Roman Teschner

Glasfasern 3. Auflage

Dispringer Vieweg

Glasfasern

Roman Teschner

Glasfasern

3. Auflage

Roman Teschner Würzburg, Bayern, Deutschland

ISBN 978-3-662-64122-4 ISBN 978-3-662-64123-1 (eBook) https://doi.org/10.1007/978-3-662-64123-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2013, 2019, 2021

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Planung/Lektorat: Alexander Grün

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Inhaltsverzeichnis

1	1 Glas- ein faszinierender Werkstoff		1		
2	Die Zachariasen-Warren-Netzwerktheorie				
	Literatur		7		
3	3 Wirkung von Netzwerkbildnern, Netzwerkwandlern				
	und Zwischenoxiden in der Glasschmelze und im Glas		9		
	3.1 Netzwerkbildner	9	9		
	3.2 Netzwerkwandler	10	0		
	3.3 Zwischenoxide		1		
	Literatur		1		
4	4 Erstarrung der Schmelze und Kristallisation	13	3		
	4.1 Glaskristallisation	13	3		
	Literatur	1'	7		
5	Glasviskosität.				
-		1;	9		
•	5.1 Berechnung der Glas-Fixpunkte aus der chemische	en	9		
	5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 23	9 3		
C	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 2. kosität	9 3 3		
	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22. kosität	9 3 3 9		
6	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22 kosität 22 29	9 3 3 9		
6	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22 kosität 23 29 3 ur und der	9 3 3 9		
6	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 2: kosität 2: 2: 2: 3: ur und der sschmelze 3:	9 3 3 9 1 5		
6	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22 kosität 22 29 31 ur und der 32 sschmelze 33 36	9 3 3 9 1 5 6		
6	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en	9 339 1 56 9		
6 7	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22 kosität. 23 ur und der 33 sschmelze. 33 ung	9 339 1 56 99		
6 7	 5.1 Berechnung der Glas-Fixpunkte aus der chemische Zusammensetzung	en 22 kosität. 23 in und der 33 sschmelze. 36 ung 39	9 339 1 56 990		

	7.4	Berech	nung der Glasdichte aus der chemischen	
		Zusamı	mensetzung	40
	Litera	tur		41
8	Therr	nische G	laseigenschaften	43
	8.1	Wärme	dehnung	43
		8.1.1	Berechnung aus der chemischen	
			Glaszusammensetzung	44
	8.2	Spezifis	sche Wärme	45
		8.2.1	Berechnung der spezifischen Wärme aus	
			der chemischen Zusammensetzung	45
	8.3	Wärme	leitfähigkeit und Wärmestrahlung	46
		8.3.1	Berechnung der Wärmeleitfähigkeit aus	
			der chemischen Zusammensetzung	48
	Litera	tur		48
0				C 1
9	Elekt	rische Gl		51
	9.1	Elektris		51
		9.1.1	Abnangigkeit von der chemischen Zusammensetzung	52
		9.1.2	Berechnung des spezifischen widerstandes	<i></i>
	0.2	D.1.1.4	aus der chemischen Zusammensetzung	54
	9.2	Dielekt	rische Eigenschaften der Gläser.	50
		9.2.1	Berechnung der Permittivitätszahl aus	57
	Litana	• •••	der chemischen Zusammensetzung	5/
	Litera	ur		28
10	Mech	anische (Jlaseigenschaften	59
	10.1	Elastisc	che Eigenschaften	59
		10.1.1	Berechnung des E-Moduls aus	
			der chemischen Zusammensetzung	60
	10.2	Bruchn	nechanik	61
	10.3	Festigk	eit von Glas.	63
		10.3.1	Berechnung der Zugfestigkeit aus	
			der chemischen Zusammensetzung	65
	Litera	tur		66
11	Optis	che Eiger	nschaften	69
	11.1	Lichtbr	echung	69
	Litera	tur		71
12	Cham	uscho Ro	ständigkeit	72
14	12.1	Wasser	- und Säuraheständigkeit	73 27
	14,1	12 1 1	Berechnung der hydrolytischen Reständigkeit	13
		12.1.1	aus der Zusammensetzung	75
			aus der Zusammensetzung	15

	12.2 Laugenbeständigkeit Literatur.	77 80
13	Einige Aspekte der Kanzerogenität von Fasern	81 86
14	Rohstoffe für C-und E-Glasherstellung 14.1 Quarzsand 14.2 Borax 14.3 Soda 14.4 Spodumen 14.5 Kalk 14.6 Dolomit 14.7 Nephelin-Syenit 14.8 Kaolin 14.9 Flussspat 14.10 Natriumsulfat und Natriumnitrat 14.12 Zinkoxid 14.13 Glasscherben Literatur. Literatur	 89 90 91 92 92 93 94 94 95 96 98 99 99 101
15	Gemengeaufbereitung.	103 106
16	Schmelzen des Gemenges16.1Läuterung von Glasschmelzen16.2Wärmebedarf für den SchmelzprozessLiteratur.	107 109 111 113
17	Elektrische Glasschmelze17.1Elektroden17.2Feuerfeste SteineLiteratur.	115 117 121 124
18	Glas- und Glasfaserproduktion	127 139
19	Bushings	141 161
20	Schlichte	163 179
21	Direkte Textilglasfasererzeugnisse. 21.1 Roving	181 181

	21.2	Vorgarne (Glasstapelfaservorgarne)	182
	21.3	Hybridgarne	184
		21.3.1 Commingling-Verfahren	185
		21.3.2 Twintex [®] -Verfahren	189
		21.3.3 Dref-Verfahren	189
		21.3.4 Andere Möglichkeiten der Herstellung	
		von Hybridgarnen.	191
	Literat	tur	194
22	Direk	te nichttextile Glasfasern	197
23	Glasfa	asernadelmatte	201
24	Vlies		203
25	Basalt	tfasern	207
	Literat	tur	214
26	Looph	DW07090	217
20	26.1	Auslaugung der F. Glasfasern	217
	26.1	Auslaugung der Alkalisilikatolasfasern	217
	20.2		210
27	Webe	n von Glasfasern	223
	Literat	tur	227
28	Faser	verbundwerkstoffe	229
	28.1	Fasern und Matrices	229
	28.2	Aufbau der Faserverbundkunststoffe	231
	28.3	Ausgewählte Herstellmethoden von Faserverbundkunststoffen	232
		28.3.1 Prepreg-Technologie	233
		28.3.2 Strangziehverfahren (Pultrusion)	233
		28.3.3 SMC – Technologie	234
	28.4	Einige High-Tech-Werkstoffe mit Glasfasern	234
	28.5	Mechanische Eigenschaften der Faserverbundkunststoffe	236
	28.6	Faserkeramik-Verbundwerkstoffe	245
	28.7	Metall-Matrix-Composits (MMC)	248
	Literat	tur	255
29	Übung	gsaufgaben	257

Glas- ein faszinierender Werkstoff

Glas gehört zu den ältesten Werkstoffen.

Schon bei der Entstehung der Erde kam es zur glasigen Erstarrung des schmelzflüssigen Magma. Auch bei Vulkaneruptionen können die Ergussgesteine im glasigen Zustand als Obsidiane erstarren.

Die ersten von Menschen erzeugten Gläser entstanden vor ca. 4000 Jahren, aber schon vorher wurde das natürliche Glas (Obsidian) zur Herstellung von Werkzeugen verwendet.

Die ersten künstlichen Gläser dienten den Ägyptern, den Assyrern und den Chinesen als Schmuckgegenstände (z. B. Glasperlen). Danach wurde das Glas vorwiegend zur Herstellung von Gefäßen verwendet.

Die entscheidende Wende in der Glastechnologie kam im Jahre 1800 als es zum ersten Mal gelang größere, homogene Glasscheiben herzustellen. Die ersten Textilglasfasern wurden 1830 gezogen und verwebt, wobei eine Art von Spinndüsen erstmals 1842 zum Einsatz kam. Die rasante Entwicklung in der Glasherstellung führte schließlich zum Einsatz des Glases in der Optik, im Bauwesen, in der Lasertechnik, in der Raumfahrttechnik, in der Optoelektronik, in der Faserziehtechnologie und in anderen Bereichen. Glas besitzt im Gegenteil zu Metallen die faszinierende Eigenschaft beim Abkühlen ohne Kristallisation zu erstarren und hat keine definierte Schmelztemperatur. Unterhalb der Transformationstemperatur stellt Glas eine eingefrorene, unterkühlte Flüssigkeit zugleich einen Sonderzustand der Materie dar.

Die Änderung des Glasvolumens und der relativen Länge eines Glaskörpers in Abhängigkeit von einer kontinuierlich ansteigenden Temperatur ist aus der Abb. 1.1 zu ersehen. Zum Vergleich wurde auf dem Abb. 1.1 der Verlauf der Änderung des Volumens und der relativen Länge eines kristallinen Systems dargestellt.

1

[©] Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021

R. Teschner, Glasfasern, https://doi.org/10.1007/978-3-662-64123-1_1

 T_{g} – Transformationstemperatur einer Kristallinen Substan

Abb. 1.1 Änderung der relativen Länge und des Glasvolumens in Funktion der Temperatur

Die durchgezogene Linie auf der Abb. 1.1 entspricht thermodynamischen Gleichgewichtzuständen. Der Bereich der unterkühlten Schmelze stellt ein thermodynamisch metastabiles Gleichgewicht dar.

Unter der Transformationstemperatur (T_g) verläuft die Kurve parallel zu der eines Kristalls, wo schon keine Gleichgewichtszustände mehr herrschen.

Unter der Transformationstemperatur ist aus der unterkühlten Flüssigkeit ein Festkörper mit einer hohen Entropie geworden.

Der Übergang von der flüssigen Schmelze zu einem glasigen Festkörper erfolgt bei einer einheitlichen Viskosität, die 10^{13,3} dPas beträgt.

Die Transformationstemperatur ist ein wichtiger Fix-Punkt eines beliebigen Glases.

Die Zachariasen-Warren-Netzwerktheorie

Auf der Basis der Definition des Glases (als unterkühlte Flüssigkeit) wurde von Zachariasen und Warren die s. g. Netzwerkhypothese aufgebaut. Laut Zachariasen [13] und Warren [11] sind in einem Kristall die $[SiO_4]$ -Tetraeder regelmäßig angeordnet.

In einem Glas bilden die [SiO₄]-Tetraeder ein unregelmäßiges, räumliches Netzwerk.

Dasselbe betrifft das Boratglas (B_2O_3 -Glas), das ein unregelmäßiges verzweigtes Netzwerk aus [BO_3]-Plandreiecken bildet.

Die Ausbildung eines regelmäßigen und eines unregelmäßigen Netzwerkes ist aus der Abb. 2.1 zu ersehen.

Nach der Netzwerktheorie von Zachariasen und Warren gelten für die Bildung räumlicher Netzwerke von Oxidgläser folgende Bedingungen:

- Die Koordinationszahl des Kations muss klein sein
- Ein Anion (O⁻², F⁻) darf an nicht mehr als zwei Zentralatomen (Kationen) eines Polyeders gebunden sein.
- Die Anion-Polyeder (Sauerstoff- Polyeder) dürfen gemeinsame Ecken, nicht gemeinsame Kanten oder Flächen haben.
- Mindestens 3 Ecken eines Polyeders müssen über Brückenanionen mit anderen Polyedern verknüpft sein.

Mögliche Beispiele einer dreidimensionalen Verknüpfung der Grundbauelemente in Berylliumfluorid- und Arsensulfidgläser sind aus der Abb. 2.2 [10] zu ersehen.

Die Zachariasen-Warren-Theorie erklärt das enorme Ansteigen der Viskosität der Glasschmelze beim Abkühlen.

Mit dieser Theorie lassen sich auch folgende Phänomene erklären:

R. Teschner, Glasfasern, https://doi.org/10.1007/978-3-662-64123-1_2

Abb. 2.1 Regelmäßiges (A) und unregelmäßiges (B) SiO₂-Netzwerk [10]

Abb. 2.2 Mögliche Verknüpfungen der Grundbauelemente in Berylliumfluorid- und Arsensulfidgläsern [10]

- Abnahme der Viskosität der Glasschmelze bei steigendem Anteil von Netzwerkwandlern (Alkali- und Erdalkalioxide)
- Änderung der elektrischen Leitfähigkeit des Glases in Funktion der Anteile an Netzwerkbildnern und Netzwerkwandlern.
- Änderung der Glas-Fix-Punkte in Abhängigkeit von Anteilen an Netzwerkbildnern und Netzwerkwandlern.
- Änderung der Glaseigenschaften in Abhängigkeit von der Glaszusammensetzung.

Die Zachariasen-Warrensche-Netzwerktheorie hat in der Glasforschung einen rasanten Fortschritt gebracht. Es wurden zwar Gläser (PbO-SiO₂) entwickelt, deren Eigenschaften und ihre Änderungen in Abhängigkeit von der Zusammensetzung sich mit der

Zachariasen-Warren-Theorie nicht erklären lassen, trotzdem bleibt sie eine der zentralen Struktur- und Arbeitshypothesen.

Sie wurde in den vierzigen Jahren mit der Feldstärketheorie von Dietzel [3, 4] hervorragend ergänzt. Dietzel hat das Coulumbsche Gesetz (Anziehen und Abstoßen elektrischer Ladungen) zur Beschreibung der Wechselwirkung zwischen Kationen und Anionen im Glas angewandt. Die Formel:

$$\mathbf{K} = \frac{1}{4\pi\varepsilon} \times \frac{Z_{\mathbf{k}} \cdot Z_{\mathbf{a}}}{(r_{\mathbf{k}} + r_{\mathbf{a}})} e^2$$

oder ihre vereinfachte Form:

$$\mathbf{K} = \frac{1}{4\pi\varepsilon} \times \frac{Z_{\mathbf{k}} \cdot Z_{\mathbf{a}}}{a^2}$$

Z_k - Wertigkeit des Kations

Z_a – Wertigkeit des Anions

e Elementarladung

- rk Radius des Kations
- rk Radius des Kations
- $r_{\rm a}$ Radius des Anions
- $a r_{k} + r_{a}$
- ε Permittivitätszahl (Dielektrizitätskonstante)

gibt uns ein Bild über die zwischen den Kationen und den Anionen herrschenden Kräfte (die Größe K). Für die von einem einzelnen Ion ausgehender Kraftwirkung führte Dietzel den Begriff der Feldstärke ein:

$$\mathbf{F} = \frac{Z_k}{a^2}$$

Die Ordnung der Kationen nach ihrer Feldstärke ist aus der Tab. 2.1 zu ersehen.

Zachariasen, Warren und Dietzel teilen die am Glasaufbau beteiligten Oxide in drei Gruppen:

- Netzwerkbildner (SiO₂, GeO₂, B₂O₃, As₂O₃, P₂O₅)
- Netzwerkwandler (Na₂O, K₂O, Li₂O, CaO, MgO, ZnO)
- Zwischenoxide (Mn₂O₃, ZrO₂, BeO, Al₂O₃, Fe₂O₃, TiO₂)

Wie das aus der Tab. 2.1 hervorgeht liegt die Feldstärke "F" der Netzwerkbildner im Bereich 1,4 bis 2,0; die der Netzwerkwandler von 0,1 bis 0,4.

Die Feldstärke der amphoteren Oxide (Zwischenoxide) beträgt 0,5–1,0 und liegt zwischen der Feldstärke der Netzwerkbildner und der Netzwerkwandler.

Nach Dietzel treten stabile Verbindungen auf, wenn der Feldstärkeunterschied ΔF zwischen zwei Kationen eines binären Systems größer als 0,3 wird.

Element	Wertig	Ionenradius	Hauptkoordinations	Ionenabst	F im Abst $das \Omega^{-2}$ long	Funktion
	Kelt Z	r = 0	Zalli KZ	a in [nm]	$\frac{1}{7}$	Glas
		r m [þm]		a in [pin]	LIa	otruktur
			-			Struktur
K	1	133	8	277	0,13	Netzwerk
Na	1	98	6	230	0,19	wandler
Li	1	78	6	210	0,23	$F = \frac{Z}{a^2}$
Ba	2	143	8	286	0,24	$\approx 0,1-0,4$
Pb	2	132	8	274	0,27	
Sr	2	127	8	269	0,28	
Ca	2	106	8	248	0,33	
Mn	2	91	6	223	0,40	
Fe	2	83	6	215	0,43	
Mn	2	83	4	203	0,49	Zwischen
Mg	2	78	6	210	0,45	oxide
Zn	2	83	4	196	0,53	$F = \frac{Z}{a^2}$
Zr	4	87	4	203	0,59	$\approx 0.5 - 1.0$
Fe	3	67	8	228	0,77	
Al	3	57	6	199	0,76	
Ti	4	64	4	188	0,85	
			6	189	0,84	
			4	177	0,96	
			6	196	1,04	
В	3	20	4	150	1,34	Netzwerk
Ge	4	44	4	166	1,45	bildner
Si	4	39	4	160	1,57	$F \approx$
Р	5	34	4	155	2,1	1,4–2,0

Tab. 2.1 Ordnung der Kationen nach ihrer Feldstärke F [4, 6]

Je größer der Feldstärkeunterschied desto höher die Tendenz zur Glasbildung, desto niedriger die Neigung zur Kristallisation bzw. zur Phasentrennung.

Schmelzen binärer Systeme, bei denen der Feldstärkeunterschied größer als 1,33 ist erstarren in der Regel leicht glasig.

Weitere Theorien der Glasbildung und der Glasstruktur sind:

- Die Kristalltheorie von Lebedew [1, 5]
- Die kinetische Theorie von Uhlmann [7, 8, 9]
- Die Quantentheorie der Glasstruktur von Weyl [2, 12] u. a.

Ein zweidimensionales Modell der Struktur eines chemisch beständigen C-Glases ist aus der Abb. 2.3 zu ersehen.

Abb. 2.3 Modell der Struktur eines C-Glases

Literatur

- Botwinkin, O.K.: Der Aufbau des Glases. Verlag der Akad. der Wiss.UdSSR, Moskau-Leningrad (1955)
- Botwinkin, O.K.: Der glasartige Zustand. Verlag der Akad. der Wiss.UdSSR, Moskau-Leningrad (1960)
- 3. Dietzel, A.: Glasstruktur und Glaseigenschaften. Glastechn. Ber. 22 (1948)
- Dietzel, A.: Die Kationenfeldstärken und ihre Beziehungen zu entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silikaten. Z. Elektrochem. 48 (1942)
- 5. Lebedev, A.A.: Über Polymorphismus und das Kühlen von Glas. Staatl. Opt. Inst, Leningrad (1921)
- 6. Scholze, H.: Glas- Natur, Struktur und Eigenschaften. Springer, Berlin (1988)
- 7. Uhlmann, D.R.: Polymer glasses and oxide glasses. J. Non-Cryst. Solids 42 (1980)
- Uhlmann, D.R.: Nucleation and crystallisation in glass-forming systems. NATO ASI Series 92 (1985)
- Uhlmann, D.R., Kreidl, N.J.: Glass: Science and Technology Bd. 1 1983, Bd. 2 1984, Bd. 3 1986, Bd. 5 1980. Academic, New York
- 10. Vogel, W.: Glaschemie. Springer, Berlin (1992)
- 11. Warren, B.E.: Summary of work on atomic arrangement in Glas. J. Am. Ceram. Soc. 24 (1941)
- 12. Weyl, W.A.: The Constitution of Glasses. Interscience, New York (1962)
- 13. Zachariasen, W.H.: Die Struktur der Gläser. Glastechn. Ber. 11 (1933)

Wirkung von Netzwerkbildnern, Netzwerkwandlern und Zwischenoxiden in der Glasschmelze und im Glas

Die chemische Zusammensetzung eines Glases hat einen entscheidenden Einfluss auf die Eigenschaften der Glasschmelze und auf die Eigenschaften der daraus hergestellten Produkte wie z. B. Glasfasern.

Eine präzise Vorausberechnung der zu erwartenden Glaseigenschaften ist wegen dem komplizierten Mehrkomponenten-System nicht möglich. Die Auswirkung der Borsäureanomalie [1–3] bzw. des Mischalkalieffektes [4–7] lassen sich mathematisch nicht genau erfassen. In diesem Kapitel wird im Allgemeinen der Einfluss ausgewählter Netzwerkbildner, Netzwerkwandler und der Zwischenoxide auf die Glaseigenschaften kurz erörtert.

3.1 Netzwerkbildner

- SiO₂ Erhöht stark die Viskosität (Fixpunkte) der Glasschmelze. Verbessert die Wasser- und Säurebeständigkeit des Glases. Erhöht die Zugfestigkeit vom Glas. Erniedrigt die Dichte, die Brechzahl, die Wärmeausdehnung und die UV-Absorption vom Glas. Reduziert die Permittivitätszahl (Dielektrizitätskonstante) des Glases.
- B_2O3 Erniedrigt im Hochtemperaturbereich die Viskosität der Glasschmelze. Verringert die Oberflächenspannung der Glasschmelze. Verbessert die Wasser-, Säure- und Laugenbeständigkeit des Glases. Verringert die Dichte und die Permittivitätszahl vom Glas. Erniedrigt gravierend den linearen Ausdehnungskoeffizient und verbessert damit die Temperaturwechselbeständigkeit der Glasprodukte. Durch den Koordinationswechsel [BO₃] \rightleftharpoons [BO₄] verursacht die s.g. Borsäureanomalie.

[©] Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021

R. Teschner, Glasfasern, https://doi.org/10.1007/978-3-662-64123-1_3

3.2 Netzwerkwandler

- CaO Erhöht stark die Glasfestigkeit (Zug-, Biegefestigkeit). Erhöht die Oberflächenspannung der Glasschmelze und die Glasdichte. Vergrößert die Neigung der Gläser zur Kristallisation. Beeinflusst positiv die chemische Beständigkeit des Glases.
- MgO Erhöht sehr stark die Oberflächenspannung und verbessert hervorragend die Ziehfähigkeit der Glasschmelze. Drängt die Kristallisation zurück. Erhöht stark die Härte des Glases. Verringert entscheidend Die Wärmedehnung und verbessert damit die Temperaturwechselbeständigkeit des Glases. Verbessert die Wasser- und Säurebeständigkeit vom Glas. Erleichtert die Entspannung (Kühlung) des Glases.
- BaO Erhöht sehr stark die Glasdichte. Verbessert das Einschmelz- und Läuterverhalten. Verleiht dem Glas eine sehr gute Geschmeidigkeit und Glanz. Vergrößert gravierend die Lichtbrechung und verbessert die Klangfähigkeit der Glasprodukte. Verschlechtert die chemische Beständigkeit des Glases.
- ZnO Erhöht die Oberflächenspannung der Glasschmelze und die technologische Länge des Glases, beeinflusst positiv die Einschmelzbarkeit des Gemenges, erniedrigt im Hochtemperaturbereich die Viskosität der Schmelze, erhöht merklich die Oberflächenhärte und die Lichtbrechung, verringert die Wärmedehnung und verbessert die Wärmeleitfähigkeit, verbessert die Wasser- und Säurebeständigkeit der Gläser, verschlechtert die Laugenbeständigkeit des Glases.
- Na₂O Verbessert die Einschmelzbarkeit des Gemenges und die Läutereigenschaften der Glasschmelze. Erniedrigt sehr stark die Glasviskosität. Vergrößert stark den Ausdehnungskoeffizient und beeinträchtigt damit die Temperaturwechselbeständigkeit der Glasprodukte. Beeinflusst negativ die chemische Beständigkeit als auch die Zug- und Biegefestigkeit des Glases. Verursacht eine starke Korrosion des Oberofens in flammenbeheizten Anlagen.
- K₂O Wirkt sich positiv auf die Einschmelzbarkeit des Gemenges aus. Erweitert den Verarbeitungsbereich der Glasschmelze (s. Abb. 5.1). Verschlechtert die chemische Beständigkeit des Glases. Erniedrigt sehr stark die Oberflä chenspannung der Glasschmelze und die Zugfestigkeit der Glasprodukte. Verleiht dem Glas hohen Glanz und Geschmeidigkeit.
- Li₂O Setzt die Viskosität der Glasschmelze stark herab. Verbessert das Einschmelzund Läuterverhalten. Senkt intensiv die Wärmeausdehnung des Glases. Erhöht die Oberflächenhärte. Verbessert die Säure- und Laugenbeständigkeit des Glases. Erhöht die Oberflächenspannung der Glasschmelze. Verbessert die Ziehfähigkeit vom Glas.

3.3 Zwischenoxide

- Al₂O3 Verbessert die Wasser-, Säure- und Laugenbeständigkeit. Erniedrigt die Wärmeleitfähigkeit vom Glas. Senkt die Neigung der Gläser zur Kristallisation. Erhöht die Oberflächenspannung der Glasschmelze. Verbessert die elektrische Leitfähigkeit der Borosilikatgläser. Erhöht die Glasviskosität (Glasfixpunkte) und erweitert den Verarbeitungstemperaturbereich. Verringert die Korrosion der feuerfesten Steine im Schmelzofen.
- ZrO₂ Erhöht die Viskosität der Glasschmelze und die mechanische Festigkeit des Glases. Verbessert die chemische Beständigkeit, insbesondere die Alkalibeständigkeit vom Glas (s. auch Abschn. 12.2). Reduziert den Ausdehnungskoeffizienten. Erhöht den Elastizitätsmodul und die Brechzahl.
- Fe₂O3 Wird meistens als Verunreinigung der Glasrohstoffe ins Glas eingeführt. Kann aber auch beabsichtigt ins Glas eingeführt werden. Verleiht dem Glas einen Farbstich. In Abhängigkeit vom Verhältnis Fe⁺²/Fe⁺³, vom SO₃-Gehalt und von den Schmelzbedingungen ändert sich die Farbe und die Farbenintensität. Die farblosen Gläser, die durch Eisenoxide verunreinigt wurden, können chemisch oder physikalisch entfärbt werden.

Literatur

- 1. Coenen, M.: Dichtemessungen an Boratgläsern. Glastechn. Ber. 35 (1962)
- Pesina, TIuM.: Strength and structure of glasses in the Na₂O-B₂O₃ system. Sov. J. Glass Phys. Chem. 7 (1981)
- 3. Vogel, W.: Glaschemie. Springer, Berlin (1992)
- Jain, H., Downing, H.L., Peterson, N.L.: The mixed alkali effect in lithium-sodium borate glasses. J. Non-Cryst. Solids. 64 (1984)
- Wakabayashi, H., Terai, R., Watanabe, H.: Alkali ion mobility in mixed cation glasses. J. Ceram. Soc. Japan 94 (1986)
- Wu, ZuM.: Study of the mixed alkali effect on chemical durability of alkali silicate glasses. J. Non-Cryst. Solids 84 (1986)
- Yastrebova, L.S., Antonova, N.I.: Nature of the two alkali effect in silicate glass. Inorg. Mat. 3 (1967)

4

Erstarrung der Schmelze und Kristallisation

Wie schon erwähnt besitzen Gläser keinen festen Schmelzpunkt. Die glasig-amorphe Erstarrung einer flüssigen Schmelze (Übergang nicht in einen kristallinen, sondern in einen glasigen Festkörper) stellt einen Sonderfall des Erstarrungsverhaltens dar. Die meisten Salze schmelzen und kristallisieren beim Abkühlen bei derselben Temperatur.

Eine flüssige Schmelze erstarrt nur dann glasig, wenn die Beweglichkeit der Bausteine so eingeschränkt wird, dass sie beim Abkühlen nicht wieder an ihre alten Plätze zurückkehren können und das Kristallgitter damit zerstört wird.

Bei den Silikatglasschmelzen (erschmolzenes Gemenge) passiert das, weil die Viskosität der Schmelze beim Abkühlen durch die Bildung dreidimensional verknüpfter Netzwerke aus Silikatbaugruppen sehr stark ansteigt [1].

Die glasig-amorphe Erstarrung ist hauptsächlich von der Abkühlgeschwindigkeit abhängig. Je schneller und intensiver die Abkühlung desto leichter kann der glasige Zustand "eingefroren" werden.

Die in der Glastechnologie meistens unerwünschte Kristallisation bezeichnet man als Entglasung. Durch die Modifikation des Gemenges und dadurch der Glaszusammensetzung kann die eventuelle Kristallisation vermieden werden.

4.1 Glaskristallisation

Nach Tammann [2] wird die glasige oder kristalline Erstarrung einer Schmelze durch zwei Hauptfaktoren bestimmt:

- 1. Keimbildung [Anzahl der sich in einer Volumeneinheit während einer bestimmten Zeit bildenden Kristallisationszentren]
- 2. Keimwachstum– [Kristallisationsgeschwindigkeit der Keime (µm/min; cm/s)]

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021

R. Teschner, Glasfasern, https://doi.org/10.1007/978-3-662-64123-1_4

Abb. 4.1 Temperaturverlauf von Keimbildungsgeschwindigkeit (KB), Kristallisationsgeschwindigkeit (KG) und Viskosität (η)

Die Abhängigkeit der Keimbildung (KB) und des Keimwachstums (KG) als Funktion der Temperatur (Unterkühlung) ist in Abb. 4.1 dargestellt.

Die Kristallisation (Entglasung) beginnt immer mit einer Keimbildung. Man unterscheidet eine homogene und eine heterogene Keimbildung.

Die homogene Keimbildung entsteht durch thermische Schwankungen in der Glasschmelze, die zu Dichteunterschieden und zur Bildung der Vorkeime (Embryonen) führt. Die Embryonen, die sich in der Glasschmelze im Gleichgewicht befinden, können nur dann weiter wachsen, wenn die kritische Kristallingröße überschritten wird [3].

Die häufigste Form ist die heterogene Keimbildung, die durch Fremdkeime (Keimförderer) verursacht wird. Das gezielte Zufügen von Keimförderern wird bei der Herstellung der Glaskeramik der photosensitiven Gläser, der Trübgläser oder Farbgläser (Goldrubinglas) benutzt [4]. Die ungewollte, heterogene Keimbildung kann durch Verunreinigungen hervorgerufen werden.

Zu den Keimförderern gehören z. B. TiO₂, ZrO₂, P₂O₅.

In der Glastechnologie, bei der Glasfabrikation (ungewollte Kristallisation) muss darauf geachtet werden, dass der Verarbeitungstemperaturbereich außerhalb des Keimbildungsbereiches liegt.

Dietzel [5] hat vorgeschlagen den reziproken Wert der maximalen Kristallisationsgeschwindigkeit KG_{max} als Faktor für die Glasbildungstendenz einer Schmelze einzuführen.

Tab. 4.1 Faktore	en e _i zur Berec	hnung der Liq	uidustempera	ıtur T ₁ und deı	Temperatur o	ler maximalen	Kristallisatio	nsgeschwindi	igkeit T _{KGmax}	[6, 7]
Temperatur	Berechnungs	faktorene der	Oxide							
	SiO_2	Al_2O_3	B_2O_3	Fe_2O_3	Cr_2O_3	CaO	MgO	Na_2O	K_2O	SO_3
\mathbf{T}_{l}	+1171	+189	-757	+897	-3473	+1504	+653	-2012	-1606	+1833
$T_{\rm KGmax}$	+1003	+937	-283	-840	+2192	+1075	+592	-1308	-1129	+472

Temperatur	Glassorte			
	JMS C-Glas	JM 902	JMS SP 111	
T _{KGmax} [° C]	885	790	910	
T _{IB} [° C]	965	805	1015	
$T_{lE} [^{\circ}C]$	980	925	1105	
T _f	1120	1105	1435	
$\Delta T = (T_f - T_l)$	140	180	330	

Tab. 4.2 Berechnete Liquidus(T_{IB}) – und KG_{max} – Temperaturen als auch experimentell ermittelte Liquidus(T_{IE})-und Zerfaserungstemperatur T_f und $\Delta T = (T_f - T_{IE})$ ausgewählter Gläser

Glasigkeit =
$$\frac{1}{KG_{\text{max}}}$$

In bestimmten Bereichen ändert sich die Kristallisationsgeschwindigkeit KG_{max} , die Keimbildungsgeschwindigkeit KB_{max} und damit auch die Liquidustemperatur T_1 fast linear mit der chemischen Glaszusammensetzung.

In diesen Bereichen ist es auch möglich die Liquidustemperatur T_1 und die Temperatur der maximalen Kristallisationsgeschwindigkeit T_{KGmax} zu errechnen.

Für ein C-Glas erreicht man zufriedenstellende Übereinstimmung der experimentellen und der berechneten Werte indem man sich der Formel:

$$T_1 = \sum \frac{e_i p_i}{p_{SiO2}}$$
 bzw. $T_{KGmax} = \sum \frac{e_i p_i}{p_{SiO2}}$

e_i – Berechnungsfaktoren der Oxide

p_i – Anteil der Oxide (Ma.-%) im Glas

Von Rodrigues Cuartas [6] bedient.

Die Faktoren e_i zur Berechnung der Liquidustemperatur und der Temperatur der maximalen Kristallisationsgeschwindigkeit sind in der Tab. 4.1 zusammengestellt.

Einige T_1 – und T_{KGmax} -Werte ausgewählter Gläser wurden in der Tab. 4.2 zusammengestellt.

Die Faktoren e_i zur Berechnung der Liquidustemperatur und der Temperatur der maximalen Kristallisationsgeschwindigkeit sind von der Glasart (Glaszusammensetzung) abhängig (7).

Die theoretisch errechneten T_1 – und T_{KGmax} -Werte müssen mit äußerster Vorsicht betrachtet werden, da die Linearität der Funktion nur im begrenzten Bereich gegeben ist. Um eine Entglasung im technologischen Spinnprozess zu vermeiden, ist es wichtig, dass die Faserziehtemperatur möglichst weit entfernt von der Liquidustemperatur liegt. Es ist vorteilhaft wenn die Temperaturdifferenz (ΔT) mehr als 70 K beträgt. Eine große Differenz $\Delta T = (T_f - T_l)$ garantiert einen sicheren Spinnprozess, ohne die Gefahr einer Glaskristallisation im Feeder im Bushingsblock oder im Bushing.

Literatur

- Brückner, R.: Charakteristische physikalische Eigenschaften der oxydischen Hauptglasbildner und ihre Beziehung zur Struktur der Gläser. Glastechn. Ber. 37 (1964)
- 2. Tammann, G.: Kristallisieren und Schmelzen. Barth, Leipzig (1903)
- 3. Plumat, E.R.: Surface and bulk nucleation and phase separation in some vitreous systems. Silic. Ind.**38** (1973)
- Huang, Z.J.: Effekt of water on the crystalization of Li₂O-SiO₂ glasses and gels. J. Cer. Soc. Japan 91 (1983)
- 5. Dietzel, A.: Glasstruktur und Glaseigenschaften. Glastechn. Ber. 22 (1948)
- 6. Rodriguez Cuartas, R.: Calculo teorico de propiedades del vidrio: viscosidad, parametros termicos y parametros de desvitrificacion. Ceram. Vidrio 23 (1984)
- Scholze, H.: Glas- Natur. Springer-Verlag, Struktur und Eigenschaften. Berlin-Heidelberg-New York(1988)

Glasviskosität

Beim Übergang vom festen in den flüssigen Zustand einer Silikatschmelze infolge der Temperatureinwirkung bricht die Fernordnung zusammen.

Die einzelnen Baugruppen, Bauelemente wie z. B. $[SiO_4]$ -Tetraeder haben eine große Bewegungsfreiheit, die eine Funktion der Temperatur ist.

Je höher die Temperatur oberhalb des Softening-Points desto größer die Bewegungsmöglichkeit, umso mehr Bindungen aufgerissen werden und umso geringer die Viskosität der Silikatschmelze [15, 23].

Aus technologischer Sicht für eine Glasproduktion und Glasverarbeitung ist es unbedingt notwendig an dem Temperaturverlauf der Viskosität Bezugspunkte zu fixieren (Fixpunkte), die die Glasschmelze charakterisieren.

Die technologischen Fixpunkte beginnend mit der höchsten Viskosität sind wie folgt:

- Unterer Kühlpunkt/Strain Point/($lg \eta = 14,5; \eta = dPas$). Wird auch als untere Entspannungstemperatur bezeichnet. Das Glas lässt sich bei dieser Temperatur nur mühsam entspannen.
- *Transformationspunkt* ($\lg \eta = 13,3$). Wird auch als Einfriertemperatur bezeichnet.
- *Oberer Kühlpunkt*/Annealing Point/($lg \eta = 13.0$). Wird auch als obere Entspannungstemperatur bezeichnet. Das Glas lässt sich bei dieser Temperatursehr schnell entspannen.
- *Deformationspunkt*/Deformation Point/($lg \eta = 11,3$). Wird auch als dilatometrischer Erweichungspunkt bezeichnet. Liegt oberhalb des Transformationsbereiches.
- *Erweichungspunkt*/Softening Point/<u>(lg n=7,6)</u>. Wird auch als Littletontemperatur bezeichnet. Es ist die Temperatur bei der deutliche Symptome einer Glasdeformation zu verzeichnen sind.
- *Fließpunkt*/Flow Point/(<u>lg $\eta = 5.0$ </u>). Temperatur bei der eine relativ starke Glasdeformation zu verzeichnen ist. Die Fließpunktbestimmung ist nur in den USA üblich.

[©] Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021

R. Teschner, Glasfasern, https://doi.org/10.1007/978-3-662-64123-1_5

- Verarbeitungspunkt/Working Point/(<u>lg η=4,0</u>). Wird auch als Einsinktemperatur bezeichnet. Ab dieser Temperatur lässt sich das Glas gut verarbeiten. Das Glas weist gute Formgebungsfähigkeit auf.
- Zerfaserungspunkt/Fiberising Point/(lg η = 2,8). Optimale Zerfaserungstemperaturfür den Glasspinnprozess. Bei dieser Temperatur (an der Ziehzwiebel gemessen) sind die besten Bushingslaufeigenschaften zu erwarten. Bei Hochtemperaturgläsern liegt er im Bereich lg η = 3 bis lg η = 3,5.

Der Temperaturverlauf einer Viskositätskurve mit den drei wichtigsten Fixpunkten und mit den drei technologisch wichtigsten Bereichen ist aus der Abb. 5.1 zu ersehen.

Für die Glasverarbeitung ist die sg. technologische "Länge" eines Glases von wesentlicher Bedeutung.

Abb. 5.1 Temperaturverlauf einer Viskositätskurve

Die technologische "Länge" eines Glases entspricht dem Temperaturintervall im Glasverarbeitungsbereich (ΔT im Bereich lg $\eta = 3,0$ und lg $\eta = 7,6$; η in dPas).

Wenn bei einem C-Glas (JMS) dem lg $\eta = 3,0$ eine Temperatur von 1090 °C und dem lg $\eta = 7,6$ eine Temperatur von 680 °C entspricht, beträgt die technologische Länge des Glases $\Delta T = 410$ °C.

Wenn bei einem E-Glas (PPG) dem lg $\eta = 3,0$ eine Temperatur von 1190 °C und dem lg $\eta = 7,6$ eine Temperatur von 840 °C entspricht, beträgt die "Länge" des Glases $\Delta T = 350$ °C. Dieses Glas ist damit "kürzer".

"Kurze" Gläser eignen sich besser für eine schnelle, maschinelle Verarbeitung, "lange" Gläser dagegen für eine Verarbeitung in der die Formgebung länger dauert wie z. B. bei einer handwerklichen Verarbeitung. Bei den "langen" Gläsern hat man mehr technologischen "Spielraum". Über den Einfluss einiger Oxide auf die technologische "Länge" des Glases kann folgendes gesagt werden:

Von den drei Hauptkomponenten des JMS-C Glases (SiO₂, Na₂O, CaO) wird die "Länge" am stärksten durch Natriumoxid erhöht. Das CaO dagegen "verkürzt" am intensivsten das Glas. Dabei ist der SiO₂-Gehalt ohne größerer Bedeutung.

Darüber hinaus wird beim Reduzieren des Na₂O-Gehaltes und bei gleichzeitiger Erhöhung des CaO-Anteils das Glas "kürzer".

Bei einer Reduzierung des SiO₂-Gehaltes und gleichzeitiger Erhöhung des Al₂O₃-Anteils wird das Glas "kürzer". Beim Ersetzen eines Teils von Na₂O durch B₂O₃ (was in der technologischen Praxis oft der Fall ist) wird das Glas "kürzer". Bei einer Reduzierung des CaO-Anteils zu Gunsten des Al₂O₃ wird das Glas "länger".

Das Ersetzen von CaO durch MgO (bis 2 Ma.-%) wird das Glas geringfügig "länger".

Bei einem höheren MgO-Gehalt (>2 Ma.-%) wird das Glas "kürzer".

Gläser mit einem Verhältnis Na₂O: CaO>2,125 gehören zu "langen" Gläsern.

Gläser mit einem Verhältnis Na₂O: CaO <1,5 gehören zu "kurzen" Gläsern.

Eine "Bauernregel" besagt: Je höher die Temperatur einer Glasschmelze bei lg $\eta = 3$ (η in dPas) desto "kürzer" ist das Glas.

Der Temperaturverlauf der Viskosität lässt sich mit ausreichender Genauigkeit mit der Vogel-Fulcher-Tammann-Gleichung erstellen [5, 25, 26].

Die Vogel-Fulcher-Tammann-Gleichung stellt eine hyperbolische Beziehung zwischen dem Logarithmus von der Viskosität und der Temperatur dar:

$$\lg \eta = A + B/(T - T_o)$$

Mit den drei Konstanten A, B und T_o und mit den bekannten Glas-Fixpunkten lässt sich der Temperaturverlauf der Viskosität errechnen und erstellen.

Für das JMS-C Glas gelten dann folgende Gleichungen:

 $13,3 = A + B(545 - T_o)$ 7,6 = A + B(680 - T_o) 545°,680°,930° - Fixpunkte des JMS C - Glases 4,0 = A + B/(930 - T_o)