SUCCESSEUIRIEOMBINING

DEVELOPMENT
|7 OPERATIGNS

BASICS AND TOOLS FOR A SUCCESSFUL
DEVOPS IMPLEMENTATION

i @@ p'l‘

RELEASE DEFLD\' OPERATE MONITOR

Introduction
Reasons for using DevOps
Realization of the business benefit (business value)
The Kano model
IT and business value
The VUCA world
External drivers
Organizational goals of DevOps
The obstacles
Principles and concepts of DevOps
The three ways
The first path: principles of flow
The second way: principles of feedback
The third way: principles of continuous learning
Mature technical skills and management practices
Technical practices
Management practices
C.A.L.M.S
DevOps and the organization
The DevOps culture

Transformational leadership

DevOps structures and the team
Processes and procedures

DevOps and other methods
ITIL and DevOps
Lean and DevOps
Agile and DevOps

15 basic DevOps practices
Voice of the Customer
Relationship Management
Lean Process Optimization
Value Stream Mapping (Value Stream Mapping)
Knowledge Management
Visual Management
Agile Project Management & Scrum
Shift Left Testing
Change Control
Service Configuration Management
Release & Deployment Management
Incident Management
Problem Management & Kaizen
Continual Improvement
Antifragility

Technology and automation

Automation for the deployment pipeline
Cloud technology and virtualization
Afterword

Literature list

Introduction

Unlike other methods and frameworks such as Scrum,
Kanban, ITIL or similar, there is no "DevOps" with a
generally accepted definition. Thus, there is neither a
uniform - or at least leading - organization that represents
the topic of DevOps nor defines what exactly is part of
DevOps and what is not. In the German-speaking world
alone, there are almost half a dozen certifiers, some of
which award the same or similar DevOps titles and in turn
require different examinations, which ask for different,
sometimes even contradictory requirements or statements.

Nevertheless, there are some basic themes or principles
that most DevOps statements contain - such as efficiency,
collaboration, and improved communication. These are not
things that many other frameworks and methodologies
would not claim for themselves.

Now if we look at a few definitions of how authoritative
institutions define DevOps, we find:

Peoplecert: "DevOps is a term of art that promotes the
evolution of existing IT best practices from ITIL, Lean and
Agile into an approach to development and operations that
supports automation and continuous delivery and fosters a
culture of collaboration and learning to help IT deliver
business value better, faster and cheaper than ever before."

Wikipedia: "DevOps is a process of software development
and delivery that emphasizes communication and
collaboration between product management, software
development, and operations professionals. DevOps
supports this by automating and monitoring the processes
of integrating testing and deployment through software.
Further, it also automates and monitors infrastructure
changes by creating a culture and environment where
building, testing and releasing software can happen quickly,
frequently and more reliably.”

Gartner Group: "DevOps represents a shift in IT culture, a
focus on rapid delivery of IT services by adopting agile and
lean practices in the context of a systems-oriented
approach. DevOps emphasizes people (and culture) and
seeks to leverage collaboration between teams, from
Operations and Development. DevOps implementation
applies technology - specifically automation tools that can
leverage Increasingly @ programmable and dynamic
infrastructure from a lifecycle perspective."

The problem is probably rooted in history. Unlike some
methods or frameworks, even at the beginning of
development there was not one organization or person who
took the lead in the direction of standardization or
developed a specific method. Rather, DevOps emerged from
agile principles within software development, which sought
greater collaboration and communication and the
elimination of silo thinking.

Often cited as the beginning of the DevOps movement is a
talk Flickr employees John Allspaw and Paul Hammond gave
at the 2009 O'Reilly Velocity conference in San Jose,

California, titled " 10 Deploys a Tag: Dev and Ops
Collaboration at Flickr ".

The topic was clearly an issue of the day for people in
different organizations around the world, and after a
relatively short period of time, the Devopsdays conference
was held in Ghent, Belgium, from where the term "DevOps"
began to be perceived and used more widely.

At first glance, the absence of a uniform path and uniform
procedural principles may be somewhat off-putting. At
second glance, however, this actually also offers a strength
for implementation. Instead of a standard set somewhere
that is emulated, it is necessary to include one's own needs
and the people involved. This can significantly increase the
probability of choosing a suitable approach instead of a
standard.

The concept of DevOps is broad, but almost everyone will
agree that increased efficiency, collaboration and
communication are positive changes. However, it's
important to discuss the details with your team before
implementation. Ideas like increased communication are
pointless if each employee has a different approach to
achieving them.

Companies that have successfully implemented DevOps
include a myriad of small and medium-sized companies as
well as global corporations such as Amazon, Netflix, Target,
Walmart, Nordstrom, Facebook, Etsy, Adobe, NASA,
Starbucks and Sony Picture Entertainment.

For the purposes of this book, we will characterize DevOps
as follows: DevOps is a philosophy that promotes a set of
principles, procedures or practices, and values with a focus

on collaboration between development and operations. The
prerequisite for this is a cultural change of the entire
organization with the goal of promoting communication and
collaboration. This involves balancing the demands of
change with those of stability and predictability.

Reasons for using DevOps

Realization of the business benefit (business
value)

Even if in reality some organizations live it differently:
Business value is always defined by the customer and not
by the supplier. It corresponds to the level at which a
service or product meets - or exceeds - the customer's
expectations. So the context in which DevOps is typically
used would be defined as "“business value is the level at
which a service meets or exceeds the customer's
expectations.” IWith this, it is understood that different
customers (groups) have different perceptions of business
value based on their demands.

When we move in the context of services, a common view is
to see business value as a combination of (service) quality,
i.e. the extent to which the customer's requirements are
met, costs, and the time in which a service is provided. In
this context, business value is generally understood to be
positive if the three dimensions are perceived to be
balanced. It will quickly be seen that different customers
apply very different standards in this respect. While some
customers tend to be very price-sensitive and are prepared
to make compromises in terms of quality or speed of service
provision, others are very focused on maximum quality and
are prepared to dig deeper into their pockets to achieve
this. Others, on the other hand, are in a predicament and

are prepared to pay virtually any price as long as their

problem is solved.

The Kano model

The Kano model is an approach that helps visualize and

better understand different cu

Kunden-]|
zufriedenheit

Begeisterungs-

;mrrmle/

stomer preferences.

.
sehr
Zufrieden

Leistungs-
merkmale

realisierte
Qua]it&tseigenschaftel

wenig

viel

Basis-
merkmale

véllig

Y

2

unzufrieden

The Kano model distinguishes between five different types
of customer perception of products or services:

"“Basic characteristics that are so fundamental and self-
evident that customers only become aware of them when
they are not met (implicit expectations). If the basic
requirements are not met, dissatisfaction results; if they are
met, however, satisfaction does not result. The increase in
benefit compared to differentiation from competitors is very
small.

Performance characteristics are aware of the customer,
they eliminate dissatisfaction or create satisfaction
depending on the extent of fulfillment.

Enthusiasm features, on the other hand, are benefits that
the customer does not necessarily expect. They distinguish
the product from the competition and generate enthusiasm.
A small increase in performance can Jlead to a
disproportionate benefit. The differentiation from the
competition can be small, but the benefits enormous.

Irrelevant features are irrelevant to the customer, both
when they are present and when they are absent. Therefore,
they cannot cause satisfaction, but they also do not lead to
dissatisfaction.

Rejection Features: Lead to customer dissatisfaction when
present, but satisfaction when absent." 3

It may be that a feature is assumed to be a basic feature by
one customer / one customer group, but is completely
irrelevant for others, or that it is able to inspire. It is also to
be expected that a former enthusiasm feature will, over
time, become a performance feature or even a basic feature
in the customer's perception. For example, several years
ago it was an absolute wow feature to have a cell phone
with a touch screen that no longer required separate dial

