

Creation and Deployment of Smart
Contracts on Ethereum Blockchain

By
Dr. Hidaia Mahmood Alassouli

Hidaia_alassouli@hotmail.com

1. Overview:

This work explains briefly the creation and deployment Of
Smart Contract on Ethereum Blockchain. The work consists
from the following sections

Blockchain
Solidity variables and types
How to Setup or Install Ethereum on Windows
How to compile and deploy smart contract on
JavaScriptVM
How to install Ganache Blockchain on Windows
and deploy smart contract using it.
How to compile and deploy Smart Contract on Test
Networks,
Quick example of deploying ERC20 token smart
contract.
Getting started tutorial on Solidity
Creating ERC-20 smart contract and crowd sale
(ICO) smart contract without coding
ERC-20 smart contract and crowd sale (ICO) smart
contract:
Creating Ethereum ERC-20 Tokens and Crowd
Sales (ICO) without coding with Token Wizard:
Example of creating and deploying an ERC20
token on the test and main network!!!

2. Blockchain:

A blockchain is a digital record of transactions. The name
comes from its structure, in which individual records,
called blocks, are linked together in single list, called a
chain. Blockchains are used for recording transactions
made with cryptocurrencies, such as Bitcoin, and have
many other applications.

Each transaction added to a blockchain is validated by
multiple computers on the Internet. These systems, which
are configured to monitor specific types of blockchain
transactions, form a peer-to-peer network. They work
together to ensure each transaction is valid before it is
added to the blockchain. This decentralized network of
computers ensures a single system cannot add invalid
blocks to the chain.

When a new block is added to a blockchain, it is linked to
the previous block using a cryptographic hash generated
from the contents of the previous block. This ensures the
chain is never broken and that each block is permanently
recorded. It is also intentionally difficult to alter past
transactions in blockchain since all the subsequent blocks
must be altered first.

Blockchain Uses: While blockchain is widely known
for its use in cryptocurrencies such as Bitcoin,
Litecoin, and Ether, the technology has several other
uses. For example, it enables "smart contracts,"
which execute when certain conditions are met. This
provides an automated escrow system for
transactions between two parties. Blockchain can
potentially be used to allow individuals to pay each
other without a central clearing point, which is

required for ACH and wire transfers. It has potential
to greatly increase the efficiency of stock trading by
allowing transactions to settle almost instantly
instead of requiring three or more days for each
transaction to clear. Blockchain technology can also
be used for non-financial purposes. For example, the
InterPlanetary File System (IFPS) uses blockchain to
decentralize file storage by linking files together over
the Internet. Some digital signature platforms now
use blockchain to record signatures and verify
documents have been digitally signed. Blockchain
can even be used to protect intellectual property by
linking the distribution of content to the original
source.
Blockchain is decentralized database that consists
from records and data. The entire data is spread out
in bounch of distributed computers to end to be pear
to pear p2p network. The records in these databases
are stored in form of blocks which linked together in
secured way.
The bitcoin blockchain stores data specific to keep
track of crypto currencies balances between different
parties.
Ethereum block chain can store much more deep
data than bitcoin block chain. Ethereum block chain
allows building decentralized apps. These
decentralized apps defined by smart contracts. So
smart contract allows individuals to exchange
information in trusted confident free manner without
relying on third party as bank or lawyer or other way.
So these Ethereum smart contracts stored in special
transections in Ethereum blockchain which can be
used then to build applications. So you can think on
smart contracts as decentralized api's. As smart
contracts stored in Ethereum blockchains, they need
to be validated or mined as any other transactions.

So there is small costs associated with deploying
smart contracts.
How to code smart contract. We do that with solidity.
Solidity is a code used. Solidity is a language used to
code smart contract. And syntax is similar to java
script and is designed with Ethereum virtual machine
in mind. So we will use solidity to create smart
contract in web based ide called remex

3. Solidity variables and types

You can write the solidity and test code in
https://remix.ethereum.org/.
Here screen of https://remix.ethereum.org

Create new contract. I called it Coursetro.
Start off by writing (or pasting) the following code:

pragma solidity ^0.4.18;

contract Coursetro {

}
The very first line defines the version of solidity you're
going to use.

Next, you define the contract and its name and open it
up like a JavaScript class.

On the right side of the browser under the Run tab,
you will see a Deploy button. Click on this. You will
notice that underneath the Deploy button shows a

new section with the name of the contract and "at
0x..." (memory):

This means that the smart contract (yes, it's not
very smart at this point) lives at an address. To see
this full address along with other information, in
the debugger if you click on the Details button, it
will provide you with more information:

Notice there's a contractAddress, this is where
the smart contract actually lives. No, it's not live on
the Ethereum Blockchain because right now, we're
simply working within the Javascript EVM.

Also notice gas. Every time a contract is deployed
and modified, nodes on the Ethereum network must
verify the contract. It's referred to as being
redundantly parallel, as a way to reach
consensus.Gas is the name for the execution fee
that senders of transactions (in our case, senders of
a smart contract transaction) will pay for
verification.

Elaborating on this further, from etherdocs.org:

"Gas is the name for the execution fee that senders
of transactions need to pay for every operation
made on an Ethereum blockchain. The name gas is

inspired by the view that this fee acts as cryptofuel,
driving the motion of smart contracts. Gas is
purchased for ether from the miners that execute
the code. Gas and ether are decoupled deliberately
since units of gas align with computation units
having a natural cost, while the price of ether
generally fluctuates as a result of market forces.
The two are mediated by a free market: the price of
gas is actually decided by the miners, who can
refuse to process a transaction with a lower gas
price than their minimum limit. To get gas you
simply need to add ether to your account. The
Ethereum clients automatically purchase gas for
your ether in the amount you specify as your
maximum expenditure for the transaction."
In Solidity, you define a variable by first specifying
its type.

What other types are there?

a. bool
This is a Boolean, which returns true or false.

b. int / uint
Both int and uint represent integers, or number
values. The primary difference between int and
uint (Unsigned Integer), is that int can hold
negative numbers as values.

c. address
The address type represents a 20 byte value,
which is meant to store an Ethereum address.
Variables that are typed as address also have
members, including balance and transfer.

d. bytes1 through 32
This is a fixed-size byte array.

e. bytes
A dynamically-sized byte array.

f. string
A dynamically signed string.

g. mapping
Hash tables with key types and value types. We
will look at mappings more in depth later on in
the course.

h. struct
Structs allow you to define new types. We will
also cover this more in depth shortly.

Let's define a string variable in our contract. Let's
also define my age. No one can have a negative
age, so we will use an unsigned integer for this:

pragma solidity ^0.4.18;

contract Coursetro {

 string fName = 'Gary';
 uint age = 34;

}

Solidity has four types of visibilities for both
functions and variables:

1. Public
This allows you to define functions or variables
that can be called internally or through
messages.

2. Private
Private variables and functions are only available
to the current contract and not derived
contracts.

3. Internal
Fuctions and variables that can only be accessed
internally (current contract or derived).

