ has a broader meaning as it includes not
only frequentist statistical concepts such as unbiased estimators, hypothesis
tests, and confidence intervals, but also the maximum likelihood estimation
framework pioneered by Fisher. Only in the last two decades has Bayesian
statistics started to gain greater acceptance in financial modeling, despite its
introduction about 250 years ago by Thomas Bayes, a British minister and
mathematician. It has been the advancements of computing power and the
development of new computational methods that has fostered the growing
use of Bayesian statistics in finance.

On the applicability of the Bayesian conceptual framework, consider an
excerpt from the speech of former chairman of the Board of Governors of
the Federal Reserve System, Alan Greenspan:

The Federal Reserve’s experiences over the past two decades make
it clear that uncertainty is not just a pervasive feature of the
monetary policy landscape; it is the defining characteristic of that
landscape. The term ‘‘uncertainty’’ is meant here to encompass
both ‘‘Knightian uncertainty,’’ in which the probability distribution
of outcomes is unknown, and ‘‘risk,’’ in which uncertainty of
outcomes is delimited by a known probability distribution. [. . . ]
This conceptual framework emphasizes understanding as much as
possible the many sources of risk and uncertainty that policymakers
face, quantifying those risks when possible, and assessing the costs
associated with each of the risks. In essence, the risk management

published in Les Prix Nobel (1991)). Holton (2004) provides a historical background
of the development of the concepts of risk and uncertainty.
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approach to monetary policymaking is an application of Bayesian
[decision-making].2

The three steps of Bayesian decision making that Alan Greenspan outlines
are:

1. Formulating the prior probabilities to reflect existing information.
2. Constructing the quantitative model, taking care to incorporate the

uncertainty intrinsic in model assumptions.
3. Selecting and evaluating a utility function describing how uncertainty

affects alternative model decisions.

While these steps constitute the rigorous approach to Bayesian decision-
making, applications of Bayesian methods to financial modeling often only
involve the first two steps or even only the second step. This tendency is a
reflection of the pragmatic Bayesian approach that researchers of empirical
finance often favor and it is the approach that we adopt in this book.

The aim of the book is to provide an overview of the theory of Bayesian
methods and explain their applications to financial modeling. While the
principles and concepts explained in the book can be used in financial
modeling and decision making in general, our focus will be on portfolio
management and market risk management since these are the areas in
finance where Bayesian methods have had the greatest penetration to date.3

A FEW NOTES ON NOTATION

Throughout the book, we follow the convention of denoting vectors and
matrices in boldface.

We make extensive use of the proportionality symbol, ‘∝’, to denote the
cases where terms constant with respect to the random variable of interest
have been dropped from that variable’s density function. To illustrate,
suppose that the random variable, X, has a density function

p(x) = 2x. (1.1)

2Alan Greenspan made these remarks at the Meetings of the American Statistical
Association in San Diego, California, January 3, 2004.
3Bayesian methods have been applied in corporate finance, particularly in capital
budgeting. An area of Bayesian methods with potentially important financial appli-
cations is Bayesian networks. Bayesian networks have been applied in operational
risk modeling. See, for example, Alexander (2000) and Neil, Fenton, and Tailor
(2005).
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Then, we can write
p(x) ∝ x. (1.2)

Now suppose that we take the logarithm of both sides of (1.2). Since
the logarithm of a product of two terms is equivalent to the sum of the
logarithms of those terms, we obtain

log(p(x)) = const + log(x), (1.3)

where const = log(2) in this case. Notice that it would not be precise to
write log(p(x)) ∝ log(x). We come across the transformation in (1.3) in
Chapters 10 through 14, in particular.

OVERVIEW

The book is organized as follows. In Chapters 2 through 5, we provide
an overview of the theory of Bayesian methods. The depth and scope of
that overview are subordinated to the methodological requirements of the
Bayesian applications discussed in later chapters and, therefore, in certain
instances lacks the theoretical rigor that one would expect to find in a purely
statistical discussion of the topic.

In Chapters 6 and 7, we discuss the Bayesian approach to mean-variance
portfolio selection and its advantages over the frequentist approach. We
introduce a general framework for reflecting degrees of belief in an asset
pricing model when selecting the optimal portfolio. We close Chapter 7 with
a description of Bayesian model averaging, which allows the decision maker
to combine conclusions based on several competing quantitative models.

Chapter 8 discusses an emblematic application of Bayesian methods
to portfolio selection—the Black-Litterman model. We then show how the
Black-Litterman framework can be extended to active portfolio selection
and how trading strategies can be incorporated into it.

The focus of Chapter 9 is market efficiency and predictability. We
analyze and illustrate the computation of measures of market inefficiency.
Then, we go on to describe the way predictability influences optimal port-
folio selection. We base that discussion on a Bayesian vector autoregressive
(VAR) framework.

Chapters 10, 11, and 12 deal with volatility modeling. We devote
Chapter 10 to an overview of volatility modeling. We introduce the two
types of volatility models—autoregressive conditionally heteroskedastic
(ARCH)-type models and stochastic volatility (SV) models—and discuss
some of their important characteristics, along with issues of estimation
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within the boundaries of frequentist statistics. Chapters 11 and 12 cover,
respectively, ARCH-type and SV Bayesian model estimation. Our focus is
on the various numerical methods that could be used in Bayesian estimation.

In Chapter 13, we deal with advanced techniques for model selection,
notably, recognizing nonnormality of stock returns. We first investigate an
approach in which higher moments of the return distribution are explicitly
included in the investor’s utility function. We then go on to discuss an
extension of the Black-Litterman framework that, in particular, employs
minimization of the conditional value-at-risk (CVaR). In Appendix A of
that chapter, we present an overview of risk measures that are alternatives
to the standard deviation, such as value-at-risk (VaR) and CVaR.

Chapter 14 is devoted to multifactor models of stock returns. We discuss
risk attribution in both an analytical and a numerical setting and examine
how the multifactor framework provides a natural setting for a coherent
portfolio selection and risk management approach.



CHAPTER 2
The Bayesian Paradigm

Likelihood Function and Bayes’ Theorem

O ne of the basic mechanisms of learning is assimilating the information
arriving from the external environment and then updating the existing

knowledge base with that information. This mechanism lies at the heart
of the Bayesian framework. A Bayesian decision maker learns by revising
beliefs in light of the new data that become available. From the Bayesian
point of view, probabilities are interpreted as degrees of belief. Therefore,
the Bayesian learning process consists of revising of probabilities.1 Bayes’
theorem provides the formal means of putting that mechanism into action;
it is a simple expression combining the knowledge about the distribution of
the model parameters and the information about the parameters contained
in the data.

In this chapter, we present some of the basic principles of Bayesian
analysis.

THE LIKELIHOOD FUNCTION

Suppose we are interested in analyzing the returns on a given stock and
have available a historical record of returns. Any analysis of these returns,
beyond a very basic one, would require that we make an educated guess
about (propose) a process that might have generated these return data.
Assume that we have decided on some statistical distribution and denote
it by

p
(
y | θ)

, (2.1)

1Contrast this with the way probability is interpreted in the classical (frequentist)
statistical theory—as the relative frequency of occurrence of an event in the limit,
as the number of observations goes to infinity.

6
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where y is a realization of the random variable Y (stock return) and θ is a
parameter specific to the distribution, p. Assuming that the distribution we
proposed is the one that generated the observed data, we draw a conclusion
about the value of θ . Obviously, central to that goal is our ability to summa-
rize the information contained in the data. The likelihood function is a sta-
tistical construct with this precise role. Denote the n observed stock returns
by y1, y2, . . . , yn. The joint density function of Y, for a given value of θ , is2

f
(
y1, y2, . . . , yn | θ)

.

We can observe that the function above can also be treated as a
function of the unknown parameter, θ , given the observed stock returns.
That function of θ is called the likelihood function. We write it as

L
(
θ | y1, y2, . . . , yn

) = f
(
y1, y2, . . . , yn | θ)

. (2.2)

Suppose we have determined from the data two competing values of
θ , θ1 and θ2, and want to determine which one is more likely to be the
true value (at least, which one is closer to the true value). The likelihood
function helps us make that decision. Assuming that our data were indeed
generated by the distribution in (2.1), θ1 is more likely than θ2 to be the
true parameter value whenever L

(
y1, y2, . . . , yn | θ1

)
> L

(
y1, y2, . . . , yn | θ2

)
.

This observation provides the intuition behind the method most often
employed in ‘‘classical’’ statistical inference to estimate θ from the data
alone—the method of maximum likelihood. The value of θ most likely to
have yielded the observed sample of stock return data, y1, y2, . . . , yn, is the
maximum likelihood estimate, θ̂ , obtained from maximizing the likelihood
function in (2.2).

To illustrate the concept of a likelihood function, we briefly discuss two
examples—one based on the Poisson distribution (a discrete distribution)
and another based on the normal distribution (one of the most commonly
employed continuous distributions).

The Poisson Distribution Likelihood Function

The Poisson distribution is often used to describe the random number of
events occurring within a certain period of time. It has a single parameter,

2By using the term ‘‘density function,’’ we implicitly assume that the distribution
chosen for the stock return is continuous, which is invariably the case in financial
modeling.
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θ , indicating the rate of occurrence of the random event, that is, how many
events happen on average per unit of time. The probability distribution of
a Poisson random variable, X, is described by the following expression:3

p
(
X = k

) = θk

k!
e−θ , k = 0, 1, 2, . . . . (2.3)

Suppose we are interested to examine the annual number of defaults of
North American corporate bond issuers and we have gathered a sample of
data for the period from 1986 through 2005. Assume that these corporate
defaults occur according to a Poisson distribution. Denoting the 20 obser-
vations by x1, x2, . . . , x20, we write the likelihood function for the Poisson
parameter θ (the average rate of defaults) as4

L
(
θ | x1, x2, . . . , x20

) =
20∏
i=1

p
(
X = xi | θ

) =
20∏
i=1

θxi

xi!
e−θ

= θ
∑20

i=1 xi∏20
i=1 xi!

e−20θ . (2.4)

As we see in later chapters, it is often customary to retain in the expressions
for the likelihood function and the probability distributions only the terms
that contain the unknown parameter(s); that is, we get rid of the terms
that are constant with respect to the parameter(s). Thus, (2.4) could be
written as

L
(
θ | x1, x2, . . . , x20

) ∝ θ
∑20

i=1 xie−20θ , (2.5)

where ∝ denotes ‘‘proportional to.’’ Clearly, for a given sample of data, the
expressions in (2.4) and (2.5) are proportional to each other and therefore
contain the same information about θ . Maximizing either of them with

3The Poisson distribution is employed in the context of finance (most often, but not
exclusively, in the areas of credit risk and operational risk) as the distribution of
a stochastic process, called the Poisson process, which governs the occurrences of
random events.
4In this example, we assume, perhaps unrealistically, that θ stays constant through
time and that the annual number of defaults in a given year is independent from the
number of defaults in any other year within the 20-year period. The independence
assumption means that each observation of the number of annual defaults is regarded
as a realization from a Poisson distribution with the same average rate of defaults,
θ ; this allows us to represent the likelihood function as the product of the mass
function at each observation.


