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Editors' preface to the 
Manchester Physics Series 

The Manchester Physics Series is a series of textbooks at first degree level. It 
grew out of our experience at the Department of Physics and Astronomy at 
Manchester University, widely shared elsewhere, that many textbooks contain 
much more material than can be accommodated in a typical undergraduate 
course; and that this material is only rarely so arranged as to allow the definition 
of a shorter self-contained course. In planning these books we have had two 
objectives. One was to produce short books: so that lecturers should find them 
attractive for undergraduate courses; so that students should not be frightened 
off by their encyclopaedic size or their price. To achieve this, we have been very 
selective in the choice of topics, with the emphasis on the basic physics together 
with some instructive, stimulating and useful applications. Our second objective 
was to produce books which allow courses of different lengths and difficulty to be 
selected, with emphasis on different applications. To achieve such flexibility we 
have encouraged authors to use flow diagrams showing the logical connections 
between different chapters and to put some topics in starred sections. These 
cover more advanced and alternative material which is not required for the 
understanding of latter parts of each volume. 

Although these books were conceived as a series, each of them is self-contained 
and can be used independently of the others. Several of them are suitable for 
wider use in other sciences. Each Author's Preface gives details about the level, 
prerequisites, etc., of his volume. 

The Manchester Physics Series has been very successful with total sales of 
more than a quarter of a million copies. We are extremely grateful to the many 
students and colleagues, at Manchester and elsewhere, for helpful criticisms and 
stimulating comments. Our particular thanks go to the authors for all the work 
they have done, for the many new ideas they have contributed, and for discussing 
patiently, and often accepting, the suggestions of the editors. 

Finally, we would like to thank our publishers, John Wiley & Sons Ltd, for 
their enthusiastic and continued commitment to the Manchester Physics Series. 

D. J. Sandiford 
F. Mandl 

A. C. Phillips 
February 1997 





The story of the creation was told in 200 words. Look it up if you 
don't believe me.-Edgar Wallace 

Foreword 

When the time came to consider a second edition of Solid State Physics I felt 
that I had already said what I had to say on the subject in the first edition. I also 
felt that the book was rather too idiosyncratic for many students. For these 
reasons I thought it would be better if the revision and updating were 
undertaken by another hand, and the editors shared this view. 

We therefore approached Dr John Hook, a friend and colleague for many 
years, and I think the result justifies the decision. The new edition is, in my 
opinion, a substantial improvement on the old one, but it would not have 
occurred to me to write it like that. 

September 1990 HENRY HALL 





Author's preface to second edition 

I accepted the invitation of the editors of the Manchester Physics Series to 
write a second edition of Solid State Physics for two main reasons. Firstly I felt 
that, although the approach adopted in the first edition had much to commend 
it, some re-ordering and simplification of the material was required to make the 
book more accessible to undergraduate students. Secondly there was a need to 
take account of some of the important developments that have occurred in solid 
state physics since 1973. 

To achieve re-ordering and simplification it has been necessary to rewrite 
most of the first edition. A major change has been to introduce the idea of 
mobile electron states in solids through the free electron theory of metals rather 
than through the formation of energy bands by overlap of atomic states on 
neighbouring atoms. The latter approach was used in the first edition because it 
could be applied first to the dilute electron gas in semiconductors where an 
independent particle model might be expected to work. Although this was 
appealing to the experienced physicist, it proved difficult to the undergraduate 
student, who was forced to assimilate too many new ideas at the beginning. One 
feature of the first edition that I have retained is to delay for as long as possible a 
formal discussion of the reciprocal lattice and Brillouin zones in a three­
dimensional crystal. Although these concepts provide an elegant general frame­
work for describing many of the properties of crystalline solids, they are, like 
Maxwell's equations in electromagnetism, more likely to be appreciated by 



xx Authors' prefaces to second edition 

students if they have met some of the ideas earlier in a simpler context. The use 
of the formal framework is avoided in the early chapters by using one- and two­
dimensional geometries whenever necessary. 

To take account of recent developments the amount of material on semi­
conductor physics and devices has been substantially increased, a chapter has 
been added on the two-dimensional electron gas and quantum Hall effect, and 
sections on quasi-crystals, high- Tc superconductors and the use of electrons to 
probe surfaces have been included. A chapter on the electrical properties of 
insulators has also been added. 

I have tried to conform to the aim of the Manchester Physics Series by 
producing a book of reasonable length (and thus cost), from which it is possible 
to define self-contained undergraduate courses of different length and difficulty. 
The problem with solid state physics in this context is that it contains many 
diverse topics so that many quite different courses are possible. I have had to be 
very selective therefore in my choice of subjects, which has been strongly 
influenced by the third year undergraduate solid state physics courses at 
Manchester. We currently have a basic course of 20 lectures, which is given at 
two levels; the courses cover material from Chapters 1-5 of this book and the 
higher level course also incorporates appropriate sections of Chapters 11-13. A 
further course of 20 lectures on selected topics in solid state physics currently 
covers magnetism, superconductivity and ferroelectricity (Chapters 7-10). The 
flow diagram inside the front cover can be used as an aid to the design of courses 
based on this book. 

Important subjects that are not covered in this book are crystal defects and 
disordered solids. I would have liked to include a chapter on each of these topics 
but would have exceeded the length limit set by the publishers and editors had I 
done so. 

Like the first edition, this book presupposes a background knowledge of 
properties of matter (interatomc potentials and their relation to binding energies 
and elastic moduli, kinetic theory), quantum mechanics (Schrodinger's equation 
and its solution to find energy eigenvalues and eigenfunctions), elect!icity and 
magnetism (Maxwell's equations and some familiarity with electric and mag­
netic fields in matter) and thermal physics (the Boltzmann factor and the Fermi 
and Bose distributions). Books in which this background information can be 
found are listed in the bibliography along with selected general reference books 
on solid state physics and some books and articles that provide further 
information on specific topics. 

This book includes some more advanced and detailed material, which can be 
omitted without loss of continuity. Complete sections in this category are 
identified by starring and parts of sections are printed on a grey background. 

The use of bold type for a technical term in the text, normally when the term is 
first encountered, indicates that a definition or explanation of the term can be 
found there. Italic type is used for emphasis. 
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I am very grateful to David Sandiford and Henry Hall for their helpful advice 
and constructive criticism. I would also like to thank Manchester undergradu­
ate Colin Lally, who read the manuscript from the point of view of a prospective 
consumer; his reaction reassured me that the level was appropriate. Ian 
Callaghan's draughtmanship and photography was invaluable in producing 
many of the figures, and my son James helped willingly with some of the more 
mundane manuscript-preparation tasks. 

September 1990 JOHN HOOK 





Beauty when uncloth'd is clothed best.-Phineas Fletcher 
(1582-1650) 

CHAPTER 

Crystal structure 

1.1 INTRODUCTION 

The aim of solid state physics is to explain the properties of solid materials as 
found on Earth. For almost all purposes the properties are expected to follow 
from Schrodinger's equation for a collection of atomic nuclei and electrons 
interacting with electrostatic forces. The fundamental laws governing the 
behaviour of solids are therefore known and well tested. It is nowadays only in 
cosmology, astrophysics and high-energy physics that the fundamental laws are 
still in doubt. 

In this book we shall be concerned almost entirely with crystalline solids, that 
is solids with an atomic structure based on a regular repeated pattern, a sort of 
three-dimensional wallpaper. Many important solids are crystalline in this 
sense, although this is not always manifest in the external form of the material. 
Because calculations are easier, more progress has been made in understanding 
the behaviour of crystalline than of non-crystalline materials. Many common 
solids-for example, glass, plastics, wood, bone-are not so highly ordered on 
an atomic scale and are therefore non-crystalline. Only recently has progress 
been made in understanding the behaviour of non-crystalline solids at a 
fundamental level. t 

t The December 1988 issue of Physics Today contains articles describing some of the progress 
towards an understanding of disordered materials. 



2 Crystal structure Chap. 1 

Even in the restricted field of crystalline solids the most remarkable thing is 
the great variety of qualitatively different behaviour that occurs. We have 
insulators, semiconductors, metals and superconductors-all obeying different 
macroscopic laws: an electric field causes an electric dipole moment in an 
insulator (Chapter 9), a steady current in a metal or semiconductor (Chapters 3 
to 6) and a steadily accelerated current in a superconductor (Chapter 10). Solids 
may be transparent or opaque, hard or soft, brittle or ductile, magnetic or non­
magnetic. 

In this chapter we first introduce in section 1.2 the basic ideas of crystallogra­
phy. In section 1.3 we describe some important crystal structures and in 
section 1.4 we explain how x-ray diffraction is used to determine crystal 
structure. In section 1.5 we discuss quasi-crystals, ordered solids that challenge 
much of the conventional wisdom concerning crystalline materials. Section 1.6 
contains a qualitative description of the interatomic forces responsible for 
binding atoms into solids. 

1.2 ELEMENTARY CRYSTALLOGRAPHY 

A basic knowledge of crystallography is essential for solid state physicists. 
They must know how to specify completely, concisely and unambiguously any 
crystal structure and they must be aware of the way that structures can be 
classified into different types according to the symmetries they possess; we shall 
see that the symmetry of a crystal can have a profound influence on its 
properties. Fortunately we will be concerned in this book only with solids with 
simple structures and we can therefore avoid the sophisticated group theoretical 
methods required to discuss crystal structures in general. 

1.2.1 The crystal lattice 

We will use a simple example to illustrate the methods and nomenclature used 
by crystallographers to describe the structure of crystals. Graphite is a crystal­
line form of carbon in which hexagonal arrays of atoms are situated on a series 
of equally spaced parallel planes. The arrangement of the atoms on one such 
plane is shown in Fig. l.l(a). We choose graphite for our example because a 
single two-dimensional plane of atoms in this structure illustrates most of the 
concepts that we need to explain. Solid state physicists often resort to the device 
of considering a system of one or two dimensions when confronted with a new 
problem; the physics is often (but not always) the same as in three dimensions 
but the mathematics and understanding can be much easier. 

To describe the structure of the two-dimensional graphite crystal it is 
necessary to establish a set of coordinate axes within the crystal. The origin can 
in principle be anywhere but it is usual to site it upon one of the atoms. Suppose 
we choose the atom labelled 0 in Fig l.l(a) for the origin. The next step is a very 
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1.2 Elementary crystallography 

Fig. 1.1 Two-dimensional crystal of 
carbon atoms in graphite: (a) shows 
how the atoms are situated at the 
corners of regular hexagons; (b) shows 
the crystal lattice obtained by 
identifying all the atoms in (a) that are 
in identical positions to that at 0. The 
crystal axes, lattice vectors and 
conventional unit cell are shown in 
both figures 

3 

important one; we must proceed to identify all the positions within the crystal 
that are identical in all respects to the origin. To be identical it is necessary that 
an observer situated at the position should have exactly the same view in any 
direction as an observer situated at the origin. Clearly for this to be possible we 
must imagine that the two-dimensional crystal is infinite in extent. Readers 
should convince themselves that the atoms at A, B, C, D and E (and eight others 
in the diagram) are identical to the atom at the origin but that the atoms at F, G 
and H are not; compare for example the directions of the three nearest 
neighbours of the atom at 0 with the directions of the three nearest neighbours 
of the atom at F. The set of identical points identified in this way is shown in 
Fig. l.l(b) and is called the crystal lattice; comparison of Figs. l.l(a) and (b) 
illustrates clearly that the lattice is not in general the same as the structure. 
Readers should convince themselves that, apart from an unimportant shift in 
position, the lattice is independent of the choice of origin. Having identified the 
crystal lattice in this way the coordinate axes are simply obtained by joining the 
lattice point at the origin to two of its neighbours. 



4 Crystal structure Chap. 1 

There are many ways of doing this but the conventional choice for graphite is 
to take OA and OB for the x andy axes as shown in Fig. l.l(b). Note that the 
coordinate axes for graphite are not orthogonal. An example of an unconven­
tional choice of coordinate axes for graphite would be to take OA for the x axis as 
before but to take the OD direction for they axis. The distances and directions 
of the nearest lattice points along the x and y axes are specified by the lattice 
vectors a and b respectively (Fig. l.l.(b) ). The crystal lattice is completely defined 
by giving the lengths of a and band the angle y between them. For graphite we 

-have a = b = 2.46 A, y = 120° (1 A = 1 angstrom = w-to m). The conventional 
choice of axes for graphite therefore clearly reflects the hexagonal symmetry of 
the structure; this is not the case for the unconventional choice discussed above. 

The positions of all the lattice points of the two-dimensional graphite crystal 
are reached by drawing all possible vectors of the form 

r = ua + vb (1.1) 

from the origin, where u and v take on all possible integer values, positive, 
negative and zero. That the crystal appears identical when viewed from all the 
positions given by this equation is an indication that it possesses the important 
property of translational invariance. 

The generalization of the above ideas to a three-dimensional crystal is 
straightforward. An origin is chosen and all the points within the crystal that are 
identical to it are identified; this set of points constitutes the three-dimensional 
crystal lattice. The directions of the crystal coordinate axes are then defined by 
joining the lattice point at the origin to three of its near neighbours (Fig. 1.2). 
The choice of neighbours is sometimes obvious but, where this is not the case, 
convention usually dictates the choice that most clearly reflects the symmetry of 
the lattice. The distances and directions of the nearest lattice points along the 
crystallographic x, y and z axes are specified by the three lattice vectors a, b and 
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Fig 1.2 Crystallographic axes and unit 
cell for a three-dimensional crystal 
lattice 



1.2 Elementary crystallography 5 

c. The lattice is completely specified by giving the lengths of a, b and c, and the 
angles a, f3 and y between them (Fig. 1.2). The positions of all the lattice points 
are reached by drawing all possible vectors of the form 

r = ua + vb +we (u, v and ware integers) (1.2) 

from the origin. The ability to express the positions of the points in this way, 
with a suitable choice of a, b and c, may be taken as a definition of a lattice in 
crystallography. A crystalline material may be defined as a material that 
possesses a lattice of this kind; the translational invariance property of the 
crystal is that it appears identical from all positions of the form ofEq. (1.2). Note 
that the only effect of a shift in choice of origin on a crystal lattice is a shift in the 
lattice as a whole by the same amount. 

The lattice vectors also define the unit cell of a crystal. This concept is most 
easily explained by returning to the two-dimensional graphite crystal of Fig. 1.1, 
for which the unit cell is the parallelogram OACB defined by the vectors a and b. 
It is so called because stacking such cells together generates the entire crystal 
lattice, as is indicated by the broken lines in Fig. l.l(b). The analogous three­
dimensional object in Fig. 1.2, defined by lattice vectors a, b and c, is called a 
parallelopiped and is the unit cell for the three-dimensional lattice. The unit cell 
obtained from the conventional choice of lattice vectors is known as the 
conventional unit cell. 

The concept of the unit cell as a building block allows us to understand the 
remarkable similarities between different crystals of the same material. In 
particular we can explain the law of constancy of angle (first stated by Nicolaus 
Steno in 1761) that: In all crystals of the same substance the angles between 
corresponding faces have a constant value. Fig. 1.3 is an illustration from an early 
book on mineralogy showing how macroscopically plane faces in various 
orientations can be built up by using cubic unit cells as building blocks. We shall 
see in Chapter 12 that the surfaces of crystals are not in fact constructed in the 
manner suggested by this illustration. 

The reader will have noticed that the two-dimensional lattice of graphite 
(Fig. 1.1(b)) possesses symmetry properties other than the translational in vari­
ance indicated by Eq. (1.1). The lattice is transformed into itself, for example, by 
a rotation of 60° about an axis perpendicular to the xy plane through a lattice 
point; this axis is the crystallographic z axis of graphite, which is therefore a six­
fold rotation axis of the lattice. In 1845 Bravais deduced that any three­
dimensional lattice of the form of Eq. (1.2) could be classified into one of 14 
possible types according to the symmetry that it possessed. The 14 Bravais 
lattices contain only one-, two-, three-, four- and six-fold rotation axes. 

We will not describe all14 Bravais lattices since only a few will feature in this 
book, but to illustrate the principle of the classification of lattices by symmetry 
we consider the corresponding two-dimensional problem. A two-dimensional 
lattice is specified by a, b and the angle y between a and b. A lattice with 


