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About the Book

What can maths tell us about sports?

100 Essential Things You Didn’t Know You Didn’t Know
About Sport sheds new light on the mysteries of running,
jumping, swimming and points-scoring across the whole
sporting spectrum. Whether you are a competitor striving
to go faster or higher, or an armchair enthusiast wanting to
understand more about your favourite sport, this is a
fascinating read. Find out why high-jumpers use the
Fosbury Flop; how Usain Bolt could break his records
without running any faster; what is the best strategy for
taking football penalties; what are the effects of those
banned skin-tight swimsuits; and last but not least, why the
bounce of a Superball seems to defy Newton’s laws of
motion.

Written for anyone interested in sport or simple
mathematics, this book will enrich your understanding of
sport and enliven your appreciation of maths.
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‘Heck, gold medals, what can you do with them’
Eric Heiden



Preface

In this Olympic year I have taken the opportunity to
demonstrate some of the unexpected ways in which simple
mathematics and science can shed light on what is going
on in a wide range of sporting activities. The following
chapters will look into the science behind aspects of human
movement, systems of scoring, record breaking, paralympic
competition, strength events, drug testing, diving, riding,
running, jumping and throwing. If you are a coach or a
competitor you may get a glimpse of how a mathematical
perspective can enrich your understanding of your event. If
you are a spectator or commentator then I hope that you
will develop a deeper understanding of what is going on in
the pool, gymnasium or stadium, on the track or on the
road. If you are an educator you will find examples to
enliven the teaching of many aspects of science and
mathematics, and to broaden the horizons of those who
thought that mathematics and sport were no more than a
timetable clash. And if you are a mathematician you will be
pleased to discover how essential your expertise is to yet
another area of human activity. The collection of examples
you are about to read covers a great many sports and tries
to pick topics that have not been discussed extensively
before. Occasionally, there is a little bit of Olympic history
for perspective, but it is balanced by chapters about several
non-Olympic sports as well, and if you wish to delve deeper
with your reading or push a calculation further there are
notes to show you where to begin.
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Philip Aston, Bill Atkinson, Henry Baker, Melissa Bray,
James Cranch, Marianne Freiberger, Franz Fuss, John
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Mullins, Kay Peddle, Stephen Ryan, Jeffrey Shallit, Owen
Smith, David Spiegelhalter, Ian Stewart, Will Sulkin, Rachel
Thomas, Roger Walker, Peter Weyand and Peng Zhao for
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helped this book come into being. A few of the topics
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Olympics. I am most grateful to these audiences for their
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John D. Barrow, Cambridge 2012.



1
How Usain Bolt Could Break His
World Record With No Extra Effort

USAIN BOLT IS THE best human sprinter there has ever been.
Yet, few would have guessed that he would run so fast over
100m after he started out running 400m and 200m races
when in his mid teens. His coach decided to shift him down
to running 100m one season so as to improve his basic
sprinting speed. No one expected him to shine there.
Surely he is too big to be a 100m sprinter? How wrong they
were. Instead of shaving the occasional hundredth of a
second off the world record, he took big chunks out of it,
first reducing Asafa Powell’s time of 9.74s down to 9.72 in
New York in May 2008, and then down to 9.69 (actually
9.683) at the Beijing Olympics later that year, before
dramatically reducing it again to 9.58 (actually 9.578) at
the 2009 Berlin World Championships. His progression in
the 200m was even more astounding: reducing Michael
Johnson’s 1996 record of 19.32s to 19.30 (actually 19.296)
in Beijing and then to 19.19 in Berlin. These jumps are so
big that people have started to calculate what Bolt’s
maximum possible speed might be. Unfortunately, all the
commentators have missed the two key factors that would
permit Bolt to run significantly faster without any extra
effort or improvement in physical conditioning. ‘How could
that be?’ I hear you ask.

The recorded time of a 100m sprinter is the sum of two
parts: the reaction time to the starter’s gun and the



subsequent running time over the 100m distance. An
athlete is judged to have false-started if he reacts by
applying foot pressure to the starting blocks within 0.10s of
the start gun firing. Remarkably, Bolt has one of the longest
reaction times of leading sprinters – he was the second
slowest of all the finalists to react in Beijing and third
slowest in Berlin when he ran 9.58. Allowing for all this,
Bolt’s average running speed in Beijing was 10.50m/s and
in Berlin (where he reacted faster) it was 10.60m/s. Bolt is
already running faster than the ultimate maximum speed of
10.55m/s that a team of Stanford human biologists recently
predicted for him.1

In the Beijing Olympic final, where Bolt’s reaction time was
0.165s for his 9.69 run, the other seven finalists reacted in
0.133, 0.133, 0.134, 0.142, 0.145, 0.147, 0.165 and 0.169s.

From these stats it is clear what Bolt’s weakest point is:
he has a very slow reaction to the gun. This is not quite the
same as having a slow start. A very tall athlete, with longer
limbs and larger inertia, has got more moving to do in
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order to rise upright from the starting blocks.2 If Bolt could
get his reaction time down to 0.13, which is very good but
not exceptional, then he would reduce his 9.58 record run
to 9.56. If he could get it down to an outstanding 0.12 he is
looking at 9.55 and if he responded as quickly as the rules
allow, with 0.1, then 9.53 is the result. And he hasn’t had to
run any faster!

This is the first key factor that has been missed in
assessing Bolt’s future potential. What are the others?
Sprinters are allowed to receive the assistance of a
following wind that must not exceed 2m/s in speed. Many
world records have taken advantage of that and the most
suspicious set of world records in sprints and jumps were
those set at the Mexico Olympics in 1968 where the wind
gauge often seemed to record 2m/s when a world record
was broken. But this is certainly not the case in Bolt’s
record runs. In Berlin his 9.58s time benefited from only a
modest 0.9m/s tailwind and in Beijing there was nil wind,
so he has a lot more still to gain from advantageous wind
conditions. Many years ago, I worked out how the best
100m times are changed by wind.3 A 2m/s tailwind is worth
about 0.11s compared to a nil-wind performance, and a
0.9m/s tailwind 0.06s, at a low-altitude site. So, with the
best possible legal wind assistance and reaction time,
Bolt’s Berlin time is down from 9.53s to 9.47s and his
Beijing time becomes 9.51s. And finally, if he were to run at
a high-altitude site like Mexico City, then he could go faster
still and effortlessly shave off another 0.07s.4 So he could
improve his 100m time to an amazing 9.4s without needing
to run any faster.5
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2
All-rounders

HUMANS ARE OFTEN compared rather unfavourably with the
champions of the animal kingdom: cheetahs sprinting
faster than the motorway speed limit, ants carrying many
times their body weight, squirrels and monkeys performing
fantastic feats of aerial gymnastics, seals that swim at
superhuman speeds, and birds of prey that can pluck
pigeons out of the air without the need for guns. It is easy
to feel inadequate. But really we shouldn’t. All these stars
of the animal kingdom are really nowhere near as
impressive athletes as humans. They are very good at very
special things and evolution has honed their ability to
dominate their competitors in a very particular niche. We
are quite different. We can swim for miles, run a marathon,
run 100m in less than ten seconds, turn a somersault, ride
a bike or a horse, high jump over eight feet, shoot
accurately with rifles and bows, throw small objects nearly
a hundred metres, ride a bicycle for hundreds of
kilometres, row a boat, and lift much more than our body
weight over our heads. Our range of physical prowess is
exceptional. It’s easy to forget that no other living creature
can match us for the diversity of our physical abilities. We
are the greatest multi-eventers on earth.



3
The Archers

OLYMPIC ARCHERY IS a dramatic participation sport but it is
not so easy to see what is happening without a good pair of
binoculars or big video monitors to replay the shots. The
archers shoot seventy-two arrows at a circular target 70m
away. The target is 122cm in diameter and divided into ten
concentric rings, each of which is 6.1cm wide.

The two inner rings are gold and arrows landing there
score 10 and 9 points. Going outwards the next two are red
and score 8 and 7 points; the next two are blue and score 6
and 5; the next two are black and score 4 and 3; the last
two are white and score 2 and 1. If you hit the target



further out than this (or miss it completely) you score zero.
These coloured circles are printed on a 125cm × 125cm
square of paper that is backed by a protective layer to stop
the arrows from penetrating through it.

The world’s best archer is the South Korean woman Park
Sung-Hyun. She scored a total of 682 points from seventy-
two arrows to win individual and team gold medals at the
2004 Athens Olympics.1 If she only scored 10s and 9s with
all her arrows we can work out how she would have
achieved that score. If T arrows scored 10 and the other
72–T arrows scored 9 then we know that 10T + 9(72–T) =
682 and so T = 34 gives the number of 10s scored. The
number of 9s would have been 72–34 = 38. If she only
scored 10s, 9s and 8s you might like to show that she must
have scored thirty-five 10s, thirty-six 9s and one 8.

The difficulty of getting a particular score with one
arrow is determined by the area of the annular ring that
you have to hit to obtain it. The outer radii (in centimetres)
of each of the ten circular rings are 6.1, 12.2, 18.3, 24.4,
30.5, 36.6, 42.7, 48.8, 54.9 and 61. Since the area of a
circle is just π (= 3.14) times the square of its radius we
can work out the area of each annular ring by subtracting
the area of its inner bounding circle from the area of its
outer bounding circle. So, for example, the area of the ring
in which arrows score 9 points is π (12.22 – 6.12) = π × 6.1
× 18.3 = 350.7. I won’t work out the areas of all the target
rings but the same principle gives them very easily. Now,
the likelihood of your arrow gaining a particular score is
given by the fraction of the target area occupied by that
part of the target. The area of the whole circular target is π
× 612 = 11689.9sq cm and so the probability of scoring a 9
with a randomly shot arrow that hits the target area is
given by the ratio of the area in which you score 9 to the
total area and this is 350.7/11689.9 = 0.03, or 3%. If I do
these sums for the relative areas of all the scoring rings I
get the probabilities that randomly shot arrows will hit any
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one of them. There is a simple pattern. The probabilities
rise by 2% per ring as you move outwards through the
rings. The hardest to hit is the centre ring with a 1% (i.e.
0.01) chance for a random shot; the easiest is the outer
ring with a 19% (i.e. 0.19) chance of scoring 1 point.

If we add up all these average contributions we get 3.85
as the score we are likely to get from shooting a single
arrow randomly at the target. If we shoot seventy-two
arrows randomly then the average score we will get will be
seventy-two times this, or 277, to the nearest round
number. As you might expect this is far, far less than the
world record score of 682. A score of 277 is what you
would achieve with a purely random shooting strategy with
no skill at all (except to hit some part of the target).

In calculating this we assumed that a random archer
always hits the circular target. Suppose that they are not
even that accurate and end up hitting anywhere at random
inside the 125cm × 125cm square on which the target is
printed. Its area is 15,625sq cm and you score zero if you
hit this square beyond the outer circle of radius 61cm. In
this case, all the overall probabilities and scores are
reduced by a factor equal to the ratio of the area of the
outer circle divided by the square, which is 11689.9 ÷
15625 = 0.75. Therefore the average score obtained by
shooting seventy-two arrows at random within the
bounding square falls to 207.4.

If you want to test your arithmetic then you can apply
exactly the same principles to calculate what score would
be obtained by a random darts player. You should find that
the average score is 13 points per dart, giving a score of 39
for three darts.2
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4
The Flaw of Averages

AVERAGES ARE FUNNY things. Ask the statistician who drowned
in a lake of average depth equal to 3cm. Yet, they are so
familiar and seemingly so straightforward that we trust
them completely. But should we? Let’s imagine two
cricketers. We’ll call them, purely hypothetically, Anderson
and Warne. They are playing in a crucial Test match which
will decide the outcome of the series. The sponsors have
put up big cash prizes for the best bowling and batting
performances in the match. Anderson and Warne don’t care
about batting performances – except in the sense that they
want to make sure there aren’t any good ones at all on the
opposing side – and are going all out to win the big bowling
prize.

In the first innings Anderson gets some early wickets
but is taken off after a long spell of very economical
bowling and ends up with figures of 3 wickets for 17 runs,
an average of 5.67. Anderson’s side then have to bat and
Warne is on top form, taking a succession of wickets for
final figures of 7 for 40, an average of 5.71 runs per wicket
taken. Anderson therefore has the better (i.e. lower)
bowling average in the first innings, 5.67 to 5.71.

In the second innings Anderson is expensive at first, but
then proves to be unplayable for the lower-order batsmen,
taking 7 wickets for 110 runs, an average of 15.71. Warne
then bowls at Anderson’s team during the last innings of
the match. He is not as successful as in the first innings but



still takes 3 wickets for 48 runs, for an average of 16. So,
Anderson has the better average bowling performance in
the second innings as well, this time by 15.71 to 16.

Who should win the bowling man-of-the-match prize for the
best figures? Anderson had the better average in the first
innings and the better average in the second innings.
Surely, there is only one winner. But the sponsor takes a
different view and looks at the overall match figures. Over
the two innings Anderson took 10 wickets for 127 runs for
an average of 12.7 runs per wicket. Warne, on the other
hand, took 10 wickets for 88 runs and an average of 8.8.
Warne clearly has the better average and wins the bowling
award despite Anderson having a superior average in the
first innings and in the second innings!



5
Going Round the Bend

HAVE YOU EVER wondered whether it’s best to have an inside
or an outside lane in track races like the 200m where you
have to sprint around the bend? Athletes have strong
preferences. Tall runners find it harder to negotiate the
tighter curve of the inside lane than that of the gentle outer
lanes. The situation is even more extreme when sprinters
race indoors where the track is only 200m around, so the
bends are far tighter and the lanes are reduced in width
from 1.22m to 1m. This was such a severe restriction that it
became common for the athlete who drew the inside lane
for the final (by being the slowest qualifier on times) to
scratch from the final in indoor championships because
there was so little chance of winning from the inside and a
considerable risk of injury. As a result, this event has
largely disappeared from the indoor championship roster.

But what about the outdoor situation where the curve is
not so extreme? Most athletes don’t like to be right on the
outside because you can’t see anyone (unless they pass
you) for the first half of the race and you can’t run ‘off’
their pace. On the inside you have a metal kerb marking
the inside of your lane and you tend not to get as close to it
as you would to the simple white painted line that marks
the inside of the other lanes. Generally, the fastest
qualifiers from the previous round are placed in the centre
two or three lanes – a clear signal that they might be
advantageous. A runner’s physique is a factor too. If you



are tall and long-legged you will have a harder time in the
inner lanes and may have to chop your stride or run
towards the outside of your lane to run freely. Potentially
even more significant is the wind. If the wind is blowing at
right angles to the finishing straight, into the faces of the
runners when they run around the bend, then you will want
to be in the outside lane so that you will be starting some
way around the bend and will not have to run directly into
the wind for so long – unlike those runners on the inside.

Finally, it is easy to show that you need to work harder if
you run in the inside lanes. The two bends of an athletics
track are semicircular. The radius of the circle traced by
the inner line of the inside lane is 36.5m and each lane is
1.22m wide. So, the radius of the circle that you run in gets
larger and the extra force that you have to exert to run in a
circular path gets smaller and you actually run a smaller
part of a circle as well. The radius of the circle traced by
lane eight is 36.5 + (7 × 1.22) = 45.04m. The force needed
for a runner of mass m to run in a circular path of radius r
at speed v is mv2/r, so as r gets larger,1 and the bend is less
tight, the force needed to maintain a given speed v
decreases. If two identical runners, one in lane one and the
other in lane eight, exert the same force over the first
100m of a 200m race, then the runner in lane one will have
achieved a speed that is about 0.9 of that achieved in lane
eight and the runner in lane eight will take 0.9 of the time.
This is a very large factor – worth a whole second off the
time for the first half of the race if you are running a 20s
time for 200m. In practice there isn’t such a large
systematic advantage to running in the outside lanes and
the runner only has to supply a fraction of the full circular
motion force to sprint around the curve.2

If this simple model were complete then all 200m
runners would run their best times from the outside lane.
In practice most records are set from lanes three and four.
Even this fact is slightly biased because the fastest
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qualifiers for the finals of big championships will have been
put in those lanes. Presumably, the psychological and
tactical advantages of being able to see your opponents and
judge your speed against them from an inside lane helps
outweigh the mechanical advantage of running around a
gentler curve.

A good final comparison to make which illustrates the
effect of the curve on 200m runs is to compare the world
records run on a straight track with those around a curve.
Straight 200m tracks are very rare now. There used to be
one at the old Oxford University track at Iffley Road (where
Roger Bannister ran the first sub-four-minute mile in 1954)
that was still there when I began as a student in 1974 but
had been removed by the time I graduated in 1977. When
Tommie Smith set his world 200m record of 19.83s around
a curve at altitude in the 1968 Mexico Olympics, he had
already run a remarkable3 19.5s on a straight cinder track
in San Jose in 1966. This latter record was only beaten by
Tyson Gay, who ran 19.41s at the Birmingham City Games
in 2010, watched by a 65-year-old Smith. Gay’s fastest time
around a curve is 19.58s. These time differences show the
considerable slowing that is created by negotiating the
curve. You might be lucky and have the wind behind you all
the way in a straight 200m, but nonetheless runners find it
strange to sprint such a long way without the reference
points of the curve and other runners to dictate where they
are and how they should apportion their effort.
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6
A Question of Balance

IF THERE IS one attribute that is invaluable in just about any
sport, it is balance. Whether you are a gymnast on the
beam, a high-board diver, a spinning hammer thrower, a
rugby forward snaking through the opposition’s defence, a
wrestler, a judoka trying to throw an opponent or a fencer
lunging forwards, it is all about balance. Try a little
experiment to see how well balanced you are and get a
feeling for the muscle control behind it. Just stand
completely still with one foot immediately in front of the
other, so that the heel of your left foot touches the toe of
your right foot. You can shift your weight so that it is
mainly over the front foot or the back foot but keep your
hands by your sides. You will probably find that standing
completely still in a relaxed way is surprisingly difficult and
your calf muscles are being tensed this way and that all the
time. If you spread your arms out sideways you will find it
much easier to balance. But now try leaning to one side.
You won’t lean very far before you lose your balance
completely. Now, if you move your feet apart, in a normal
standing position so they are not one behind the other in a
straight line, then you will find it easier still, even with your
arms by your sides – this, after all, is probably your usual
stance. Lastly, go back to that difficult position with one
foot directly in front of the other, but slowly crouch down
low. You will find that balancing gets easier as you get
nearer to the ground.



These little exercises reveal some simple principles for
maintaining a good balance:

Make sure that the vertical line through your body’s centre
of gravity doesn’t fall outside the base of support created
by your feet. Once it does, you will fall away from
equilibrium. You can experiment for yourself to see how far
you can lean sideways, while keeping the body straight,
before you start falling. The high-board diver will often use
this instability in order to initiate his dive, leaning forward
until his movement is taken over by gravity.

Broaden your base of support as much as possible. This
makes it harder for your centre of gravity to fall outside
your base. If you can stand on two feet, rather than on one,
this will always help.

Keep your centre of gravity as low as possible. This is
why you often see female gymnasts on the beam going into
a low crouch position during a swing, perhaps with only
one foot on the beam and one leg dangling below the beam
– this lowers the centre of gravity even more. Sit astride
the beam and you will see that balance is easy – your
centre of gravity can’t get much lower.



Spread your weight as far from your centre as possible.
This is what was happening when you spread your arms out
sideways. This is changing the distribution of your mass. By
moving more of it far from your centre you are increasing
your inertia, or your tendency not to move. Increasing your
inertia in this way won’t stop you wobbling but, crucially, it
will make you wobble more slowly.1 This gives you more
time to take corrective action, shift your centre of gravity
sideways or downwards, as required. This is why tightrope
walkers carry long poles: they are ensuring that they
wobble more slowly and have more time to correct a
dangerous imbalance. Without that helpful pole, the man
walking between skyscrapers on a high wire would surely
fall to his death once he started to wobble in the breeze.

Watch wrestling and judo, where competitors are
constantly trying to make their opponents lose their
balance in subtle ways, or by using their strength to force
them to violate one of the principles we have highlighted.
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7
Anyone for Baseball, Tennis or
Cricket?

A LOT OF people spend a lot of time hitting or chasing small
spherical projectiles while dressed in unusual items of
clothing. Games like baseball, tennis and cricket involve
someone receiving one of these projectiles at very high
speed. They have a split second to respond, either by
getting out of the way, or hitting the projectile back as
skilfully as they can. Which of these three sports requires
the quickest reactions?

In each case the ball is different in size and can be
launched by the pitcher, server or bowler at different
speeds. Baseball has the simplifying feature that the ball
only flies through the air, whereas in cricket and tennis it
will hit the ground and rebound unpredictably because of
its spin. In all three cases, the ball can swerve in the air to
deceive the receiver in many ways. Let’s ignore these extra
degrees of difficulty and just focus on how quickly the
receiver has to react to the incoming ball in each of these
three games.

First, take cricket: a cricket pitch is 22 yards (= 20.12m)
long.1 The fastest bowlers achieve speeds exceeding
100mph, which is about 45m/s. The bowler will generally
take a lengthy approach run in order to build up speed but
the ball must be released with a straight arm or a ‘no-ball’
will be called for ‘throwing’. If the batsman stands 1m in
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