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Preface

My graduate work was in the area of microwave oscillation mechanisms in semiconductor
devices. My contribution was the prediction, analysis, and verification of yet another
mode of semiconductor microwave oscillation. After graduation, I taught for a brief
period (2 years) and worked part-time for a local electronics firm designing positive–intrin-
sic–negative (PIN) diode attenuators for their line of microwave signal generators. Then, in
1974, I went to work for Motorola, Inc., in southern Florida.

The part of Motorola that I joined designed and manufactured two-way portable radios
(for police, fire department, etc.) and radio pagers, along with the supporting infrastructure
systems. The developmental push at the time was to extend the product base up to the (then
new) 900-MHz bands.

This organization had no interest whatsoever in my semiconductor physics background.
They were, however, keenly interested in the skills that I had acquired during my graduate
and part-time work designing stripline and microstrip (transmission line) circuitry. Motorola
needed capability with stripline and microstrip filters, interconnects, materials, and so on,
and my job was to help develop this capability. I never returned to semiconductor physics,
and 40 years after finishing graduate school, I think it’s safe to say that I never will.

Transmission line circuit design consists of two parts: (1) the actual circuit design based
on the transmission line parameters and (2) the relationships between these transmission line
parameters and the physical structure and materials.

As will be explained in Chapter 2, transmission line parameters can be described in
terms of their DC (direct current; i.e., electrostatic) capacitance. A significant part of my
effort therefore was devoted to performing electrostatic analyses of stripline and microstrip
structures to predict the electric fields and capacitances in these structures. I didn’t realize it
at the time, but I was developing a skill that I would continue using and improving for the
rest of my career.

While working on stripline and microstrip circuits, I also worked on piezoelectric
(quartz) resonator and filter technology. The piezoelectric device models involved coupling
of mechanical motion to electric fields, but the very high ratio of acoustic to electric wave

xi



velocities in the materials of interest (approximately 105) allows the electrical part of the
analysis to consist of electrostatic analysis.

The 1980s saw the introduction of analog cellular telephone technology in the United
States. These cellular telephones and base stations required a complex two-filter system
called a duplexer that would enable a cellular telephone to transmit and receive simultane-
ously on two nearby frequencies using the same antenna. (The challenge was to keep your
own transmitter’s signal out of your receiver.) These duplexers were realized using blocks of
high-dielectric-constant ceramic, with partially metalized surfaces, acting as interconnected
resonators. Once again, electrostatic modeling was required, and new modeling programs
and approaches had to be perfected.

In the late 1980s we did exploratory work in the newly emerging field of micromachined
electromechanical devices. Using semiconductor industry processing technologies, it was
becoming possible to build extremely small accelerometers, switches, and resonators whose
operation is based on electrostatic forces. This was a new area of electrostatic modeling for
me. Everything I had done before had involved electrodes that stayed in place, and we never
cared about the physical forces involved. Now, we had to calculate the forces and keep track
of the fields and forces as the electrodes moved. Again, I was extending my experience base
in electrostatic modeling.

In the early 1990s we became interested in vacuum microelectronics, particularly in a
structure called the field emission display, an electronic display whose operation is based
on electron emission from millions of very small, sharp, metal tips due to high local
electric fields. Once again, I was extending my electrostatic modeling experience to
include structures with vastly different scales (submicromillimeter resolution near the tips
to millimeter resolution near the screen). Structural capacitances were of interest in that
they could limit circuit switching speeds, but the principal issues were the magnitude and
uniformity of the fields at the emitter tips and then the electron trajectory control (both
desired and undesired) due to these fields as the electrons traveled to the screen, striking
the light emitting phosphors when they arrived. In these models the electrodes remained
immobile, so the fields didn’t change; electron trajectories were the principal subject of
interest.

Putting my history together, although I didn’t realize it at the time, I have spent more
time creating and working with electrostatic analyses than with any single other electrical
engineering discipline. These analyses were never a goal unto themselves. They were an
engineering tool. The simplest approach that could do the job was always the chosen
approach.

The philosophy of this book follows from my personal experience. There is an incredibly
long list of mathematical approaches to numerical electrostatic modeling, but in terms of
learning the electrostatics and choosing a modeling approach to study a given situation,
I try to avoid using more exotic schemes simply “because they’re there.” This doesn’t mean
that all of the approaches in the literature aren’t interesting, important, and valuable, but
in any given circumstance the simplest tool that can do a job is probably the best tool
for that job.

LAWRENCE N. DWORSKY
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Introduction

An introductory treatment of electrostatics usually begins with Coulomb's law, the concepts
of charge, the electric field and energy stored in the field, potential, capacitance, and so on.
Poisson's and Laplace's equations soon appear.

Unfortunately, almost no real world problem can be solved in closed form using the latter
equations. The most basic of electrostatic device analysis, the electric fields surrounding and
the capacitance of a simple parallel plate capacitor, cannot be found.

Typically, a few interesting solution techniques, such as the separation of variables, are
presented. Then the author has to choose a path. Other solution techniques such as confor-
mal mapping can be shown; if the book is to be more than an introductory text, more formal
materials such as Greene's functions can be introduced. In any case, the practitioner with real
world geometries to be analyzed has been abandoned.

A book about numerical analysis techniques typically presents just that – numerical anal-
ysis techniques. The few examples presented are usually based as much on the ease of their
presentation as on their ultimate usefulness.

Mygoal inwriting thisbook is topresent enoughbasic electrostatic theoryasnecessary toget
into real world problems, then to present several of the available numerical techniques that are
applicable to these problems, and finally to present numerous, detailed, examples showinghow
these techniques are applied. In other words, I am presenting the basics of electrostatics and
several relevant numerical analysis techniques, with the emphasis on practical geometries.

The numerical analysis of problems in fields such as electrostatics typically have three
distinct phases:

1 Pre-processing. The conversion of the physical description of the problem to a data
set that is meaningfully digestible to the numerical analysis program chosen for
the job.

2 Numerical analysis. The calculations, based upon the data set describing the geom-
etry and the chosen boundary conditions, resulting (typically) in an approximate
solution for the voltage distribution over the chosen space.
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3 Post-processing. Calculations and programming necessary to provide summary data
such as capacitance and computer visualization of the results.

This book will concentrate on item 2, the numerical analysis. Three fundamental tech-
niques –method of moments, finite difference, and finite elements – are introduced. Sample
problems are presented and computer code that solves the problems is developed.

In order to accomplish the above, some pre-processing capability is necessary. Rather
than develop this capability or simply request that the reader “get it done,” several freely
available packages are introduced and basic tutorials on their usage are presented. These
tutorials are not exhaustive; they introduce enough of the capabilities of these packages
to allow the student to follow, replicate, and extensively modify the examples to the
student’s own needs. No claims are being made that the packages chosen are the best
possible choices for the job. They are, however, choices that work well.

Post-processing of numerical analysis results, in this book, is done on an ad-hoc basis.
Calculating the capacitance of a structure is often very useful because, if the example struc-
ture has been analyzed by other techniques and the results published, accuracy of results
can be compared. This comparison allows for a convenient, one number figure of merit
for choices of resolution, approximate boundary conditions, and so on. Often, graphical
interpretations of field, voltage, and/or charge distributions are presented. These are useful
as a quick visual check on the boundary conditions and on gaining insight into the electro-
static properties (high field points, etc.) of the structure being studied.

With only one exception, all the numerical analysis, post-processing and graphics were
created using MATLAB®. This type of work is what MATLAB is designed to do. The anal-
ysis techniques presented convert partial differential equations into sets of linear equations
with coefficients and variables represented by matrices and vectors. MATLAB is a scientific
programming language designed with the matrix as the fundamental data type. The language
is expressive, the available function list extensive and the easily used graphics superb.

MATLAB is fundamentally an interpreted computer language. It achieves impressive pro-
cessing speeds by providing a liberal assortment of precompiled functions. Preparing user-
written code for these functions involves a procedure thatMATLABcalls “vectorizing.”Vec-
torizingmeans notwriting explicit loops to process array elements because the language itself
allows processing of all of the array elements simultaneously. From an authoring point of
view, this raises a question: Should demonstration code be vectorized as much as possible
in the name of program execution speed or should demonstration code bewritten to explicitly
parallel the derivations of the formulas in the text in the name of pedagogical clarity?

There is no absolutely right answer to the above question. In every case in this book judg-
ment calls were made – vectorized code is shown when the algorithm seems “clear enough.”
This compromise, like all compromises, won’t please everybody every time; ideally, it will
please enough readers enough of the time.

The problems at the end of the chapters were written, as much as possible, to be exten-
sions of the chapters, rather than “verify XXX or put numbers into YYYY.” Many of the
problems involve modifying existing or writing newMATLAB code, leading to capabilities
that were not presented in the chapters’ materials. When the thrust of the problem isn’t to
extend the modeling capability, it is to make a point about the electrostatics issues involved
in the example being treated. In all cases, solving the problems and reading the solution
discussions will be an integral part of the learning process.

Solutions to end-of-chapter exercises may be found at the book companion site,
www.wiley.com/go/numerelectrostatics. Additional resources may be found
at www.lawrencedworsky.com.
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1
A Review of Basic Electrostatics

Electric and magnetic phenomena, including electromagnetic wave propagation, are
described by Maxwell’s equations.1 When nothing is changing with time, that is, when
all derivatives with respect to time are zero, the electric and the magnetic phenomena
decouple and become separate electric and magnetic phenomena. These are referred to
respectively as electrostatics, which describes the properties of systems with separated
static regions of positive and negative electric charge (although the entire system is
charge-neutral), and magnetostatics, which describes the properties of systems with electric
currents and/or magnetized materials.

In this book we shall consider only electrostatics. This subset of a subset of topics
describes a vast number of real-world situations. Chapter 2 describes some practical needs
and uses of electrostatic analyses, the remainder of the book will be dedicated to examining
several techniques for performing these analyses.

The materials to follow are intended to be a quick review of the relationships that will be
used throughout this book. The intent here is to provide a consistent set of notation using all
the relationships that will be needed going forward. Many of these relationships are stated
without derivation or proof. A more complete electrostatics theory text is recommended
for newcomers to the subject. There are very many excellent texts available. The references
list at the end of this chapter is certainly not exhaustive, but the texts cited are considered
standards in the field.

1.1 CHARGE, FORCE, AND THE ELECTRIC FIELD

Electric charges exert forces on one another. This is the basis of electrostatics. The charac-
teristics of these forces are summarized in Coulomb’s law:

Introduction to Numerical Electrostatics Using MATLAB, First Edition. Lawrence N. Dworsky.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

1



1 Electric charge carries a polarity, or sign. The choice of sign was originally arbitrary,
but now is established by tradition—the electron, the most common charged sub-
atomic particle, carries a negative charge.

2 For point charges q1 and q2, measured in coulombs, the (coulomb) force, measured in
newtons, in a uniform medium, is given by

F
!

=
q1q2
4πεr2

ar
! ð1:1Þ

3 In equation (1.1) and elsewhere ε is the permittivity of the material in farads per meter
(F/m). In free space, ε = ε0 = 8.854 F/m. For other linear, isotropic, homogeneous
materials, ε = kε0, where k is the relative permittivity, the relative dielectric
constant, or sometimes simply the dielectric constant, of the material. Farads per se
are defined as coulombs per volt (C/V). In this book we shall consider only linear, iso-
tropic, homogeneous dielectric materials, and going forward this will be assumed.

4 In equation (1.1) r is the distance between q1 and q2.

5 Also, ar
! is a unit vector along the line connecting q1 and q2. If q1 and q2 have the same

sign, then F
!

is pushing q1 and q2 apart. If q1 and q2 have opposite signs, F
!

is pulling
them together.

Equation (1.1) is expressed in the rationalized meter-kilogram-second (mks) system of units.
The derivation of this set of units is an interesting discussion in itself.2

When a test charge is in the area of a collection of charges and the magnitude of these
latter charges is sufficient, relative to the test charge, to render negligible any perturbation of
the situation due to the test charge, then the force on the test charge divided by its charge is
defined to be the electric field at that point (typically called the field point). The electric field
at (the field point) p due to a charge q is therefore

Ep
!

≡
Fp
!
qp

=
q

4πεr2
ar
! ð1:2Þ

where ar
! is the unit vector along the line from charge q to point p and r is the distance from

charge q to point p. The values of E
!

are expressed in volts per meter (V/m).
Since the test charge at p in the preceding example doesn’t disturb the electric field, the

electric field is considered to be a consequence of q; in other words, the test charge doesn’t
have to be present for the field to exist.

The term E
!

is a vector with both magnitude and direction. The direction of E
!

anywhere
in space is identically the direction of the force that would be experienced by a (positive) test
charge at that point. We can look at the field lines of E

!
as a representative of the direction of

the force on a test charge due to q. For a single-point charge, the field lines are simply radial
lines pointing away from the charge. The lines point away because a positive test charge
placed anywhere would feel a force pushing it away from the (source) charge. The magni-
tude of the field decreases with the square of the distance from the charge.

For a collection of charges, the electric field at any point is the sum of the contributions of
all of the charges in the collection. Figure 1.1, for example, shows electric field lines in the
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X–Y plane for two point charges placed at (−1,0,0) and (+1,0,0). In part (a) the two charges
are identical; in part (b) they are the same in magnitude but opposite in sign.

In order to calculate E
!

directly we must keep track of the vector components of every
charge contributing to it. Continuing with the example of Figure 1.1, the simple MATLAB
function charges.m shown here calculates the field anywhere in the X–Y plane.
Calculation of the field components from the geometry is shown in the equations in this
program. Setting q2 to +1 or −1 produces the two cases discussed above.

(a)
8

6

4

2

0

–2

–4

–6

–8
86420–2–4–6–8

(b)

–8
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–2

–2

0

0

2

2

4
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6
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FIGURE 1.1 Electric field lines for point charges at (−1,0,0) and (1,0,0).
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function [ Ex, Ey, Emag ] = charges(x,y)
% This function calculates the electric field for the 2 charge
% layout of Figure 1.1

q2 = −1; % Set this to +1 or −1 as needed
eps = 8.854; % pFd/m in free space

theta1 = atan2(y,x + 1); theta2 = atan2(y,x-1);
rsq1 = (x + 1).^2 + y.^2; rsq2 = (x-1).^2 + y.^2
Emag1 = 1./(4∗pi∗eps∗rsq1); Emag2 = 1./(4∗pi∗eps∗rsq2);
Ex1 = Emag1.∗cos(theta1); Ex2 = q2∗Emag2.∗cos(theta2);
Ey1 = Emag1.∗sin(theta1); Ey2 = q2∗Emag2.∗sin(theta2);

Ex = Ex1 + Ex2; Ey = Ey1 + Ey2;
Emag = sqrt(Ex.^2 + Ey.^2);

end

If both charges are equal to +1 in this example, then along the y axis Ex must always be
zero. This can be deduced from the symmetry of the situation without consulting the equa-
tions. On the other hand Ey is zero only at y = 0 and must be an odd function of y. Ey(0,y,0) is
shown in Figure 1.2.

If the right-hand charge (in Figure 1.2) is changed to −1, then, along the y axis Ey must
always be zero—again, from symmetry considerations. Ex in this case is an even positive
function of y, as shown in Figure 1.3.

If a small charged mass such as an electron is placed near charge(s), as in part (a) or (b) of
Figure 1.1, it would immediately start moving. Its trajectory would not be along a field line.

8
× 10–3

6

4

2

0

–2

–4

–8

–6

–5 –4 –2 –1 0 1 2 3 4 5–3

FIGURE 1.2 Ey(0,y,0) for two identical positive charges.
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Since the electron has mass, it gathers momentum as it moves and a proper description of
its motion requires solving Newton’s equation with the electric field as the driving force.
Electron trajectories in various electric field profiles will be examined in Chapter 17.

Inspection of Figure 1.1a shows that the field lines emanating from both charges start out
radially. They then bend rather than cross and leave the region, going instead to infinity. This
characteristic is identical to the radial field lines from a single charge which also go to
infinity. In Figure 1.1b, however, each field line travels from the positive (left-hand) charge
to the negative (right-hand) charge and terminates. This is characteristic of an electrically
neutral structure, and we can extract a general rule: Electric field lines originate at and
terminate at charge; a neutral structure will have no field lines going to infinity. This will
be expressed as a mathematical relationship in Section 1.2.

1.2 ELECTRIC FLUX DENSITY AND GAUSS’S LAW

Let us define a (vector) quantity D
!

as follows:

D
!

= ε E
! ð1:3Þ

Combining this definition with equation (1.2), we obtain

D
!

=
q

4πr2
ar
! ð1:4Þ

which is independent of the dielectric constant.

The D
!

in these equations is the electric flux density. The rationale for using this term will
become clear shortly. Consider a point charge q surrounded by a virtual spherical shell of
radius r0. The surface area of this shell is 4πr20. Since D

!
is a function only of r, it is a constant
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FIGURE 1.3 Ex(0,y,0) for two charges of opposite sign.
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everywhere on this shell; also, since it is pointed radially outward everywhere, it is normal to
the shell at intersection. The integral of (the magnitude of ) D

!
over the surface of the shell isð ð

s

jD!j ds =
ð ð
s

q

4πr2
4πr2 = q ð1:5Þ

By examining the situation for an arbitrary collection of charges and an arbitrary surface
surrounding them, we can generalize this result to Gauss’s law3

q=
ð ð
s

D
!�ds ð1:6Þ

where the integral is over the entire surface. ds
!

is a differential area with vector direction
normal to the plane of the area and q is the total charge enclosed.

Returning to equation (1.5), we have

ε
ð ð
s

jE!j ds = q ð1:7Þ

For a spherical shell centered at q, we obtain E
!

= E
!

rð Þ only, pointing radially outward,
and therefore

εE
!

4πr2
� �

= q ar
! ð1:8Þ

which is essentially identical to equation (1.2). In other words, Gauss’s and Coulomb’s laws
are equivalent.

Suppose that we have a sphere of charge of radius a, centered at the origin, of uniform
charge density ρ [expressed in coulombs per cubic meter (C/m3)] (see Figure 1.4).

FIGURE 1.4 Sphere of uniform charge density ρ.
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From the symmetry of the situation, we know again that E
!

= E
!

rð Þ only, pointing
radially outward. For any r ≤ a, the charge enclosed is

Qenc = ρ
ð ðr
0

ð
dv= 4

3πr
3ρ ð1:9Þ

Putting this result into Gauss’s law, we have

Qenc = 4
3πr

3ρ = 4πr2εE ð1:10Þ

or

E =
rρ

3ε
ð1:11Þ

The field goes to 0 at r = 0, because there is no charge enclosed. It increases with
increasing r. At r = a all of the charge is enclosed and again using Gauss’ law, for r ≥ a,
we obtain

Qenc = 4
3πa

3ρ = 4πr2εE ð1:12Þ

and then

E =
a3

3εr2
ð1:13Þ

If ρ is not a constant but is instead a function of r (and only r), then it must be brought
inside the integral of equation (1.9) and the integral properly evaluated. The electric
field outside the sphere of charge (r ≥ a) depends only on the total charge in the sphere,
irrespective of the details of ρ(r). This latter point is significant because it tells us that
E(r) (see Figure 1.5) will be the same (again, for r ≥ a), if all the charge is concentrated
at a point at the origin, is spread uniformly through the volume of the sphere, or is
distributed in whatever other configuration that can be imagined. An important case
we will consider (in Section 1.3) is the case where all of the charge resides in a thin shell
at r = a.

1.3 CONDUCTORS

An ideal conductor of charge is a material in which the charge carriers are free to move
about under the influence of electrostatic forces (Coulomb’s law). Good examples of this
are metals such as copper and silver—they are not ideal conductors but they are very
good conductors. The very mobile charge in metals is the electrons in the outer shell
of the metallic atoms; how charge mobility comes about is an important topic of
solid-state physics.4 How charge is arranged in conductors in different situations will
be a central theme in discussion of the method of moments (MoM) in later chapters
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(Chapters 3, 4, etc.). Right now we will consider only situations with geometries whose
symmetries require that charge distributions be uniform.

Consider Figure 1.6. A metal sphere has been placed at r = a, and a spherical metal shell
has been placed at r = b. A charge −Q equal to the total charge enclosed by the inner shell
(+Q) has been placed on the outer shell so that the entire system is now charge-neutral. The
symmetry of the structure implies that charge must be uniform in terms of angle. The charges
on the inner sphere repel each other and are attracted to the charges on the outer sphere. This
means that the charges on the inner sphere will all move to the outer surface of the inner
sphere, which, in turn, means that there is no electric field inside the inner sphere.

FIGURE 1.6 Two concentric spherical shells.
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FIGURE 1.5 E(r) for a sphere of radius a, charge density ρ.
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A further conclusion is that, in terms of the electric field between the outer shell and the
inner sphere, the inner sphere can be either a solid conductor or simply a thin conductor
shell at r = a.

This latter characteristic of electrostatic systems is put to very good use in ultra-high-
voltage systems such as the Van de Graaff generator.5 The safest place for people to be
is inside one of the large metal spheres used in the device, as it is a field-free region.

Returning to Figure 1.6, in the region a ≤ r ≤ b, charge +Q is enclosed, and

E
!

=Er =
Q

4πεr2
ð1:14Þ

When r ≥ b, the sum of the charge on both the inner shell and the outer shell is zero, so that
there is no net charge enclosed and E abruptly drops to zero (Figure 1.7).

Next, consider the structure shown in Figure 1.8. Two large parallel conductor
plates have surface charge densities +σ and −σ [expressed in coulombs per square meter
(C/m2)]. The plates are separated by a distance d.

Near the center of these plates, far from the edges, the charge density on both plates is
uniform. The only possible electric field distribution in this region is uniform, directed from
the positively charged plate toward the negatively charged plate. The figure shows a virtual
right circular cylinder extending from the bottom plate up to some point between the plates.
The actual shape of the virtual structure is insignificant as long as its walls are directed nor-
mal to the plates’ surfaces (i.e., parallel to the electric field lines).

If the area of the top and bottom surfaces of the virtual structure is A, the charge enclosed
by the structure, as long as the top surface is somewhere between the surfaces, is σA.
Because the sidewalls of the structure are parallel to the electric field lines, no lines cross
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FIGURE 1.7 Electric field between two concentric opposite-charge conductive shells.
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the surfaces, and therefore the only contribution to the right-handside of equation (1.6) is the
top surface. Thus Gauss’s law tells us that

σA= εEA ð1:15Þ
or

E =
σ
ε

ð1:16Þ

Gauss’s law can also be expressed in differential, or point, form as3

r� D! = ρ ð1:17Þ

where r � is the divergence operator. In rectangular coordinates this is

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= ρ ð1:18Þ

where ρ = ρ(x,y,z) is the charge density, that is

q =
ð ð ð
V

� ρdV ð1:19Þ

where V is the total volume enclosed by s.

1.4 POTENTIAL, GRADIENT, AND CAPACITANCE

Since there is a force on a charged body in an electric field, moving that body through
the field must require work. (If energy is transferred to the body, we’ll consider it negative
work done.) This is analogous to the work done lifting a mass in a gravitational field.
As in the case of work done in a gravitational field, we can define a potential difference
as the work done in moving the body, where dl

!
is a differential length element along the

path from p to q:

FIGURE 1.8 Electric field between two large parallel plates, near the center.
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ϕq−ϕp = −

ðq
p

E
!� dl! ð1:20Þ

The electrical potential φ is also called the voltage V, so equation (1.20) can equivalently
be written

Vq−Vp = −

ðq
p

E
!� dl! ð1:21Þ

As the preceding equations show, only a voltage difference between two points is
defined. Strictly speaking, the voltage at a point has no meaning. It is common, however,
to define the voltage at some point as zero, often called the ground or reference voltage or
potential. It is then possible to refer to the voltage at any point using a single number—the
implied meaning is that we are talking about the voltage difference between that point and
the reference point.

Returning to the example of the concentric spheres (Figure 1.6), we can easily find the
voltage difference (commonly called the voltage) between the two spheres by integrating
equation (1.14):

V rð Þ¼ −Q

4πε

ðr
a

d�r

�r2
¼ Q

4πε
1
a
−
1
r

� �
ð1:22Þ

Here, we have chosen V(a) = 0 as the voltage reference.
The voltage between the two metal shells is then

Vb ¼ Q

4πε
1
a
−
1
b

� �
ð1:23Þ

From a circuital perspective, we are often more interested in voltages (and fields) at
different places in terms of the applied voltage. We obtain this result by dividing equation
(1.22) by equation (1.23):

V rð Þ=Vb
1=a −1=r
1=a −1=b

ð1:24Þ

For the parallel plate structure (Figure 1.8), taking z = 0 as the bottom plate and z = d as
the top plate, with the bottom plate at ground and the top plate at V0, integrating equation
(1.16), and repeating the same procedure as above, we obtain

V zð Þ= σ

ε
z=V0

z

d
ð1:25Þ

Again analogous to the mass in a gravitational field, the potential difference between two
points is path independent, it is inconsequential which path the integral takes from point
p to point q. This implies that the electrostatic field is conservative—any path leading from
point p back to point p will yield a zero-voltage difference. In other words, electrostatic
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energy is neither gained nor lost going around a closed path. An important point to make
here, even though it is beyond the purview of this book, is that this is not a general electro-
magnetic system property—it is valid only in the electrostatic case.

Restating equation (1.21) to yield the field in terms of the voltage difference, in rectan-
gular coordinates, we have

E
!

= −rV = −
∂V

∂x
ax
! +

∂V

∂y
ay
! +

∂V

∂z
az
!

� �
ð1:26Þ

The operatorr is called the gradient operator. This equation shows clearly why an arbitrary
reference voltage choice has no effect on the electric field.

Suppose that there is a charge q at the origin of our coordinate system. If q is the only
charge present, then no work was required to bring q from anywhere else to the origin. Now,
let us bring a test charge from infinity (where the field due to q is zero) to some radius a.
Using equation (1.21), we obtain

Va = −

ða
∞

E
!� dl! ð1:27Þ

and using equation (1.2), the potential at a is

Va = −

ða
∞

q

4πεr2
dr =

q

4πεa
ð1:28Þ

Equation (1.28) is a scalar equation, which is almost always easier to work with than is a
vector equation. Also, once the voltage is known, it is a straightforward job to calculate the
field. Consequently, we will concentrate on finding voltages and then (if necessary) finding
the field, not the other way around.

For the single-point charge of equation (1.28), we already know that the field lines point
radially outward (from the charge), going to infinity. Figure 1.9. shows surfaces of constant
potential, known as equipotential surfaces or more commonly equipotentials. These surfaces
cross the field lines normally and in this situation are spheres.

If, instead of a single charge q, we have a collection of (discrete) charges, we must replace
equation (1.28) by the sum of the contributions of all the charges, and a is replaced by the
distances from each of the charges (xi,yi,zi) to the measurement point p = (xp,yp,zp).
In other words,

rip =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xp
� �2

+ yi−yp
� �2

+ zi−zp
� �2q

ð1:29Þ

and then

Vp =
X
i

qi
4πεri,p

ð1:30Þ

The gradient [equation (1.26)] operating on V produces en electric field vector whose
direction is the same as that of the maximum change in V. Since the direction of maximum
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