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 To my grandchildren, Claudia and Logan, and to grandchildren 

everywhere — probably the best invention of all time.       
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 PREFACE           

 For as long as I can remember, I have been interested in how well we know 
what we say we know, how we acquire data about things, and how we react 
to and use this data. I was surprised when I fi rst realized that many people are 
not only not interested in these things, but are actually averse to learning 
about them. It wasn ’ t until fairly recently that I concluded that we seem to be 
genetically programmed, on one hand, to intelligently learn how to acquire 
data and use it to our advantage but also, on the other hand, to stubbornly 
refuse to believe what some simple calculations and/or observations tell us. 

 My fi rst conclusion is supported by our march through history, learning 
about agriculture and all the various forms of engineering and using this 
knowledge to make life better and easier. My latter conclusion comes from 
seeing all the people sitting on stools in front of slot machines at gambling 
casinos, many of whom are there that day because the astrology page in the 
newspaper told them that this was  “ their day. ”  

 This is a book about probability and statistics. It ’ s mostly about probability, 
with just one chapter dedicated to an introduction to the vast fi eld of statistical 
inference. 

 There are many excellent books on this topic available today. I fi nd that 
these books fall into two general categories. One category is textbooks. Text-
books are heavily mathematical with derivations, proofs and problem sets, and 
an agenda to get you through a term ’ s course work. This is just what you need 
if you are taking a course. 

 The other category is books that are meant for a more casual audience — an 
audience that ’ s interested in the topic but isn ’ t interested enough to take a 
course. We ’ re told today that people have  “ mathephobia, ”  and the books that 
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appeal to these people try very hard to talk around the mathematics without 
actually presenting any of it. Probability and statistics are mathematical topics. 
A book on these subjects without math is sort of like a book on French 
grammar without any French words in it. It ’ s not impossible, but it sure is 
doing things the hard way. 

 This book tries to split the difference. It ’ s not a textbook. There is, however, 
some math involved. How much? Some vague reminiscences about introduc-
tory high school algebra along with a little patience in learning some new 
notation should comfortably get you through it. You should know what a 
fraction is and recognize what I ’ m doing when I add or multiply fractions or 
calculate decimal equivalents. Even if you don ’ t remember how to do it your-
self, just realizing what I ’ m doing and accepting that I ’ m probably doing it 
right should be enough. You should recognize a square root sign and sort of 
remember what it means. You don ’ t need to know how to calculate a square 
root — these days everybody does it on a pocket calculator or a computer 
spreadsheet anyway. You should be able to read a graph. I review this just in 
case, but a little prior experience helps a lot. In a few cases some elementary 
calculus was needed to get from point A to point B. In these cases I try to get 
us all to point A slowly and clearly and then just say that I needed a magic 
wand to jump from A to B and that you ’ ll have to trust me. 

 If you thumb through the book, you ’ ll see a few  “ fancy ”  formulas. These 
are either simply shorthand notations for things like repeated additions, which 
I discuss in great detail to get you comfortable with them, or in a few cases 
some formulas that I ’ m quoting just for completeness but that you don ’ t need 
to understand if you don ’ t want to. 

 As I discuss in the fi rst chapter, probability is all about patterns of things 
such as what happens when I roll a pair of dice a thousand times, or what the 
life expectancies of the population of the United States looks like, or how a 
string of traffi c lights slows you down in traffi c. Just as a course in music with 
some discussions of rhythm and harmony helps you to  “ feel ”  the beauty of 
the music, a little insight into the mathematics of the patterns of things in our 
life can help you to feel the beauty of these patterns as well as to plan things 
that are specifi cally unpredictable (when will the next bus come along and how 
long will I have to stand in the rain to meet it?) as best possible. 

 Most popular science and math books include a lot of biographical informa-
tion about the people who developed these particular fi elds. This can often be 
interesting reading, though quite honestly I ’ m not sure that knowing how 
Einstein treated his fi rst wife helps me to understand special relativity. 

 I have decided not to include biographical information. I often quote a 
name associated with a particular topic (Gaussian curves, Simpson ’ s Paradox, 
Poisson distribution) because that ’ s how it ’ s known. 

 Probabilistic considerations show up in several areas of our lives. Some 
we get explicitly from nature, such as daily rainfall or distances to the stars. 
Some we get from human activities, including everything from gambling 
games to manufacturing tolerances. Some come from nature, but we don ’ t see 
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them until we  “ look behind the green curtain. ”  This includes properties of 
gases (e.g., the air around us) and the basic atomic and subatomic nature of 
matter. 

 Mathematical analyses wave the banner of  truth . In a sense, this is deserved. 
If you do the arithmetic correctly, and the algorithms, or formulas, used are 
correct, your result is  the  correct answer and that ’ s the end of the story. Con-
sequently, when we are presented with a conclusion to a study that includes 
a mathematical analysis, we tend to treat the conclusion as if it were the result 
of summing a column of numbers. We believe it. 

 Let me present a situation, however, where the mathematics is absolutely 
correct and the conclusion is absolutely incorrect. The mathematics is simple 
arithmetic, no more than addition and division. There ’ s no  fancy stuff  such as 
probability or statistics to obfuscate the thought process or the calculations. 
I ’ ve changed the numbers around a bit for the sake of my example, but the 
situation is based upon an actual University of California at Berkeley 
lawsuit. 

 We have a large organization that is adding two groups, each having 100 
people, such as two new programs at a school. I ’ ll call these new programs 
A and B. 

 Program A is an attractive program and for some reason is more appealing 
to women than it is to men. 600 women apply; only 400 men apply. If all the 
applicants were equally qualifi ed, we would expect to see about 60 women 
and 40 men accepted to the 100 openings for the program. The women appli-
cants to this program tend to be better qualifi ed than the men applicants, so 
we end up seeing 75 women and 25 men accepted into program A. If you 
didn ’ t examine the applications yourself, you might believe that the admis-
sions director was (unfairly) favoring women over men. 

 Program B is not as attractive a program and only 100 people apply. It is 
much more attractive to men than it is to women: 75 men and 25 women apply. 
Since there are 100 openings, they all get accepted. 

 Some time later, there is an audit of the school ’ s admission policies to see 
if there is any evidence of unfair practices, be they sexual, racial, ethnic, what-
ever. Since the new programs were handled together by one admissions direc-
tor, the auditor looks at the books for the two new programs as a group and 
sees that: 

 600   +   25   =   625 women applied to the new programs. 75   +   25   =   100 women 
were accepted. In other words, 100/625   =   16% of the women applicants were 
accepted to the new programs. 

 400   +   75   =   475 men applied to the new programs. 25   +   75   =   100 men were 
accepted. In other words, 100/475   =   21% of the men applicants were accepted 
to the new programs. 

 The auditor then reviews the qualifi cations of the applicants and sees that 
the women applicants were in no way inferior to the men applicants; in fact 
it ’ s the opposite. The only plausible conclusion is that the programs ’  admis-
sions director favors men over women. 
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 The arithmetic above is straightforward and cannot be questioned. The fl aw 
lies in how details get lost in summarization — in this case, looking only at the 
totals for the two programs rather than keeping the data separate. I ’ ll show 
(in Chapter  13 ) how a probabilistic interpretation of these data can help to 
calculate a summary correctly. 

 My point here, having taken the unusual step of actually putting subject 
matter into a book ’ s preface, is that mathematics is a tool and only a tool. For 
the conclusion to be correct, the mathematics along the way must be correct, 
but the converse is not necessarily true. 

 Probability and statistics deals a lot with examining sets of data and drawing 
a conclusion — for example,  “ the average daily temperature in Coyoteville is 
75 degrees Fahrenheit. ”  This sounds like a great place to live until you learn 
that the temperature during the day peaks at 115 degrees while at night it 
drops to 35 degrees. In some cases we will be adding insight by summarizing 
a data set, but in some cases we will be losing insight. 

 My brother - in - law Jonathan sent me the following quote, attributing it to 
his father. He said that I could use it if I acknowledge my source: Thanks, 
Jonathan. 

  “ The average of an elephant and a mouse is a cow, but you won ’ t learn 
much about either elephants or mice by studying cows. ”  I ’ m not sure exactly 
what the arithmetic in this calculation would look like, but I think it ’ s a memo-
rable way of making a very good point. 

 I could write a long treatise on how bad conclusions have been reached 
because the people who had to draw the conclusions just weren ’ t looking at 
all the data. Two examples that come to mind are (1) the Dow silicone breast 
implant lawsuit where a company was put out of business because the plaintiffs 
 “ demonstrated ”  that the data showed a link between the implants and certain 
serious disease and (2) the crash of the space shuttle Challenger where existing 
data that the rubber O - rings sealing the liquid hydrogen tanks get brittle below 
a certain temperature somehow never made it to the table. 

 The fi eld of probability and statistics has a very bad reputation ( “ Lies, 
Damned Lies, and Statistics ”  1 ). It is so easy to manipulate conclusions by 
simply omitting some of the data, or to perform the wrong calculations cor-
rectly, or to misstate the results — any and all of these possibly innocently —
 because some problems are very complicated and subtle. I hope the materials 
to follow show what information is needed to draw a conclusion and what 
conclusion( s ) can and can ’ t be drawn from certain information. Also I ’ ll show 
how to reasonably expect that sometimes, sometimes even inevitably, as the 
bumper stickers say,  stuff  happens. 

 1     This quote is usually attributed to Benjamin Disraeli, but there seems to be some uncertainty 
here. I guess that, considering the book you ’ re now holding, I should say that  “ There is a high 
probability that this quote should be attributed to Benjamin Disraeli. ”  
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 I spend a lot of time on simple gambling games because, even if you ’ re not 
a gambler, there ’ s a lot to be learned from the simplest of random events — for 
example, the result of coin fl ips. 

 I ’ ve also tried to choose many examples that you don ’ t usually see in prob-
ability books. I look at traffi c lights, waiting for a bus, life insurance, schedul-
ing appointments, and so on. What I hope to convey is that we live in a world 
where so many of our daily activities involve random processes and the 
statistics involved with them. 

 Finally, I introduce some topics that show how much of our physical world 
is based on the consequences of random processes. These topics include gas 
pressure, heat engines, and radioactive decay. These topics are pretty far from 
things you might actually do such as meeting a friend for lunch or counting 
birds in the woods. I hope you ’ ll fi nd that reading about them will be 
interesting. 

 One last comment: There are dozens and dozens of clever probability 
problems that make their way around. I ’ ve included several of these (the 
shared birthday, the prize behind one of three doors, etc.) where appropriate 
and I discuss how to solve them. When fi rst confronted with one of these 
problems, I inevitably get it wrong. In my own defense, when I get a chance 
to sit down and work things out carefully, I (usually) get it right. This is a 
tricky subject. Maybe that ’ s why I fi nd it to be so much fun.  
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CHAPTER 1

Probably Not: Future Prediction Using Probability and Statistical Inference,
by Lawrence N. Dworsky.
Copyright © 2008 John Wiley & Sons, Inc. 

AN INTRODUCTION TO PROBABILITY 

PREDICTING THE FUTURE 

 The term Predicting the Future conjures up images of veiled women staring 
into hazy crystal balls, or bearded men with darting eyes passing their hands 
over cups of tea leaves, or something else equally humorously mysterious. We 
call these people Fortune Tellers and relegate their  “ professions ”  to the 
regime of carnival side - show entertainment, along with snake charmers and 
the like. For party entertainment we bring out a Ouija board; everyone sits 
around the board in a circle and watches the board extract its mysterious 
 “ energy ”  from our hands while it answers questions about things to come. 

 On the other hand, we all seem to have fi rm ideas about the future based 
on consistent patterns of events that we have observed. We are pretty sure 
that there will be a tomorrow and that our clocks will all run at the same rate 
tomorrow as they did today. If we look in the newspaper (or these days, on 
the Internet), we can fi nd out what time the sun will rise and set tomorrow —
 and it would be very diffi cult to fi nd someone willing to place a bet that this 
information is not accurate. Then again, whether or not you will meet the love 
of your life tomorrow is not something you expect to see accurately predicted 
in the newspaper. 

 We seem willing to classify predictions of future events into categories 
of the knowable  and the  unknowable . The latter category is left to carnival 
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fortune tellers to illuminate. The former category includes  “ predictions ”  of 
when you ’ ll next need a haircut, how much weight you ’ ll gain if you keep 
eating so much pizza, and so on. There does seem to be, however, an inter-
mediate area of knowledge of the future. Nobody knows for certain when 
you ’ re going to die. An insurance company, however, seems able to consult 
its mystical Actuarial Tables and decide how much to charge you for a life 
insurance policy. How can it do this if nobody knows when you ’ re going 
to die? The answer seems to lie in the fact that if you study thousands of 
people similar in age, health, life style, and so on, to you, you would be able 
to calculate an average life span — and that if the insurance company sells 
enough insurance policies with rates based upon this average, in a fi nancial 
sense this is  “ as good ”  as if the insurance company knows exactly when 
you are going to die. There is, therefore, a way to describe life expectancies 
in terms of the expected behavior of large groups of people in similar 
circumstances. 

 When predicting future events, you often fi nd yourself in situations such as 
this where you know something about future trends but you do not know 
exactly what is going to happen. If you fl ip a coin, you know you ’ ll get either 
heads or tails but you don ’ t know which. If you fl ip 100 coins, or equivalently 
fl ip one coin 100 times, however, you ’ d expect to get approximately 50 heads 
and 50 tails. 

 If you roll a pair of dice, you know that you ’ ll get some number between 
two and twelve, but you don ’ t know which number you ’ ll get. However, in the 
case of the roll of a pair of dice, you do know that, in some sense, it ’ s more 
likely that you ’ ll get six than that you ’ ll get two. 

 When you buy a new light bulb, you may see written on the package 
 “ estimated lifetime 1500 hours. ”  You know that this light bulb might last 
1346 hours, 1211 hours, 1587 hours, 2094 hours, or any other number of 
hours. If the bulb turns out to last 1434 hours, you won ’ t be surprised; but 
if it only lasts 100 hours, you ’ d probably switch to a different brand of light 
bulbs. 

 There is a hint that in each of these examples, even though you couldn ’ t 
accurately predict the future, you could fi nd some kind of pattern that teaches 
you something about the nature of the future. Finding these patterns, working 
with them, and learning what knowledge can and cannot be inferred from 
them is the subject matter of the study of probability and statistics. 

 I can separate our study into two classes of problems. The fi rst of these 
classes is understanding the likelihood that something might  occur. We need 
a rigorous defi nition of likelihood so that we can be consistent in our evalua-
tions. With this defi nition in hand, I can look at problems such as  “ How likely 
is it that you can make money in a simple coin fl ipping game? ”  or  “ How likely 
is it that a certain medicine will do you more good than harm in alleviating 
some specifi c ailment? ”  I ’ ll have to defi ne and discuss  random events  and the 
patterns that these events fall into, called Probability Distribution Functions 
(PDFs). This study is the study of Probability. 
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 The second class of problems involves understanding how well you really 
know something. I will only present quantifi able issues, not  “ Does she really 
love me? ”  and  “ Is this sculpture truly a work of art? ”  

 The uncertainties in how well we really know something can come from 
various sources. Let ’ s return to the example of light bulb. Suppose you ’ re the 
manufacturer of these light bulbs. Due to variations in materials and manu-
facturing processes, no two light bulb fi laments (the thin wires in these bulbs 
that get white hot and glow brightly) are identical. There are variations in the 
lifetime of your product that you need to understand. The easiest way to learn 
the variations in lifetime would be to run all your light bulbs until they burn 
out and then look at the numbers, but for obvious reasons this is not a good 
idea. If you could fi nd the pattern by just burning out some (hopefully a small 
percentage) of the light bulbs, then you have the information you need both 
to truthfully advertise your product and to work on improving your manufac-
turing process. 

 Learning how to do this is the study of Statistics. I will assume that we are 
dealing with a stationary random process . In a stationary random process, if 
nothing causal changes, we can expect that the nature of the pattern of the 
data already in hand will be the same as the nature of the pattern of future 
events of this same situation, and we use  statistical inference  to predict the 
future. In the practical terms of our light bulb manufacturer example, I am 
saying that so long as we don ’ t change anything, the factory will turn out bulbs 
with the same distribution of lifetimes next week as it did last week. This 
assertion is one of the most important characteristics of animal intelligence, 
namely the ability to discern and predict based upon patterns. If you think 
that only people can establish a pattern from historical data and predict the 
future based upon it, just watch your dog run to the door the next time you 
pick up his leash. 

 This light bulb problem also exemplifi es another issue that I will have to 
deal with. We want to know how long the light bulb we ’ re about to buy will 
last. We know that no two light bulbs are identical. We also realize that our 
knowledge is limited by the fact that we haven ’ t measured every light bulb 
made. We must learn to quantify how much of our ignorance comes from each 
of these factors and develop ways to express both our knowledge and our lack 
of knowledge.  

RULE MAKING 

 As the human species evolved, we took command of our environment because 
of our ability to learn. We learn from experience. Learning from experience is 
the art/science of recognizing patterns and then generalizing these patterns to 
a rule . In other words, the pattern is the relevant raw data that we ’ ve collected. 
A rule is what we create from our analysis of the pattern that we use to predict 
the future. Part of the rule is either one or several preferred extrapolations and 
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responses. Successful pattern recognition is, for example, seeing that seeds 
from certain plants, when planted at the right time of the year and given the 
right amount of water, will yield food; and that the seed from a given plant will 
always yield that same food. Dark, ominous looking clouds usually precede a 
fi erce storm, and it ’ s prudent to take cover when such clouds are seen. Also, 
leaves turning color and falling off the trees means that winter is coming, and 
preparations must be made so as to survive until the following spring. 

 If we notice that every time it doesn ’ t rain for more than a week our vege-
table plants die, we would generate a rule that if there is no rain for a week, 
we need to irrigate or otherwise somehow water the vegetable garden. Implicit 
in this is that somewhere a  “ hypothesis ”  or  “ model ”  is created. In this case 
our model is that plants need regular watering. When the data are fi t to this 
model, we quantify the case that vegetable plants need water at least once a 
week, and then the appropriate watering rule may then be created. 

 An interesting conjecture is that much, if not all, of what we call  the arts
came about because our brains are so interested in seeing patterns that we 
take delight and often fi nd beauty in well - designed original patterns. Our eyes 
look at paintings and sculptures, our ears listen to music, our brains process 
the language constructs of poetry and prose, and so on. In every case we are 
fi nding pleasure in studying patterns. Sometimes the patterns are clear, as in 
a Bach fugue. Sometimes the patterns are harder to recognize, as in a surre-
alistic Picasso painting. Sometimes we are playing a game looking for patterns 
that just might not be there — as in a Pollock painting. Perhaps this way of 
looking at things is sheer nonsense, but then how can you explain how a good 
book or a good symphony (or rap song if that ’ s your style) or a good painting 
can grab your attention and in some sense please you? The arts don ’ t seem 
to be necessary for the basic survival of our species, so why do we have them 
at all? 

 A subtle rustling in the brush near the water hole at dusk sometimes — but 
not always — means that a man - eating tiger is stalking you. It would be to your 
advantage to make a decision and take action. Even if you ’ re not certain that 
there ’ s really a tiger present, you should err on the cautious side and beat a 
hasty retreat; you won ’ t get a second chance. This survival skill is a good 
example of our evolutionary tendency to look for patterns and to react as if 
these patterns are there, even when we are not really sure that they indeed 
are there. In formal terms, you don ’ t have all the data, but you do have  anec-
dotal  information. 

 Our prehistoric ancestors lived a very provincial existence. Life spans were 
short; most people did not live more than about 30 years. They didn ’ t get to 
see more than about 10,000 sunrises. People outside their own tribe (and pos-
sibly some nearby tribes) were hardly ever encountered, so that the average 
person never saw more than a few hundred other people over the course of a 
lifetime. Also, very few people (other than members of nomadic tribes) ever 
traveled more than about 50 miles from where they were born. There are 
clearly many more items that could be added to this list, but the point has 



probably been adequately made: Peoples ’  brains never needed to cope with 
situations where there were hundreds of thousands or millions of data points 
to reconcile. 

 In today ’ s world, however, things are very different: A state lottery could 
sell a hundred million tickets every few months. There are about six billion 
(that ’ s six thousand million) people on the earth. Many of us (at least in North 
America and Western Europe) have traveled thousands of miles from the 
place of our birth many times; even more of us have seen movies and TV 
shows depicting places and peoples all over the world. Due to the ease with 
which people move around, a disease epidemic is no longer a local issue. Also, 
because we are aware of the lives of so many people in so many places, we 
know about diseases that attack only one person in a hundred thousand and 
tragedies that occur just about anywhere. If there ’ s a vicious murderer killing 
teenage girls in Boston, then parents in California, Saskatoon, and London 
hear about it on the evening news and worry about the safety of their 
daughters. 

 When dealing with unlikely events spread over large numbers of opportuni-
ties, your intuition can and does often lead you astray. Since you cannot easily 
comprehend millions of occurrences, or lack of occurrences, of some event, 
you tend to see patterns in a small numbers of examples — again the  anecdotal
approach. Even when patterns don ’ t exist, you tend to invent them; you are 
using your  “ better safe than sorry ”  prehistoric evolved response. This could 
lead to the inability to correctly make many important decisions in your life: 
What medicines or treatments stand the best chance of curing your ailments? 
Which proffered medicines have been correctly shown to be useful, and which 
ones are simply quackery? Which environmental concerns are potentially real 
and which are simple coincidence? Which environmental concerns are no 
doubt real but probably so insignifi cant that it we can reasonably ignore them? 
Are  “ sure bets ”  on investments or gambling choices really worth anything? 
We need an organized methodology for examining a situation and coping with 
information, correctly extracting the pattern and the likelihood of an event 
happening or not happening to us, and also correctly  “ processing ”  a large set 
of data and concluding, when appropriate, that there really is or is not a 
pattern present. 

 In other words, we want to understand how to cope with a barrage of 
information. We need a way of measuring how sure we are of what we know, 
and when or if what we know is adequate to make some predictions about 
what ’ s to come.  

RANDOM EVENTS AND PROBABILITY 

 This is a good place to introduce the concepts of random events, random 
variables, and probability. These concepts will be wrung out in detail in later 
chapters, so for now let ’ s just consider some casual defi nitions. 
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 For our purposes an  event  is a particular occurrence of some sort out of a 
larger set of possible occurrences. Some examples are: 

 •   Will it rain tomorrow? The full set of possible occurrences is the two 
events Yes — it will rain, and No — it won ’ t rain.  

 •   When you fl ip a coin, there are two possible events. The coin will either 
land head side up or tail side up (typically referred to as  “ heads ”  or 
 “ tails ” ).  

 •   When you roll one die, then there are six possible events, namely the six 
faces of the die that can land face up — that is, the numbers 1, 2, 3, 4, 5, 
and 6.  

 •   When you play a quiz game where you must blindly choose  “ door A, door 
B, or door C ”  and there is a prize hiding behind only one of these doors, 
then there are three possible events: The prize is behind door A, it ’ s 
behind door B, or it ’ s behind door C.    

Variable  is a name for a number that can be assigned to an event. If the 
events themselves are numbers (e.g., the six faces of the die mentioned above), 
then the most reasonable thing to do is to simply assign the variable numbers 
to the event numbers. A variable representing the days of the year can take 
on values 1, 2, 3,   .  .  .   , all the way up to 365. Both of these examples are of 
variables that must be integers; that is, 4.56 is not an allowed value for either 
of them. There are, of course, cases where a variable can take on any value, 
including fractional values, over some range; for example, the possible amount 
of rain that fell in Chicago last week can be anything from 0 to 15 inches (I 
don ’ t know if this is true or not, I just made it up for the example). Note that 
in this case 4.56, 11.237, or 0.444 are legitimate values for the variable to 
assume. An important distinction between the variable in this last example 
and the variables in the fi rst two examples is that the former two variables 
only can take on a fi nite number of possibilities (6 in the fi rst case, 365 in the 
second), whereas by allowing fractional values (equivalently, real number 
values), there are an infi nite number of possibilities for the variable in the last 
example. 

 A random variable is a variable that can take on one of an allowed set of 
values (fi nite or infi nite in number). The actual value selected is determined 
by a happening or happenings that are not only outside our control but also 
are outside of any recognized, quantifi able, control — but often do seem to 
follow some sort of pattern. 

 A random variable cannot take on any number, but instead must be chosen 
out of the set of possible occurrences of the situation at hand. For example, 
tossing a die and looking at the number that lands facing up will give us one 
of the variables {1, 2, 3, 4, 5, 6}, but never 7, 0, or 3.2. 



 The most common example of a simple random variable is the outcome of 
the fl ip of our coin. Let ’ s assign the number  − 1 to a tail and +1 to a head. The 
fl ip of the coin must yield one of the two chosen values for the random vari-
able, but we seem to have no way of predicting which value it will yield for a 
specifi c fl ip. 

 Is the result of the fl ip of a coin truly unpredictable? Theoretically, no: If 
you carefully analyzed the weight and shape of the coin and then tracked the 
exact motion of the fl ipper ’ s wrist and fi ngers, along with the air currents 
present and the nature of the surface that the coin lands on, you would see 
that the fl ipping of a coin is a totally predictable event. However, since it is 
so diffi cult to track all these subtle factors carefully enough in normal circum-
stances and these factors are extremely diffi cult to duplicate from fl ip to fl ip, 
the outcome of a coin fl ip can reasonably be considered to be a random event. 
Furthermore, you can easily list all the possible values of the random variable 
assigned to the outcome of the coin fl ip ( − 1 or 1); and if you believe that the 
coin fl ip is fair, you conclude that either result is equally likely. This latter situ-
ation isn ’ t always the case. 

 If you roll two dice and defi ne the random variable as the sum of the 
numbers you get from each die, then this random variable can take on any 
value from 2 to 12. All of the possible results, however, are no longer equally 
likely. This assertion can be understood by looking at every possible result as 
shown in Table  1.1 .   

 As may be seen from the table, there is only one way that the random 
variable can take on the value 2: Both dice have to land with a 1 face up. 
However, there are three ways that the random variable can take on the value 
4: One way is for the fi rst die to land with a 1 face up while the second die 
lands with a three face up. To avoid writing this out over and over again, I ’ ll 
call this case {1, 3}. By searching through the table, we see that the random 
variable value of 4 can be obtained by the dice combinations {1, 3}, {2, 2}, and 
{3, 1}. 

 I ’ ll create a second table (Table  1.2 ) that tabulates the values of the random 
variable and the number of ways that each value can result from the rolling 
of a pair of dice:

 The numbers in the right - hand column add up to 36. This is just a restate-
ment of the fact that there are 36 possible outcomes possible when rolling a 
pair of dice.    

 Defi ne the  probability  of a random event as the number of ways that that 
event can occur, divided by the number of all possible events. Adding a third 
column to the table to show the probabilities, I get Table  1.3 .   

 For example, if you want to know the probability that the sum of the 
numbers on the two dice will be 5, the second column of this table tells us that 
there are four ways to get 5. Looking back at the fi rst table, you can see that 
this comes about from the possible combinations {1, 4}, {2, 3}, {3, 2} and {4, 1}. 
The probability of rolling two dice and getting a (total) of 5 is therefore 4/36, 
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 TABLE 1.2.    Results of Rolling a Pair of Dice 
Grouped by Results 

  Value of 
Random Variable  

  Number of Ways of 
Obtaining this Value  

  2    1  
  3    2  
  4    3  
  5    4  
  6    5  
  7    6  
  8    5  
  9    4  

  10    3  
  11    2  
  12    1  

 TABLE 1.1.    All the Possible Results of Rolling a Pair of Dice 

  First Die 
Result

  Second Die 
Result

  Random 
Variable 

Value   =   Sum 
of First  &  

Second
Results

  First Die 
Result

  Second Die 
Result

  Random 
Variable 

Value   =   Sum 
of First  &  

Second
Results

  1    1    2     4    1    5 
  1    2    3     4    2    6 
  1    3    4    4     3    7 
  1    4    5    4     4    8 
  1    5    6    4     5    9 
  1    6    7     4    6    10 
  2    1    3     5    1    6 
  2    2    4     5    2    7 
  2    3    5    5     3    8 
  2    4    6    5     4    9 
  2    5    7    5     5   10  
  2    6    8    5     6    11 
  3    1    4     6    1    7 
  3    2    5     6    2    8 
  3    3    6    6     3    9 
  3    4    7    6     4    10 
   3   5   8     6     5    11 
   3    6    9   6     6    12 



sometimes called  “ 4 chances out of 36. ”  4/36 is of course the same as 2/18 and 
1/9 and the decimal equivalent, 0.111. 1

 If you add up all of the numbers in the new rightmost column, you ’ ll get 
exactly 1. This will always be the case, because it is the sum of the probabilities 
of all possible events. This is the  “ certain event ”  and it must happen; that 
is, it has a probability of 1 (or 100%). This certain event will be that, when 
you toss a pair of dice, the resulting number — the sum of the number of dots 
on the two faces that land face up — again must be some number between 2 
and 12. 

 Sometimes it will be easier to calculate the probability of something we ’ re 
interested in not  happening than to calculate the probability of it happening. 
In this case since we know that the probability of our event either happening 
or not happening must be 1, then the probability of the event happening is 
simply 1 — the probability of the event not happening. 

 From Table  1.3  you can also calculate combinations of these probabilities. 
For example, the probability of getting a sum of  at least 10  is just the probabil-
ity of getting 10   +   the probability of getting 11   +   the probability of getting 12,   
=   0.083   +   0.056   +   0.028   =   0.167. Going forward, just for convenience, we ’ ll use 
the shorthand notation Prob(12) to mean  “ the probability of getting 12, ”  and 
we ’ ll leave some things to the context; that is, when rolling a pair of dice, we ’ ll 
assume that we ’ re always interested in the sum of the two numbers facing up, 
and we ’ ll just refer to the number. 

 Exactly what the probability of an event occurring really means is a very 
diffi cult and subtle issue. Let ’ s leave this for later on, and just work with the 

1   Many fractions, such as 1/9, 1/3, and 1/6, do not have exact decimal representations that can 
be expressed in a fi nite number of digits. 1/19, for example, is 0.111111111   .  .  .   , with the 1 ’ s 
going on forever. Saying that the decimal equivalent of 1/9 is 0.111 is therefore an approxima-
tion. Knowing how many digits are necessary to achieve a satisfactory approximation is context - 
dependent — there is no easy rule. 

 TABLE 1.3.    Same as Table  1.2  but also Showing Probability of Results 

  Value of Random 
Variable  

  Number of Ways of 
Obtaining this Result 

  Probability of 
Getting this Result 

  2    1    1/36   =   0.028  
  3    2    2/36   =   0.056  
  4    3    3/36   =   0.083  
  5    4    4/36   =   0.111  
  6    5    5/36   =   0.139  
  7    6    6/36   =   0.167  
  8    5    5/36   =   0.139  
  9    4    4/36   =   0.111  

  10    3    3/36   =   0.083  
  11    2    2/36   =   0.056  
  12    1    1/36   =   0.028  
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intuitive  “ If you roll a pair of dice very many times, about 1/36 of the time the 
random variable will be 2, about 2/36 of the time it will be 3, and so on. ”  

 An alternative way of discussing probabilities that is popular at horse races, 
among other places, is called  the odds  of something happening. Odds is just 
another way of stating things. If the probability of an event is 1/36, then we 
say that the odds of the event happening is 1 to 35 (usually written as the ratio 
1   :   35). If the probability is 6/36, then the odds are 6   :   30 or 1   :   5, and so on. As 
you can see, while the  probability  is the number of ways that a given event 
can occur divided by the total number of possible events, the  odds  is just the 
ratio of the number of ways that a given event can occur to the number of 
ways that it can ’ t occur. It ’ s just another way of expressing the same calcula-
tion; neither system tells you any more or less than the other. 

 In the simple coin fl ip game, the probability of winning equals the probabil-
ity of losing,   =   0.5. The odds in this case is simply 1   :   1, often called  even odds . 
Another term of art  is the case when your probability of winning is something 
like 1   :   1000. It ’ s very unlikely that you ’ ll win; these are called  long odds . 

 Something you ’ ve probably noticed by now is that I tend to jump back 
and forth between fractions (such as  1/4 ) and their decimal equivalents 
(1/4   =   0.25). Mathematically, it doesn ’ t matter which I use. I tend to make my 
choice based on context: When I want to emphasize the origins of the numera-
tor and denominator (such as 1 chance out of 4), I ’ ll usually use the fraction, 
but when I just need to show a number that ’ s either the result of a calculation 
or that ’ s needed for further calculations, I ’ ll usually use the decimal. I hope 
this style pleases you rather than irritates you; the important point is that 
insofar as the mathematics is concerned, both the fraction and the decimal are 
equivalent. 

 You now have the defi nitions required to look at a few examples. I ’ ll start 
with some very simple examples and work up to some fairly involved exam-
ples. Hopefully, each of these examples will illustrate an aspect of the issues 
involved in organizing some probabilistic data and drawing the correct conclu-
sion. Examples of statistical inference will be left for later chapters.  

THE LOTTERY {VERY IMPROBABLE EVENTS AND VERY LARGE 
DATA SETS} 

 Suppose you were told that there is a probability of 1 in 200 million (that ’ s 
0.000000005 as a decimal) of you getting hit by a car and being seriously 
injured or even killed if you leave your house today. Should you worry about 
this and cancel your plans for the day? Unless you really don ’ t have a very 
fi rm grip on reality, the answer is clearly  no . There are probabilities that the 
next meal you eat will poison you, that the next time you take a walk it will 
start storming and you ’ ll be hit by lightening, that you ’ ll trip on your way to 
the bathroom and split your skull on something while falling, that an airplane 
will fall out of the sky and crash through your roof, and so on. Just knowing 



that you and your acquaintances typically do make it through the day is anec-
dotal evidence that the sum of these probabilities can ’ t be a very large number. 
Looking at your city ’ s accidental death rate as a fraction of the total popula-
tion gives you a pretty realistic estimate of the sum of these probabilities. If 
you let your plans for your life be compromised by every extremely small 
probability of something going wrong, then you will be totally paralyzed. 2  One 
in two hundred million, when it ’ s the probability of something bad happening 
to you, might as well be zero. 

 Now what about the same probability of something good happening to you? 
Let ’ s say you have a lottery ticket, along with 199,999,999 other people, and 
one of you is going to win the grand prize. Should you quit your job and order 
a new car based on your chance of winning? 

 The way to arrive at an answer to this question is to calculate a number 
called the expected value (of your winnings). I ’ ll defi ne expected value 
carefully in the next chapter, but for now let me just use the intuitive  “ What 
should I expect to win? ”  There are 4 numbers I need in order to perform the 
calculation. 

 First, I need the probability of winning. In this case it ’ s 1 in 200 million, or 
0.000000005. Next, I need the probability of losing. Since the probability of 
losing plus the probability of winning must equal 1, the probability of losing 
must be 1    −    0.000000005   =   .999999995. 

 I also need the amount of money you will make if you win. If you buy 
a lottery ticket for  $ 1 and you will get  $ 50,000,000 if you win, this is 
 $ 50,000,000    −     $ 1   =    $ 49,999,999. 

 Lastly, I need the amount of money you will lose if you don ’ t win. This is 
the dollar you spent to buy the lottery ticket. Let ’ s adopt the sign convention 
that winnings are a positive number but losses are a negative number. The 
amount you ’ ll lose is therefore  −  $ 1. 

 In order to calculate the expected value of your winnings, I add up the 
product of each of the possible money transfers (winning and losing) multi-
plied by the probability of this event. Gathering together the numbers from 
above, we obtain

    Expected value , ,= −( . )($ ) (. )($ )0 000000005 49 999 999 999999995 1
≈≈ − = − = −( . )($ ) ( )($ ) $ . $ . $ .0 000000005 50 000 000 1 1 0 25 1 00 0 75, ,   

 I have just introduced the symbol  “  ≈  ” , which means  “ not exactly, but a good 
enough approximation that the difference is irrelevant. ”   “ Irrelevant, ”  of 
course, depends on the context of the situation. In this example, I ’ m saying 

 2     In 1976, when the U.S. Skylab satellite fell from the sky, there were companies selling Skylab 
insurance — coverage in case you or your home got hit. If you consider the probability of this hap-
pening as approximately the size of the satellite divided by the surface area of the earth, you ’ ll 
see why many fortunes have been made based on the truism that  “ there ’ s a sucker born every 
minute. ”  
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that (0.000000005)( $ 49,999,999)   =    $ 0.249999995 is close enough to  $ 0.25 that 
when we compare it to  $ 1.00 we never notice the approximation. 

 The expected value of your winnings is a negative number — that is, you 
should expect to lose money. What the expected value is actually telling you 
is that if you had bought all  of the lottery tickets, so that you had to be the 
winner, you would still lose 75 cents on every dollar you spent. It ’ s no wonder 
that people who routinely calculate the value of investments and gambling 
games often refer to lotteries as a  “ Tax on Stupidity. ”  

 What I seem to be saying so far is that events with extremely low probabili-
ties simply don ’ t happen. If we ’ re waiting for you to win the lottery, then this 
is a pretty reasonable conclusion. However, the day after the lottery drawing 
there will be an article in the newspaper about the lottery, along with a picture 
of a very happy person holding up a winning lottery ticket. This person just 
won 50 million dollars! 

 Am I drawing two different conclusions from the same set of data? Am I 
saying both that nobody wins the lottery and that somebody always wins the 
lottery? The answer is that there is no contradiction, we just have to be very 
careful how we say what we say. Let me construct an example. Suppose the 
state has a lottery with the probability of any one ticket winning   =   0.000000005 
and the state sells 200 million tickets, which include every possible choice of 
numbers. It ’ s an absolute certainty that  somebody  will win (we ’ ll ignore the 
possibility that the winning ticket got accidentally tossed into the garbage). 
This does not at all contradict the statement that it ’ s  “ pretty darned near ”  
certain that you  won ’ t win. 

 What we are struggling with here is the headache of dealing with a very 
improbable event juxtaposed on a situation where there are a huge number 
of opportunities for the event to happen. It ’ s perfectly reasonable to be assured 
that something will never happen to you while you know that it will happen 
to somebody. Rare diseases are an example of this phenomenon. You shouldn ’ t 
spend much time worrying about a disease that randomly affl icts one person 
in, say, 10 million, every year. But in the United States alone there will be 
about 30 cases of this disease reported every year, and from a Public Health 
point of view, somebody should be paying attention to it. 

 A similar situation arises when looking at the probability of an electrical 
appliance left plugged in on your countertop starting a fi re. Let ’ s say that this 
probability is 1 in 30,000 per person. 3  Should you meticulously unplug all your 
countertop kitchen appliances when you ’ re not using them? Based on the 
above probability, the answer is  “ don ’ t bother. ”  However, what if you ’ re the 
senior fi re department safety offi cer for New York City, a city with about 8 
million residents? I ’ ll assume an average of about 4 people per residence. If 

3   The U.S. Fire Administration ’ s number is about 23,000 appliance related electrical fi res per per-
son. I rounded this up to 30,000 to make a convenient comparison to a population of about 300 
million. 


