


Part I
Getting Started
This part of the book is for those who are new to threat
modeling, and it assumes no prior knowledge of threat
modeling or security. It focuses on the key new skills that
you'll need to threat model and lays out a methodology
that's designed for people who are new to threat modeling.
Part I also introduces the various ways to approach threat
modeling using a set of toy analogies. Much like there are
many children's toys for modeling, there are many ways to
threat model. There are model kits with precisely molded
parts to create airplanes or ships. These kits have a high
degree of fidelity and a low level of flexibility. There are
also numerous building block systems such as Lincoln
Logs, Erector Sets, and Lego blocks. Each of these allows
for more flexibility, at the price of perhaps not having a
propeller that's quite right for the plane you want to model.
In threat modeling, there are techniques that center on
attackers, assets, or software, and these are like Lincoln
Logs, Erector Sets, and Lego blocks, in that each is
powerful and flexible, each has advantages and
disadvantages, and it can be tricky to combine them into
something beautiful.
Part I contains the following chapters:

Chapter 1: Dive In and Threat Model! contains
everything you need to get started threat modeling, and
does so by focusing on four questions:

What are you building?
What can go wrong?



What should you do about those things that can go
wrong?
Did you do a decent job of analysis?

These questions aren't just what you need to get started,
but are at the heart of the four-step framework, which is
the core of this book.

Chapter 2: Strategies for Threat Modeling covers a
great many ways to approach threat modeling. Many of
them are “obvious” approaches, such as thinking about
attackers or the assets you want to protect. Each is
explained, along with why it works less well than you
hope. These and others are contrasted with a focus on
software. Software is what you can most reasonably
expect a software professional to understand, and so
models of software are the most important lesson of
Chapter 2. Models of software are one of the two models
that you should focus on when threat modeling.



Chapter 1
Dive In and Threat Model!
Anyone can learn to threat model, and what's more,
everyone should. Threat modeling is about using models to
find security problems. Using a model means abstracting
away a lot of details to provide a look at a bigger picture,
rather than the code itself. You model because it enables
you to find issues in things you haven't built yet, and
because it enables you to catch a problem before it starts.
Lastly, you threat model as a way to anticipate the threats
that could affect you.
Threat modeling is first and foremost a practical discipline,
and this chapter is structured to reflect that practicality.
Even though this book will provide you with many valuable
definitions, theories, philosophies, effective approaches,
and well-tested techniques, you'll want those to be
grounded in experience. Therefore, this chapter avoids
focusing on theory and ignores variations for now and
instead gives you a chance to learn by experience.
To use an analogy, when you start playing an instrument,
you need to develop muscles and awareness by playing the
instrument. It won't sound great at the start, and it will be
frustrating at times, but as you do it, you'll find it gets
easier. You'll start to hit the notes and the timing. Similarly,
if you use the simple four-step breakdown of how to threat
model that's exercised in Parts I-III of this book, you'll start
to develop your muscles. You probably know the old joke
about the person who stops a musician on the streets of
New York and asks “How do I get to Carnegie Hall?” The
answer, of course, is “practice, practice, practice.” Some of
that includes following along, doing the exercises, and



developing an understanding of the steps involved. As you
do so, you'll start to understand how the various tasks and
techniques that make up threat modeling come together.
In this chapter you're going to find security flaws that
might exist in a design, so you can address them. You'll
learn how to do this by examining a simple web application
with a database back end. This will give you an idea of
what can go wrong, how to address it, and how to check
your work. Along the way, you'll learn to play Elevation of
Privilege, a serious game designed to help you start threat
modeling. Finally you'll get some hands-on experience
building your own threat model, and the chapter closes
with a set of checklists that help you get started threat
modeling.

Learning to Threat Model
You begin threat modeling by focusing on four key
questions:

1. What are you building?
2. What can go wrong?
3. What should you do about those things that can go

wrong?
4. Did you do a decent job of analysis?

In addressing these questions, you start and end with tasks
that all technologists should be familiar with: drawing on a
whiteboard and managing bugs. In between, this chapter
will introduce a variety of new techniques you can use to
think about threats. If you get confused, just come back to
these four questions.
Everything in this chapter is designed to help you answer
one of these questions. You're going to first walk through



these questions using a three-tier web app as an example,
and after you've read that, you should walk through the
steps again with something of your own to threat model. It
could be software you're building or deploying, or software
you're considering acquiring. If you're feeling uncertain
about what to model, you can use one of the sample
systems in this chapter or an exercise found in Appendix E,
“Case Studies.”
The second time you work through this chapter, you'll need
a copy of the Elevation of Privilege threat-modeling game.
The game uses a deck of cards that you can download free
from threatmodelingbook.com/resources. You should get two–
four friends or colleagues together for the game part.
You start with building a diagram, which is the first of four
major activities involved in threat modeling and is
explained in the next section. The other three include
finding threats, addressing them, and then checking your
work.

What Are You Building?
Diagrams are a good way to communicate what you are
building. There are lots of ways to diagram software, and
you can start with a whiteboard diagram of how data flows
through the system. In this example, you're working with a
simple web app with a web browser, web server, some
business logic and a database (see Figure 1.1).

http://threatmodelingbook.com/resources


Figure 1.1 A whiteboard diagram
Some people will actually start thinking about what goes
wrong right here. For example, how do you know that the
web browser is being used by the person you expect? What
happens if someone modifies data in the database? Is it OK
for information to move from one box to the next without
being encrypted? You might want to take a minute to think
about some things that could go wrong here because these
sorts of questions may lead you to ask “is that allowed?”
You can create an even better model of what you're
building if you think about “who controls what” a little. Is
this a website for the whole Internet, or is it an intranet
site? Is the database on site, or at a web provider?
For this example, let's say that you're building an Internet
site, and you're using the fictitious Acme storage-system.
(I'd put a specific product here, but then I'd get some little
detail wrong and someone, certainly not you, would get all
wrapped around the axle about it and miss the threat
modeling lesson. Therefore, let's just call it Acme, and
pretend it just works the way I'm saying. Thanks! I knew
you'd understand.)
Adding boundaries to show who controls what is a simple
way to improve the diagram. You can pretty easily see that



the threats that cross those boundaries are likely important
ones, and may be a good place to start identifying threats.
These boundaries are called trust boundaries, and you
should draw them wherever different people control
different things. Good examples of this include the
following:

Accounts (UIDs on unix systems, or SIDS on Windows)
Network interfaces
Different physical computers
Virtual machines
Organizational boundaries
Almost anywhere you can argue for different privileges



Trust Boundary versus Attack
Surface
A closely related concept that you may have
encountered is attack surface. For example, the hull of a
ship is an attack surface for a torpedo. The side of a ship
presents a larger attack surface to a submarine than the
bow of the same ship. The ship may have internal “trust”
boundaries, such as waterproof bulkheads or a Captain's
safe. A system that exposes lots of interfaces presents a
larger attack surface than one that presents few APIs or
other interfaces. Network firewalls are useful
boundaries because they reduce the attack surface
relative to an external attacker. However, much like the
Captain's safe, there are still trust boundaries inside the
firewall. A trust boundary and an attack surface are very
similar views of the same thing. An attack surface is a
trust boundary and a direction from which an attacker
could launch an attack. Many people will treat the terms
are interchangeable. In this book, you'll generally see
“trust boundary” used.

In your diagram, draw the trust boundaries as boxes (see
Figure 1.2), showing what's inside each with a label (such
as “corporate data center”) near the edge of the box.



Figure 1.2 Trust boundaries added to a whiteboard
diagram
As your diagram gets larger and more complex, it becomes
easy to miss a part of it, or to become confused by labels on
the data flows. Therefore, it can be very helpful to number
each process, data flow, and data store in the diagram, as
shown in Figure 1.3. (Because each trust boundary should
have a unique name, representing the unique trust inside of
it, there's limited value to numbering those.)

Figure 1.3 Numbers and trust boundaries added to a
whiteboard diagram
Regarding the physical form of the diagram: Use whatever
works for you. If that's a whiteboard diagram and a camera



phone picture, great. If it's Visio, or OmniGraffle, or some
other drawing program, great. You should think of threat
model diagrams as part of the development process, so try
to keep it in source control with everything else.
Now that you have a diagram, it's natural to ask, is it the
right diagram? For now, there's a simple answer: Let's
assume it is. Later in this chapter there are some tips and
checklists as well as a section on updating the diagram, but
at this stage you have a good enough diagram to get
started on identifying threats, which is really why you
bought this book. So let's identify.

What Can Go Wrong?
Now that you have a diagram, you can really start looking
for what can go wrong with its security. This is so much fun
that I turned it into a game called, Elevation of Privilege.
There's more on the game in Appendix D, “Elevation of
Privilege: The Cards,” which discusses each card, and in
Chapter 11, “Threat Modeling Tools,” which covers the
history and philosophy of the game, but you can get started
playing now with a few simple instructions. If you haven't
already done so, download a deck of cards from
http://www.microsoft.com/security/sdl/adopt/eop.aspx. Print
the pages in color, and cut them into individual cards. Then
shuffle the deck and deal it out to those friends you've
invited to play.

http://www.microsoft.com/security/sdl/adopt/eop.aspx


Note
Some people aren't used to playing games at work.
Others approach new games with trepidation, especially
when those games involve long, complicated
instructions. Elevation of Privilege takes just a few lines
to explain. You should give it a try.

How To Play Elevation of Privilege
Elevation of Privilege is a serious game designed to help
you threat model. A sample card is shown in Figure 1.4.
You'll notice that like playing cards, it has a number and
suit in the upper left, and an example of a threat as the
main text on the card. To play the game, simply follow the
instructions in the upcoming list.

1. Deal the deck. (Shuffling is optional.)
2. The person with the 3 of Tampering leads the first

round. (In card games like this, rounds are also called
“tricks” or “hands.”)

3. Each round works like so:
A. Each player plays one card, starting with the person

leading the round, and then moving clockwise.
B. To play a card, read it aloud, and try to determine if it

affects the system you have diagrammed. If you can
link it, write it down, and score yourself a point. Play
continues clockwise with the next player.

C. When each player has played a card, the player who
has played the highest card wins the round. That
player leads the next round.



4. When all the cards have been played, the game ends and
the person with the most points wins.

5. If you're threat modeling a system you're building, then
you go file any bugs you find.

Figure 1.4 An Elevation of Privilege card
There are some folks who threat model like this in their
sleep, or even have trouble switching it off. Not everyone is



like that. That's OK. Threat modeling is not rocket science.
It's stuff that anyone who participates in software
development can learn. Not everyone wants to dedicate the
time to learn to do it in their sleep.
Identifying threats can seem intimidating to a lot of people.
If you're one of them, don't worry. This section is designed
to gently walk you through threat identification. Remember
to have fun as you do this. As one reviewer said: “Playing
Elevation of Privilege should be fun. Don't downplay that.
We play it every Friday. It's enjoyable, relaxing, and still
has business value.”
Outside of the context of the game, you can take the next
step in threat modeling by thinking of things that might go
wrong. For instance, how do you know that the web
browser is being used by the person you expect? What
happens if someone modifies data in the database? Is it OK
for information to move from one box to the next without
being encrypted? You don't need to come up with these
questions by just staring at the diagram and scratching
your chin. (I didn't!) You can identify threats like these
using the simple mnemonic STRIDE, described in detail in
the next section.

Using the STRIDE Mnemonic to Find Threats
STRIDE is a mnemonic for things that go wrong in security.
It stands for Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege:

Spoofing is pretending to be something or someone
you're not.
Tampering is modifying something you're not supposed
to modify. It can include packets on the wire (or
wireless), bits on disk, or the bits in memory.



Repudiation means claiming you didn't do something
(regardless of whether you did or not).
Information Disclosure is about exposing information
to people who are not authorized to see it.
Denial of Service are attacks designed to prevent a
system from providing service, including by crashing it,
making it unusably slow, or filling all its storage.
Elevation of Privilege is when a program or user is
technically able to do things that they're not supposed to
do.

Note
This is where Elevation of Privilege, the game, gets its
name. This book uses Elevation of Privilege, italicized,
or abbreviated to EoP, for the game—to avoid confusion
with the threat.

Recall the three example threats mentioned in the
preceding section:

How do you know that the web browser is being used by
the person you expect?
What happens if someone modifies data in the database?
Is it ok for information to go from one box to the next
without being encrypted?

These are examples of spoofing, tampering, and
information disclosure. Using STRIDE as a mnemonic can
help you walk through a diagram and select example
threats. Pair that with a little knowledge of security and the
right techniques, and you'll find the important threats



faster and more reliably. If you have a process in place for
ensuring that you develop a threat model, document it, and
you can increase confidence in your software.
Now that you have STRIDE in your tool belt, walk through
your diagram again and look for more threats, this time
using the mnemonic. Make a list as you go with the threat
and what element of the diagram it affects. (Generally, the
software, data flow, or storage is affected, rather than the
trust boundary.) The following list provides some examples
of each threat.

Spoofing: Someone might pretend to be another
customer, so you'll need a way to authenticate users.
Someone might also pretend to be your website, so you
should ensure that you have an SSL certificate and that
you use a single domain for all your pages (to help that
subset of customers who read URLs to see if they're in
the right place). Someone might also place a deep link to
one of your pages, such as logout.html or placeorder.aspx.
You should be checking the Referrer field before taking
action. That's not a complete solution to what are called
CSRF (Cross Site Request Forgery) attacks, but it's a
start.
Tampering: Someone might tamper with the data in
your back end at Acme. Someone might tamper with the
data as it flows back and forth between their data center
and yours. A programmer might replace the operational
code on the web front end without testing it, thinking
they're uploading it to staging. An angry programmer
might add a coupon code “PayBobMore” that offers a 20
percent discount on all goods sold.
Repudiation: Any of the preceding actions might
require digging into what happened. Are there system



logs? Is the right information being logged effectively?
Are the logs protected against tampering?
Information Disclosure: What happens if Acme reads
your database? Can anyone connect to the database and
read or write information?
Denial of Service: What happens if a thousand
customers show up at once at the website? What if Acme
goes down?
Elevation of Privilege: Perhaps the web front end is
the only place customers should access, but what
enforces that? What prevents them from connecting
directly to the business logic server, or uploading new
code? If there's a firewall in place, is it correctly
configured? What controls access to your database at
Acme, or what happens if an employee at Acme makes a
mistake, or even wants to edit your files?

The preceding possibilities aren't intended to be a complete
list of how each threat might manifest against every model.
You can find a more complete list in Chapter 3, “STRIDE.”
This shorter version will get you started though, and it is
focused on what you might need to investigate based on the
very simple diagram shown in Figure 1.2. Remember the
musical instrument analogy. If you try to start playing the
piano with Ravel's Gaspard (regarded as one of the most
complex piano pieces ever written), you're going to be
frustrated.

Tips for Identifying Threats
Whether you are identifying threats using Elevation of
Privilege, STRIDE, or both, here are a few tips to keep in
mind that can help you stay on the right track to determine
what could go wrong:



Start with external entities: If you're not sure where
to start, start with the external entities or events which
drive activity. There are many other valid approaches
though: You might start with the web browser, looking
for spoofing, then tampering, and so on. You could also
start with the business logic if perhaps your lead
developer for that component is in the room. Wherever
you choose to begin, you want to aspire to some level of
organization. You could also go in “STRIDE order”
through the diagram. Without some organization, it's
hard to tell when you're done, but be careful not to add
so much structure that you stifle creativity.
Never ignore a threat because it's not what you're
looking for right now: You might come up with some
threats while looking at other categories. Write them
down and come back to them. For example, you might
have thought about “can anyone connect to our
database,” which is listed under information disclosure,
while you were looking for spoofing threats. If so, that's
awesome! Good job! Redundancy in what you find can
be tedious, but it helps you avoid missing things. If you
find yourself asking whether “someone not authorized to
connect to the database who reads information”
constitutes spoofing or information disclosure, the
answer is, who cares? Record the issue and move along
to the next one. STRIDE is a tool to guide you to threats,
not to ask you to categorize what you've found; it makes
a lousy taxonomy, anyway. (That is to say, there are
plenty of security issues for which you can make an
argument for various different categorizations. Compare
and contrast it with a good taxonomy, such as the
taxonomy of life. Does it have a backbone? If so, it's a
vertebrate.)
Focus on feasible threats: Along the way, you might
come up with threats like “someone might insert a back



door at the chip factory,” or “someone might hire our
janitorial staff to plug in a hardware key logger and steal
all our passwords.” These are real possibilities but not
very likely compared to using an exploit to attack a
vulnerability for which you haven't applied the patch, or
tricking someone into installing software. There's also
the question of what you can do about either, which
brings us to the next section.

Addressing Each Threat
You should now have a decent-sized list or lists of threats.
The next step in the threat modeling process is to go
through the lists and address each threat. There are four
types of action you can take against each threat: Mitigate
it, eliminate it, transfer it, or accept it. The following list
looks briefly at each of these ways to address threats, and
then in the subsequent sections you will learn how to
address each specific threat identified with the STRIDE list
in the “What Can Go Wrong” section. For more details
about each of the strategies and techniques to address
these threats, see Chapters 8 and 9, “Defensive Building
Blocks” and “Tradeoffs When Addressing Threats.”

Mitigating threats is about doing things to make it
harder to take advantage of a threat. Requiring
passwords to control who can log in mitigates the threat
of spoofing. Adding password controls that enforce
complexity or expiration makes it less likely that a
password will be guessed or usable if stolen.
Eliminating threats is almost always achieved by
eliminating features. If you have a threat that someone
will access the administrative function of a website by
visiting the /admin/URL, you can mitigate it with passwords
or other authentication techniques, but the threat is still
present. You can make it less likely to be found by using



a URL like /j8e8vg21euwq/, but the threat is still present.
You can eliminate it by removing the interface, handling
administration through the command line. (There are
still threats associated with how people log in on a
command line. Moving away from HTTP makes the
threat easier to mitigate by controlling the attack
surface. Both threats would be found in a complete
threat model.) Incidentally, there are other ways to
eliminate threats if you're a mob boss or you run a
police state, but I don't advocate their use.
Transferring threats is about letting someone or
something else handle the risk. For example, you could
pass authentication threats to the operating system, or
trust boundary enforcement to a firewall product. You
can also transfer risk to customers, for example, by
asking them to click through lots of hard-to-understand
dialogs before they can do the work they need to do.
That's obviously not a great solution, but sometimes
people have knowledge that they can contribute to
making a security tradeoff. For example, they might
know that they just connected to a coffee shop wireless
network. If you believe the person has essential
knowledge to contribute, you should work to help her
bring it to the decision. There's more on doing that in
Chapter 15, “Human Factors and Usability.”
Accepting the risk is the final approach to addressing
threats. For most organizations most of the time,
searching everyone on the way in and out of the building
is not worth the expense or the cost to the dignity and
job satisfaction of those workers. (However, diamond
mines and sometimes government agencies take a
different approach.) Similarly, the cost of preventing
someone from inserting a back door in the motherboard
is expensive, so for each of these examples you might
choose to accept the risk. And once you've accepted the



risk, you shouldn't worry over it. Sometimes worry is a
sign that the risk hasn't been fully accepted, or that the
risk acceptance was inappropriate.

The strategies listed in the following tables are intended to
serve as examples to illustrate ways to address threats.
Your “go-to” approach should be to mitigate threats.
Mitigation is generally the easiest and the best for your
customers. (It might look like accepting risk is easier, but
over time, mitigation is easier.) Mitigating threats can be
hard work, and you shouldn't take these examples as
complete. There are often other valid ways to address each
of these threats, and sometimes trade-offs must be made in
the way the threats are addressed.

Addressing Spoofing
Table 1.1 and the list that follows show targets of spoofing,
mitigation strategies that address spoofing, and techniques
to implement those mitigations.

When you're concerned about a person being spoofed,
ensure that each person has a unique username and
some way of authenticating. The traditional way to do
this is with passwords, which have all sorts of problems
as well as all sorts of advantages that are hard to
replicate. See Chapter 14, “Accounts and Identity” for
more on passwords.
When accessing a file on disk, don't ask for the file with
open(file). Use open(/path/to/file). If the file is sensitive,
after opening, check various security elements of the file
descriptor (such as fully resolved name, permissions,
and owner). You want to check with the file descriptor to
avoid race conditions. This applies doubly when the file
is an executable, although checking after opening can
be tricky. Therefore, it may help to ensure that the



permissions on the executable can't be changed by an
attacker. In any case, you almost never want to call
exec() with ./file.
When you're concerned about a system or computer
being spoofed when it connects over a network, you'll
want to use DNSSEC, SSL, IPsec, or a combination of
those to ensure you're connecting to the right place.



Table 1.1 Addressing Spoofing Threats

Threat
Target

Mitigation
Strategy

Mitigation Technique

Spoofing
a person

Identification
and
authentication
(usernames and
something you
know/have/are)

Usernames, real names, or
other identifiers:

Passwords
Tokens
Biometrics

Enrollment/maintenance/expiry

Spoofing
a “file”
on disk

Leverage the OS Full paths
Checking ACLs
Ensuring that pipes are
created properly

Cryptographic
authenticators

Digital signatures or
authenticators

Spoofing
a
network
address

Cryptographic DNSSEC
HTTPS/SSL
IPsec

Spoofing
a
program
in
memory

Leverage the OS Many modern operating
systems have some form of
application identifier that the
OS will enforce.

Addressing Tampering



Table 1.2 and the list that follows show targets of
tampering, mitigation strategies that address tampering,
and techniques to implement those mitigations.

Tampering with a file: Tampering with files can be
easy if the attacker has an account on the same
machine, or by tampering with the network when the
files are obtained from a server.
Tampering with memory: The threats you want to
worry about are those that can occur when a process
with less privileges than you, or that you don't trust, can
alter memory. For example, if you're getting data from a
shared memory segment, is it ACLed so only the other
process can see it? For a web app that has data coming
in via AJAX, make sure you validate that the data is what
you expect after you pull in the right amount.
Tampering with network data: Preventing tampering
with network data requires dealing with both spoofing
and tampering. Otherwise, someone who wants to
tamper can simply pretend to be the other end, using
what's called a man-in-the-middle attack. The most
common solution to these problems is SSL, with IP
Security (IPsec) emerging as another possibility. SSL
and IPsec both address confidentiality and tampering,
and can help address spoofing.
Tampering with networks anti-pattern: It's
somewhat common for people to hope that they can
isolate their network, and so not worry about tampering
threats. It's also very hard to maintain isolation over
time. Isolation doesn't work as well as you would hope.
For example, the isolated United States SIPRNet was
thoroughly infested with malware, and the operation to
clean it up took 14 months (Shachtman, 2010).



Note
A program can't check whether it's authentic after it
loads. It may be possible for something to rely on
“trusted bootloaders” to provide a chain of signatures,
but the security decisions are being made external to
that code. (If you're not familiar with the technology,
don't worry, the key lesson is that a program cannot
check its own authenticity.)



Table 1.2 Addressing Tampering Threats

Threat Target Mitigation
Strategy

Mitigation
Technique

Tampering with
a file

Operating system ACLs

Cryptographic Digital Signatures
Keyed MAC

Racing to
create a file
(tampering
with the file
system)

Using a directory
that's protected
from arbitrary
user tampering

ACLs
Using private
directory structures
(Randomizing your
file names just
makes it annoying
to execute the
attack.)

Tampering with
a network
packet

Cryptographic HTTPS/SSL
IPsec

Anti-pattern Network isolation (See
note on network
isolation anti-pattern.)

Addressing Repudiation
Addressing repudiation is generally a matter of ensuring
that your system is designed to log and ensuring that those
logs are preserved and protected. Some of that can be
handled with simple steps such as using a reliable



transport for logs. In this sense, syslog over UDP was
almost always silly from a security perspective; syslog over
TCP/SSL is now available and is vastly better.
Table 1.3 and the list that follows show targets of
repudiation, mitigation strategies that address repudiation,
and techniques to implement those mitigations.

No logs means you can't prove anything: This is self-
explanatory. For example, when a customer calls to
complain that they never got their order, how will this be
resolved? Maintain logs so that you can investigate what
happens when someone attempts to repudiate
something.
Logs come under attack: Attackers will do things to
prevent your logs from being useful, including filling up
the log to make it hard to find the attack or forcing logs
to “roll over.” They may also do things to set off so many
alarms that the real attack is lost in a sea of troubles.
Perhaps obviously, sending logs over a network exposes
them to other threats that you'll need to handle.
Logs as a channel for attack: By design, you're
collecting data from sources outside your control, and
delivering that data to people and systems with security
privileges. An example of such an attack might be
sending mail addressed to “</html> haha@example.com”,
causing trouble for web-based tools that don't expect
inline HTML.

mailto:haha@example.com


Table 1.3 Addressing Repudiation Threats

Threat Target Mitigation
Strategy

Mitigation Technique

No logs means you
can't prove
anything.

Log Be sure to log all the
security-relevant
information.

Logs come under
attack

Protect
your logs.

Send over the network.
ACL

Logs as a channel
for attack

Tightly
specified
logs

Documenting log design
early in the development
process

You can make it easier to write secure code to process your
logs by clearly communicating what your logs can't contain,
such as “Our logs are all plaintext, and attackers can insert
all sorts of things,” or “Fields 1–5 of our logs are tightly
controlled by our software, fields 6–9 are easy to inject data
into. Field 1 is time in GMT. Fields 2 and 3 are IP addresses
(v4 or 6)…” Unless you have incredibly strict control,
documenting what your logs can contain will likely miss
things. (For example, can your logs contain Unicode
double-wide characters?)

Addressing Information Disclosure
Table 1.4 and the list which follows show targets of
information disclosure, mitigation strategies that address
information disclosure, and techniques to implement those
mitigations.

Network monitoring: Network monitoring takes
advantage of the architecture of most networks to
monitor traffic. (In particular, most networks now



broadcast packets, and each listener is expected to
decide if the packet matters to them.) When networks
are architected differently, there are a variety of
techniques to draw traffic to or through the monitoring
station.

If you don't address spoofing, much like tampering, an
attacker can just sit in the middle and spoof each end.
Mitigating network information disclosure threats
requires handling both spoofing and tampering threats.
If you don't address tampering, then there are all sorts
of clever ways to get information out. Here again, SSL
and IP Security options are your simplest choices.

Names reveal information: When the name of a
directory or a filename itself will reveal information,
then the best way to protect it is to create a parent
directory with an innocuous name and use operating
system ACLs or permissions.
File content is sensitive: When the contents of the file
need protection, use ACLs or cryptography. If you want
to protect all the data should the machine fall into
unauthorized hands, you'll need to use cryptography.
The forms of cryptography that require the person to
manually enter a key or passphrase are more secure and
less convenient. There's file, filesystem, and database
cryptography, depending on what you need to protect.
APIs reveal information: When designing an API, or
otherwise passing information over a trust boundary,
select carefully what information you disclose. You
should assume that the information you provide will be
passed on to others, so be selective about what you
provide. For example, website errors that reveal the
username and password to a database are a common
form of this flaw, others are discussed in Chapter 3.



Table 1.4 Addressing Information Disclosure Threats

Threat Target Mitigation
Strategy

Mitigation
Technique

Network monitoring Encryption HTTPS/SSL
IPsec

Directory or filename
(for example layoff-
letters/adamshostack.docx)

Leverage the
OS.

ACLs

File contents Leverage the
OS.

ACLS

Cryptography File encryption
such as PGP, disk
encryption
(FileVault,
BitLocker)

API information
disclosure

Design Careful design
control
Consider pass by
reference or value.

Addressing Denial of Service
Table 1.5 and the list that follows show targets of denial of
service, mitigation strategies that address denial of service,
and techniques to implement those mitigations.


