

Introduction

Everywhere you turn, people are looking for coders. In

offices and boardrooms, at your neighborhood bar, and

around the family table, people have ideas wanting to

become websites, data needing to be analyzed, and

processes waiting to turn into a mobile app. Building a

product requires many people — including designers,

product managers, marketers, and content creators —

but finding coders is always at the top of everyone’s list

because they are so scarce.

On the supply side of the equation, learning to code and

then getting a job can feel overwhelming. However, there

have never been more ways to learn how to code,

including on your own, in school, at a coding boot camp,

and on the job. And companies of every size and type are

hiring developers.

Getting a Coding Job For Dummies will help you make

sense of all the options and show you ways to get that

first coding job.

About This Book

This book is designed for the person with little to no

experience with coding jobs. In plain English, you

discover why coding jobs are so popular, which

technologies to use when coding, ways to learn coding,

and how to launch your career. The topics covered

include the following:

How coding became such a hot topic and big industry

Types of coding jobs

Options for learning to code, including coding boot

camps

Coding technologies used to build websites, analyze

data, and create mobile apps

Building a portfolio and a network

Interviewing your way into your first coding job

As you read the book, keep the following in mind:

Skip around as much as you like. The book can be read

from beginning to end, but if a topic interests you,

start there.

At some point, you will have questions or something

will not make sense. Do not fear! Many resources are

available to help, including support forums, free

tutorial websites, others on the Internet, and me!

Using Twitter, you can send a public message to me at

@nikhilgabraham.

Foolish Assumptions

I do not make many assumptions about you, the reader,

but I do make a few.

You do not need to have previous programming

experience. In this regard, you need to be able to read,

type, and follow directions. I explain as many concepts as

possible by using examples and analogies you already

know.

Before trying to get a coding job, you will spend some

time learning how to code. Chapter 5 shows you some

basic code examples, and Part III outlines options and

resources for learning how to code in greater depth. If

you don’t have any coding knowledge, keep in mind that

it will take at least a few months to learn enough to be

able to get a coding job.

You’ll need a computer running the latest version of

Google Chrome if you want to complete the coding

examples. Chrome is a free browser and the examples in

the book and in the external resources have been tested

and optimized for the Chrome browser, although they

may also work in latest version of Firefox. Using Internet

Explorer when learning to code is discouraged because

its support for coding languages varies and it doesn’t

always work as expected.

I assume that you have access to an Internet connection.

You can read almost all the book without an Internet

connection, but you need an Internet connection to

access external learn-to-code resources, such as the

Codecademy website. Many listed resources are free and

can be used without downloading or installing anything.

Icons Used in This Book

Here are the icons used in the book to flag text that

should be given extra attention or that can be skipped.

 This icon indicates useful information or explains a

shortcut to help you understand a concept.

 This icon explains technical details about the

concept being explained. The details might be

informative or interesting but are not essential to

your understanding of the concept at this stage.

 This icon marks a concept that likely has been

explained before. It’s flagged to reinforce what

you’ve already learned.

 Watch out! This icon indicates common mistakes

and problems that can be avoided if you heed the

warning.

Beyond the Book

Online resources are available in addition to the ones in

this book:

Cheat sheet: Visit

www.dummies.com/cheatsheet/gettingacodingjob for tips

while job searching and during your interviews.

Extras: Additional articles with extra content are

posted for roughly each section of the book. You can

access this additional material by visiting

www.dummies.com/extras/gettingacodingjob .

Updates: You can find any updates or corrections by

visiting www.dummies.com/extras/gettingacodingjob .

Where to Go from Here

With all the administrative stuff out of the way, it’s time

to get started. Remember, you can start at the beginning

or jump to whatever section interests you the most.

Congratulations on taking your first step to getting a

coding job!

http://www.dummies.com/cheatsheet/gettingacodingjob
http://www.dummies.com/extras/gettingacodingjob
http://www.dummies.com/extras/gettingacodingjob

Part I

Getting a Job in Coding

 Check out www.dummies.com/extras/gettingacodingjob for

more great content online.

http://www.dummies.com/extras/gettingacodingjob

In this part …

 Understand why coding matters

 Explore coding career paths

 Follow a coder on the job

 Learn key coding concepts

Chapter 1

Seeing the Big Picture

In This Chapter

 Seeing the history of coding and where it’s headed

 Understanding different types of coding jobs and

salaries

 Learning about companies that hire coders

If you just focus on the smallest details, you never

get the big picture right.

—Leroy Hood

Today, many moments in your daily life are affected by

code. Code runs the mobile phone alarm that wakes you

up in the morning, the word processing and spreadsheet

software you use at work or in school to create letters or

projections, the games you play on a phone or console,

and the web browser you run to check your email and

read the news. Many tasks in our lives have remained

the same — there will always be people who need help

waking up in the morning — but technology is

increasingly influencing the way we complete these

tasks.

Because you’re reading this book, you understand

coding’s pervasiveness, but you may wonder about the

industry’s size and future. Is getting a coding job like

becoming a horse and buggy driver just as Ford was

starting to sell the Model T?

In this chapter, you learn where coding came from, how

fast it has grown, and what the future might hold for

those who can code. Additionally, you’ll see the types of

companies that hire coders and find out what recruiting

professionals look for when hiring coders.

What Is Coding?

Computer code consists of a set of statements (like

sentences in English); each statement directs the

computer to perform a single step or instruction. Each

step is precise and followed to the letter. For example, if

you’re in a restaurant and ask a waiter to direct you to

the restroom, he might say, “head to the back, and try

the middle door.” To a computer, these directions are

vague and therefore unusable. Instead, if the waiter gave

instructions to you as if you were a computer program,

he might say, “From this table, walk northeast for 40

paces. Then turn right 90 degrees, walk 5 paces, turn

left 90 degrees, and walk 5 paces. Open the door directly

in front of you, and enter the restroom.”

One rough way to measure a program’s complexity is to

count its statements or lines of code. Basic applications

such as Pong have 5,000 lines of code, while more

complex applications such as Facebook currently have

over 10 million lines of code. Whether few or many lines

of code, the computer follows each instruction exactly

and effortlessly, never tiring like the waiter might when

asked for the 100th time for the location of the restroom.

Figure 1-1 shows lines of code from the popular game

Pong. Don’t worry about trying to understand what every

single line does.

Figure 1-1: Computer code from the game Pong.

 Be careful when using the number of lines of code

as a measure of a program’s complexity. Just like

when writing in English, 100 well-written lines of

code can perform the same functionality as 1,000

poorly written lines of code.

This book describes the ins and outs of careers in coding

but will not teach you a programming language. In Part

III, you can read about the different ways you can learn

to code: by yourself, in a coding boot camp, in college,

and on the job.

Why Coding Matters: Past,

Present, Future

Today, programs written with code power so many

different activities, and the work they do can almost

seem like magic. With a few mouse clicks or finger taps,

you can see your current location on a map, have

groceries delivered to your door, or video chat with

someone in another country. Although the research and

development to make these advancements possible has

been massive — billions of dollars invested and millions

of hours worked — it has been worthwhile. In this

section, I briefly describe a history of code and

possibilities for the future.

Coding in the past
Unveiled in 1946 at the University of Pennsylvania,

ENIAC was the first general-purpose computer. See

Figure 1-2. It was the size of a large room, and

programmers punched holes in paper cards to code

programs that could take hours to complete. Sometimes

bugs would crawl inside these large computers, causing

the circuits to malfunction and resulting in errors.

Removing these bugs from the computer was called

debugging, which is the name used even today.

Figure 1-2: ENIAC was the size of a large room.

Gradually, with advances in hardware, computers

became smaller and more powerful. Whereas the

ENIAC’s tens of thousands of resistors and capacitors

took up almost 2,000 square feet, later microprocessors

could fit all these electronics onto a chip the size of a

postage stamp. Eventually, these microprocessors would

be built using silicon, which is both cheap and plentiful.

Increased computing power from powerful

microprocessors allowed programmers to write more

complicated and resource-intensive programs. For

example, computer games became faster, used more

complex graphics, and displayed on-screen smoothly and

realistically. Writing code, or software programming,

depends on and is constrained by the underlying

hardware on which the code runs. As computing power

increases, code is written to provide more features at a

faster speed to users.

Programming languages were also invented to take

advantage of this new computing power. You may

remember languages such as Basic, Fortran, Pascal,

C++, and Java. Like spoken languages, programming

languages were created to fill a need. If other

programmers coded using the language, the

programming language would survive and thrive;

otherwise, it would die.

 Popular programming languages can decline in

popularity or die, but this can take a long time if the

language is used for core processes. For example,

Fortran is not nearly as popular as it was 30 years

ago, but it continues to be used in the scientific

community and in the financial sector, where it

powers applications for some of the biggest banks in

the world.

Coding today
In 2011, Marc Andreessen, creator of Netscape

Navigator and now a venture capitalist, noted that

“software is eating the world.” He predicted that

software companies would rapidly disrupt existing

companies. Traditionally, software was used on desktops

and laptops. The software had to be installed, and the

installation process at a minimum varied by computer

type and might not even work or might be incompatible

with your computer hardware and software. After the

software was installed, you had to supply data to the

program.

Four trends have dramatically increased the use of code

in everyday life:

Web-based software: This software operates in the

browser without requiring installation. For example, if

you want to check email, you previously had to install

an email client by downloading the software or from a

CD-ROM. Issues arose when the software was not

available for your operating system or conflicted with

your operating system version. Hotmail, a web-based

email client, rose to popularity in part because it

allowed users visiting www.hotmail.com to instantly check

email without worrying about installation or software

http://www.hotmail.com/

compatibility. Web applications increased consumer

appetite to try more applications, and developers in

turn were incentivized to write more applications.

Internet broadband connectivity: Broadband

connectivity has increased, providing a fast Internet

connection to more people in the last few years than in

the previous decade. Today, more than 2 billion people

can access web-based software, up from

approximately 50 million only a decade ago.

Coding repositories: Anyone can publish code for

others to view and use. Popular coding repositories,

such as Github, are making coding a more

collaborative, open, and public process than ever

before. Programmers publish code to show others what

they can build, to solicit feedback to increase

functionality or find vulnerabilities, and to quickly

spread software to other programmers.

Mobile phones: Today’s smartphones bring programs

with you wherever you go and help supply data to

programs. Many software programs became more

useful when accessed on the go than when limited to a

desktop computer. For instance, the use of maps apps

greatly increased thanks to mobile phones because

users need directions the most when lost not just when

at home on the computer planning a trip. In addition,

mobile phones are equipped with sensors that

measure and supply data such as orientation,

acceleration, and current location through GPS. Now

instead of having to input all the data to programs

yourself, mobile devices can help. For instance, a

fitness application such as RunKeeper automatically

tracks your distance, speed, and time.

The combination of these trends has resulted in software

companies that have upended incumbents in almost

every industry, especially ones typically immune to

technology. Some notable examples include the

following:

Airbnb: A peer-to-peer lodging company that owns no

rooms, yet books more nights than the Hilton and

Intercontinental, the largest hotel chain in the world.

See Figure 1-3.

Uber: A car transportation company that owns no

vehicles but books more trips and has more drivers in

200 cities than any other car or taxi service.

Groupon: A daily deals company that generated

almost $1 billion after just two years in business,

growing faster than any other company in history, let

alone any other traditional direct marketing company.

Figure 1-3: Airbnb booked 5 million nights after three and a half years, and its

next 5 million nights six months later.

Coding in the future

The one constant in technology and coding is change.

Improvements in existing computer architecture will lead

to the creation of newer, faster, and smaller hardware

devices, and developers will then write code to operate

and control those hardware devices.

 Moore’s Law, a rule of thumb used in the

computer hardware industry, predicts that the

number of transistors per square inch on an

integrated circuit will double every year. The

prediction has proved to be true for the last 50 years,

although some experts doubt whether it will continue

to hold true for the next 50 years.

The following technology developments are increasing in

popularity and should remain relevant at least for the

next five years:

Internet of Things (IOT): Computing power is

transforming dumb hardware devices into smart,

connected, self-regulated devices. For example, the

Nest thermostat uses a motion detector to record

when people are present, and then heats and cools

homes when people are expected to be at home

instead of all day. Similarly, Lockitron makes a device

that allows you to lock and unlock your front door with

your smartphone. Other connected devices, such as

the FitBit fitness tracker and the Apple Watch, need

coders to add functionality and connect people in new

ways.

Machine learning: For years, databases just stored

data. Now, code is finally being written to analyze the

data and make intelligent predictions. For example,

mapping applications use real-time and historical data

to predict traffic and the time your route will take to

complete. 23andme, a genetics company, compares

your human genome against its database to predict

which diseases you are more likely to have. General

Electric has outfitted industrial machines such as

hospital equipment and jet engines with sensors, and

uses historical data to repair machines before they

break, decreasing downtime and increasing revenue.

Coders will continue to write analytics programs to

crunch large datasets and generate predictions with

increasing accuracy.

Interconnected applications: An application

programming interface (API) allows one program to

talk to and request data from another external

program, which provides a response. Although APIs are

powerful, their functionality can be limited and they

rarely talk to one another. For example, Dropbox, the

storage provider, has an API to allow third-party

applications to back up data, and Facebook has an API

that lets third-party applications retrieve a user’s

photos. However, using just those two APIs, you

cannot automatically back up every Facebook photo to

Dropbox. Companies such as IFTTT (If This Then That)

allows users to create recipes that combine APIs.

Virtual software containers: Traditionally, software

programs could be described as an interconnected

web of your code and code written by others. To

incorporate someone else’s code into your own

program, you had to check that both programs were

compatible and that any third-party code used by the

external program, called a dependency, was also

compatible with your code. The process of resolving

conflicts was frequently time-consuming and

frustrating. One solution is to move away from the

current interconnected system of software

programming to an independent self-contained

system. Docker is one company that hosts an open-

source project to help programmers package software

and its dependencies into a self-contained program

called a virtual container. These virtual containers

have standardized inputs and outputs, run on many

operating systems, and can connect to each other with

little need to check for compatibility. Just like

standardized shipping cargo containers make it easier

and faster to load and unload ships, so too do virtual

containers make it easier and faster to package

programs to work easily with other programs.

Tracking the Explosion of

Coding Jobs

Creating applications and making computer programs

work seamlessly requires many people working many

hours because every instruction must be explicit. The

Bureau of Labor Statistics estimates that across all

industries, about 140,000 jobs in computing are being

created every year that pay approximately $80,000. In

some industries, computing jobs are growing by over 20

percent, which is two to four times the average growth

rate across all occupations.

The demand is great, but computer programmers are in

short supply. Colleges train the most computer

programmers and graduate about 40,000 computer

scientists per year. Using current estimates, by 2020

there will be 1,000,000 more jobs than qualified

students, representing a $500 billion opportunity. See

Figure 1-4.

Figure 1-4: By 2020, 1,000,000 coding jobs will go unfilled due to a lack of

skilled workers.

Table 1-1 shows some of the coding occupations

contributing to this boom. Each job is unique, and

generally there is not a great deal of switching between

jobs. For example, mobile developers don’t suddenly

become data scientists, or vice versa. When people do

switch between these positions, there is usually a

training period.

Table 1-1 Entry-Level Coding Occupations

Occupation Job Summary
Average

Salary

Mobile

developer

Code applications that run on mobile devices such

as phones and tablets. Also responsible for app

performance and user interactions that are easy to

complete on a mobile device.

$95,000

Software

developer

Develop programs and write code for hardware,

software, and network systems.
$93,350

Occupation Job Summary
Average

Salary

Database

administrator

Use specialized software to store and organize

data, such as financial information and customer

shipping records. Make sure that data is available

to users and is secure from unauthorized access.

$77,080

Web

developer

Design and create websites. Responsible for both

the look and feel of the site, and for technical

aspects, such as the website’s speed and traffic

capacity.

$62,500

Data analyst

Analyze big data using statistics and machine-

learning techniques to generate insights and future

predictions.

$60,000

Quality

assurance

analyst

Test programs to ensure that features perform

according to specification, and document bugs.
$53,000

Sources: Bureau of Labor Statistics, Indeed.com, Glassdoor.com

 Web developers are typically self-taught;

according to census data, less than 40 percent have

earned a four-year college degree. Many developers

also enter the profession as a quality assurance

analyst and then move into a junior web developer

role.

Companies Hiring Coding

Professionals

There’s no way around it — all industries are

experiencing a massive shortage of talent who can code.

Employers are looking for talent wherever they can find

it. People with traditional and nontraditional

backgrounds, and those who want to work in an office or

work remotely are all finding companies that need help.

The two general types of coding jobs are full-time

positions in companies and contract or freelance work.

Full-time jobs
Companies of various sizes hire people who have just

learned how to code for full-time positions. The size of

the company can have pros and cons when it comes to

hiring people who have just learned how to code:

Large companies: Companies with more than 1,000

employees, such as Fortune 500 companies and large

tech companies including Yahoo!, Google, and

Facebook have high standards for hiring employees.

Given the number of applications they receive for

each open position, recruiters at these companies

usually use a strict screening process and grant

interviews only to people who have a computer

science, math, or engineering-related major. However,

for those people who do pass the hiring screen and

are eventually hired, there are many resources, both

formal programs and people who can help coach and

train you to increase your skills.

 Almost every large company has an online

application. Send in your application online, and then

find an advocate, someone at the company who

believes in your candidacy, to help your application

pass to the interview stage.

Medium-sized companies: Of the three types of

companies, getting hired at a medium-sized company

can be hardest. With their large recruiting

departments, candidates have to interview with as

many people as in large companies. In addition,

medium-sized companies typically do not spend as

much money on training as large companies.

 One successful strategy to getting hired

permanently in a medium-sized company is to

freelance first, which helps you build up your

reputation and allows the company to assess your

skills in a low risk way.

Startups: With less than 20 employees, startups often

desperately need coding talent and are small enough

to make hiring decisions quickly. They don’t have a

formal recruiting staff, so you should develop a

personal connection with the person doing the hiring.

Startups don’t have extensive training programs, and

you are expected to contribute immediately. However,

the small company size should help you form personal

relationships with your engineering coworkers, who

can help answer questions and informally train you.

 In the beginning, successful startups often have

so much work and are so short staffed that having

anyone do the work is better than having no one. For

this reason, startups decide on candidates quickly,

rather than wait for the best person for each role.

Government: City, state, and federal governments

and their agencies have thousands of internship and

full-time job openings for coders. Depending on the

agency, the application process can be time

consuming, and require proof of U.S. citizenship,

extensive background checks, and completion of

qualifying exams. Applicants can use www.usajobs.gov to

search across all federal opportunities, and individual

http://www.usajobs.gov/

state government websites for opportunities in a

specific state or city government.

From the source: Tips from a tech

recruiter

Yoonie Kim has been a recruiter for technology companies for almost 15

years. She has held recruiting roles at Codecademy, Ning, Meetup, Google,

Amazon, and Microsoft. I asked her the following questions:

Can you share a little about your work experiences?

I’ve worked at tech companies of all sizes and stages. I started my

career at Microsoft, and worked at large established companies like

Amazon and Google, all the way to small and early-stage companies

like Ning and Codecademy. I also cofounded my own recruiting

company to help smaller startups build out their initial engineering

teams. In 2014, I joined Dropbox to help build out the New York and

Seattle presence and offices.

How do you attract and screen candidates?

People use and have heard of your product, that helps, but I also

reach out to candidates when employees refer them to me, and when

I see candidates’ work online in a blog post, open source project, or

talk. When I screen candidates, I’m usually looking for what they’ve

accomplished, and whether they have actually built something

meaningful or just maintained a product. Most interview processes

start with a phone screen and then on-site interviews, but I try to

personalize the interview as much as possible for the candidate. If

you have less coding experience, you might be asked about

something you just built, while more experienced candidates will

jump into a hard problem the company is currently solving.

What do you screen for?

At the resume stage, I’m always looking for something interesting

that will excite the team and make people want to have a

conversation with the candidate. In the actual interview, I’d say 70

percent of the evaluation is technical ability, and the rest of the

evaluation is a combination of soft skills and cultural contribution. I

used to look for a specific candidate profile, usually a computer

science degree and previous tech experience, but I’ve become more

open to people without college degrees, career switchers, and people

who have taught themselves to code. I have recruited a few self-

taught programmers, and they have gone on to have incredibly

successful careers within companies.

What is a mistake everyone makes in the recruiting process?

Have a story both about what you have done previously and what

you want to do at the company where you are now interviewing.

Sometimes candidates don’t have much to say about a topic they

should know a lot about — themselves! Also, have a product or a

feature you want to work on if you’re given an offer. It can be hard to

advocate for candidates who don’t express any preferences.

Freelancing and contract jobs
Companies of all sizes hire freelancers to do discrete

projects that are not overly complex and have a definite

end date. For example, freelancers often build a website

with a few defined pages, create mobile apps, or scrape

and store data from websites into databases. Getting

some of the initial work performed by a freelancer helps

a company see how much time and money a project will

cost and whether there is a need to hire a full-time

employee.

Contract work also provides freelancers with some

valuable benefits. Even for full-time coders, doing some

contract work is a great way to build up skills in a new

programming language or framework. Also, because

coding work can be done from anywhere, freelancers

have a good deal of flexibility and don’t necessarily have

to sit behind a desk in an office. For example, some

freelancers travel often for pleasure, and can be found

working in cities such as Boston one month and Bali the

next month. Finally, some coders freelance full-time, and

build their business by doing work for existing clients

and pitching new work to client referrals.

One issue with freelancing is that you are always looking

for the next job. A few websites, such as Freelancer

(www.freelancer.com) and Upwork (www.upwork.com), formerly

http://www.freelancer.com/
http://www.upwork.com/

odesk.com, help provide freelancers with steady work by

creating communities that connect employers and

freelancers. See Figure 1-5.

Figure 1-5: Upwork helps freelancers find and bid on contract coding jobs.

These sites create online reputations for both freelancers

and companies, which helps each side feel more

confident that the work will be completed and the agreed

upon amount will be paid.

Chapter 2

Exploring Coding Career

Paths

In This Chapter

 Improving your existing job

 Exploring entry-level full-time coding roles

 Understanding skills and tasks in various coding

roles

We shall not cease from exploration, and the end of

all our exploring will be to arrive where we started

and know the place for the first time.

—T.S. Elliot

For many people, the words “coding career” evoke an

image of a person sitting in a dimly lit room typing

incomprehensible commands into a computer. The

stereotype has persisted for decades — just watch actors

such as Matthew Broderick in War Games (1983), Keanu

Reeves in The Matrix (1999), or Jesse Eisenberg in The

Social Network (2010). Fortunately, these movies are not

accurate representations of reality. Just like a career in

medicine can lead to psychiatry, gynecology, or surgery, a

career in coding can lead to an equally broad range of

options.

In this chapter, you see how coding can augment your

existing job across a mix of functions, and you explore

increasingly popular careers based primarily on coding.

Augmenting Your Existing

Job

Many people find coding opportunities in their existing

job. It usually starts innocently enough, and with

something small. For example, you may need a change

made to the text on the company’s website, but the

person who would normally do that is unavailable before

your deadline. If you knew how to alter the website’s

code, you could perform your job faster or more easily.

This section explores how coding might augment your

existing job.

Choosing a career path

Coding career paths are extremely varied. For some people, the path starts

with using code to more efficiently perform an existing job. For others,

coding is a way to transition to a new career. As varied as the career path is,

so too are the types of companies that need coders.

As more people carry Internet-capable mobile phones, businesses of every

type are turning to coders to reach customers and to optimize existing

operations. No business is immune. For example, FarmLogs is a company

that collects data from farm equipment to help farmers increase crop yields

and forecast profits. FarmLogs needs coders to build the software that

collects and analyzes data, and farmers with large operations may need

coders to customize the software.

To build or customize software, you’ll need to learn new skills. Surprisingly,

the time required to learn and start coding can range from an afternoon of

lessons to a ten-week crash course to more time-intensive options, such as a

four-year undergraduate degree in computer science.

Creative design
Professionals in creative design include those who

Shape how messages are delivered to clients

Create print media such as brochures and catalogs

Design for digital media such as websites and mobile

applications

Traditionally, digital designers, also known as visual

designers, created mockups, static illustrations detailing

layout, images, and interactions, and then sent these

mockups to developers who would create the web or

mobile product. This process worked reasonably well for

everyday projects, but feedback loops started becoming

longer as mockups became more complex. For example,

a designer would create multiple mockups of a website,

and then the developer would implement them to create

working prototypes, after which the winning mockup

would be selected. As another example, the rise of

mobile devices has led to literally thousands of screen

variations between mobile phones and tablets created by

Apple, Samsung, and others. Project timelines increased

because designers had to create five or more mockups to

cover the most popular devices and screen sizes.

As a designer, one way to speed up this process is to

learn just enough code to create working prototypes of

the initial mockups that are responsive, which means one

prototype renders on both desktop and mobile devices.

Then project managers, developers, and clients can use

these early prototypes to decide which versions to

further develop and which to discard. Additionally,

because responsive prototypes follow a predictable set of

rules across all devices, creating additional mockups for

each device is unnecessary, which further decreases

design time. As mobile devices have become more

popular, the demand for designers who understand how

to create good user interactions (UI) and user

experiences (UX) has greatly increased.

 Prototyping tools such as InVision and Axure

provide a middle option between creating static

illustrations and coding clickable prototypes by

allowing designers to create working prototypes

without much coding. Still, a person with basic

coding skills can improve a prototype generated with

these tools by making it more interactive and

realistic. Designers who can design and code

proficiently are referred to as “unicorns” because

they are rare and in high demand.

Content and editorial
Professionals in content and editorial perform tasks such

as the following:

Maintain the company’s presence on social networks

such as Twitter and Facebook

Create short posts for the company blog and for email

campaigns

Write longer pieces for articles or presentations

At smaller companies, content creation is usually mixed

with other responsibilities. At larger companies, creating

content is a full-time job. Whether you’re blogging for a

startup or reporting for The Wall Street Journal, writers

of all types face the same challenges of identifying

relevant topics and backing it up with data.

Traditionally, content was written based on a writer’s

investigation and leads from a small group of people. For

example, you might write a blog post about a specific

product feature because a major customer asked about it

during a sales call. But what if most of your smaller

customers, who you don’t speak with regularly, would

benefit from a blog post about some other product

feature?

As a writer, you can produce more relevant content by

writing code to analyze measurable data and use the

conclusions to author content. I Quant NY

(http://iquantny.tumblr.com), an online blog, is one shining

example of data driving content creation. In 2014, the

site author, Ben Wellington, analyzed public data on New

York City parking tickets, bike usage, and traffic crashes,

and wrote about his conclusions. His analysis led to

original stories and headlines in major newspapers such

as The New York Times and New York Post (see Figure 2-

1).

Figure 2-1: Article about a ticket-generating fire hydrant.

Human resources
Those who work in human resources might be expected

to do the following:

http://iquantny.tumblr.com/

