Die FINESS

Beweglich und gesund ein Leben lang

Dr. med. Christian Schneider | Dr. Thore Haag

Die FITNESS DOCS

Dr. med. Christian Schneider | Dr. Thore Haag

Die FITNESS DOCS

Beweglich und gesund ein Leben lang

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie.

Detaillierte bibliografische Daten sind im Internet über http://d-nb.de abrufbar.

Für Fragen und Anregungen

info@rivaverlag.de

Wichtiger Hinweis

Dieses Buch ist für Lernzwecke gedacht. Es stellt keinen Ersatz für eine individuelle medizinische Beratung dar und sollte auch nicht als solcher benutzt werden. Wenn Sie medizinischen Rat einholen wollen, konsultieren Sie bitte einen qualifizierten Arzt. Der Verlag und die Autoren haften für keine nachteiligen Auswirkungen, die in einem direkten oder indirekten Zusammenhang mit den Informationen stehen, die in diesem Buch enthalten sind.

Originalausgabe

1. Auflage 2021

© 2021 by riva Verlag, ein Imprint der Münchner Verlagsgruppe GmbH

Türkenstraße 89 80799 München Tel.: 089 651285-0

Fax: 089 652096

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme gespeichert, verarbeitet, vervielfältigt oder verbreitet werden.

Redaktion: Christoph Hellwig

Umschlaggestaltung: Sonja Vallant

Umschlagabbildungen: Bettina Theisinger

Fotos: alle Bilder von Bettina Theisinger, außer S. 27 shutterstock/vectorfusionart; S. 29 shutterstock/Jacob Lund; S. 31 shutterstock/ Africa Studio; S. 41 shutterstock/UNIKYLUCKK; S. 42 shutterstock/fizkes; S. 84, 98, 118, 136, 172 shutterstock/MDGRPHCS; S. 95 shutterstock/Dmytro Vietrov

Illustrationen: S. 12 shutterstock/sciencepics; S. 14, 20 shutterstock/Crevis; S. 15 shutterstock/Olga Bolbot; S. 17 shutterstock/gritsalak karalak; S. 18 shutterstock/eranicle; S. 33 shutterstock/CGBear; S. 82o shutterstock/icon Stocker; S. 82u shutterstock/Viktorija Reuta; S. 83 shutterstock/The Leon King

Layout: Katja Muggli

Satz: Daniel Förster, Belgern

Druck: Firmengruppe APPL, aprinta Druck, Wemding

eBook: ePubMATIC.com

ISBN Print 978-3-7423-1510-6

ISBN E-Book (PDF) 978-3-7453-1177-8

ISBN E-Book (EPUB, Mobi) 978-3-7453-1178-5

Weitere Informationen zum Verlag finden Sie unter

www.rivaverlag.de

Beachten Sie auch unsere weiteren Verlage unter www.m-vg.de

INHALT

Vorwort

Kapitel 1 Wie sich unser Körper im Laufe der Zeit verändert

Altersbedingte Veränderungen in unserem Körper Lebensstilbedingte Veränderungen

Kapitel 2 Wie wir den Alterungsprozess aufhalten können

Den Körper durch Bewegung gesund halten

Wie viel wir uns wenigstens bewegen sollten

Alltagsbewegungen richtig ausführen

Fitness fördern

Essenzielle Trainingskomponenten für körperliche Gesundheit

Kapitel 3 Mit Bewegung zu dauerhafter Gesundheit

Mobilisierung, Kräftigung und Stabilisierung

Training der Füße

Training der Knie

Training der Hüfte

Training des Rückens

Training der Schulter

Minimalprogramme für einen aktiven Alltag

Übungsübersicht

Anmerkungen und Quellen

Über die Autoren

VORWORT

Dürfen wir uns vorstellen: Dr. med. Christian Schneider und Thore-Björn Haag die Fitness-Docs. Was uns auszeichnet und berechtigt, Sie auf den Nutzen körperlicher Aktivität im Wandel der Zeit hinzuweisen, sind zum einen langjährige Tätigkeiten in der Orthopädie als Sportarzt des Jahres und betreuender Verbandsarzt der Bob-Schlittenmannschaft sowie die Mitaliedschaft bei zahlreichen Spitzensportorganisationen (DOSB, IOC EOC), zum anderen eine überdauernde Aktivität als Athlet, Spielanalyst, Team- und Personal-Trainer im Leistungssport Volleyball.

Jetzt fragen Sie sich bestimmt, was wir davon haben, Sie an unserem erworbenen Wissen in Buchform teilhaben zu lassen, zumal Ihnen auch andere Beiträge, Youtube-Videos und Pod-casts als Leitfaden dienen können. Noch mehr interessieren wird Sie wahrscheinlich, was Sie selbst davon haben, dieses Buch zu lesen. Lassen Sie uns Ihnen Ihr Bedürfnis formulieren:

Sie möchten den Konsens zweier Experten, die das Thema mit unterschiedlichen Sichtweisen (der Medizin und der Sportwissenschaft) beäugen, hören, da Sie selbst oder nahestehende Personen, ja gefühlt die ganze Welt an Alterserscheinungen zu erkranken droht. Sie möchten ein Grundverständnis für den Wandel der Prozesse aufbauen, aber noch lieber direkt zur Tat schreiten und aktiv werden.

Nun, da haben wir glücklicherweise etwas für Sie vorbereitet.

Training ist gut, Kontrolle ist besser. Scheuen Sie sich nicht, Rat von Experten einzuholen.

Ratgeber soll Ihnen einen Einblick die in verschiedenen Bedürfnisse des Körpers im Wandel der Zeit bieten und praktische Übungsansätze an die Hand geben, vorzubeugen. Beschwerden Dafür Veränderungen aus orthopädischer und internistischer Sicht beleuchtet, die sich zum einen auf den Alterungsprozess an sich beziehen, zum anderen aber den sich wandelnden gesellschaftlichen Lebensstil berücksichtigen. werden wir viele bereits mehrfach dokumentierte Gebiete nur anreißen, Ihnen aber weiterführende Quellen zur Verfügung stellen, sollten Sie sich in ein Thema intensiver einlesen wollen. Unser Fokus liegt viel mehr auf der Grundverständnisses Vermittlung eines und praxisbezogener Ansätze zum langfristigen Erhalt der Lebensqualität.

Auf den ersten Blick strotzt dieser Ratgeber geradezu vor Attraktivität und Lesespaß: Wir befassen uns mit Dingen, die keiner hören will, formulieren Hilfen, die anstrengend sind, und lehnen uns rebellisch gegen eine Dimension auf, die wir nicht bezwingen können. Wir hoffen jedoch, Ihnen mit diesem Ratgeber im möglichst spät endenden Kampf gegen

das Altern etwas unterhaltsam beistehen zu können und wünschen Ihnen – frei nach Loriot –, dass auch Sie sich von Ihrem Alter nicht vorschreiben lassen, wann Sie ins Bett zu gehen haben. Viel Spaß!

Abschließend weisen wir darauf hin, dass die vor allem im praktisch orientierten Teil dieses Ratgebers genannten Übungen zur Prävention und Behandlung von Verletzungen keinen Ersatz für ein gut geplantes, angeleitetes Training darstellen. Besonders die stete Rückmeldung eines Trainers Bezug zur Übungsausführung und der adäguaten Anpassung des Niveaus stellen wichtige Eckpfeiler eines Erfolg versprechenden Trainings dar. Dennoch kann mit der präsentierten Auswahl an Übungen ein Effekt erzielt werden, der sich positiv auf die Gesundheit des Muskel-, Bänder-, Gelenkapparates Sehnenund während Alterungsprozesses auswirkt und heutzutage im praxisbezogenen Umfeld als integrativer Bestandteil der jeweiligen Behandlung anzusehen ist. In keinem Falle ersetzen diese Übungen jedoch die Notwendigkeit eines Arztbesuches bei (länger) anhaltenden Beschwerden.

KAPITEL 1

WIE SICH UNSER KÖRPER IM LAUFE DER ZEIT VERÄNDERT

Schon seit geraumer Zeit wissen wir, dass früher alles besser war. Weniger CO₂, mehr Lametta und überhaupt ging es uns da prima. Hätte Goethe sie nicht zur Blütezeit seiner Jugend verfasst, die Leiden des alten Werthers wären wohl nicht zum Bestseller gereift. Rückenschmerzen, beginnende Weitsicht und der Sturm und Drang auf das stille Örtchen bilden nur begrenzt unterhaltsames Potenzial. Dabei ist es eine historische Tatsache, dass einige Dinge im Lebenslauf Zeit brauchen, um ihren Glanz gänzlich zu offenbaren (eine gute Traube, Freundschaften und die Weisheit, dass früher trotzdem alles

besser war). Doch Sie ahnen es: Unser Körper gehört leider nicht dazu.

ALTERSBEDINGTE VERÄNDERUNGEN IN UNSEREM KÖRPER

Der Mensch ist in Bewegung, ganz gleich, ob beim Joggen im Park, bei der Arbeit im Büro oder beim Lesen eines guten Buches auf der Couch. In jeder Sekunde erneuern sich abertausende unterschiedliche Zellen unseres Körpers, tauschen Gase aus, durchlaufen Blutbahnen und altern. Aber wann ist man alt? Welche Veränderungen durchlebt man? Muss man Angst davor haben oder kann man vielleicht etwas tun?

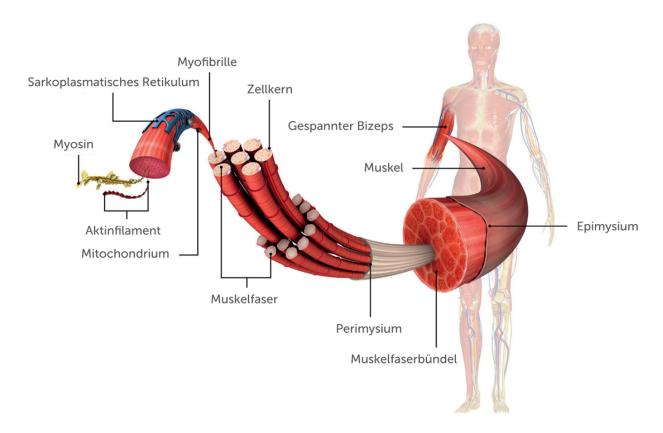
Bekannterweise: jein. Bis zum heutigen Tag ist es der Menschheit nicht gelungen, den hoch individuellen Prozess des Alterns aufzuhalten. Doch auch wenn erste (negative) Veränderungen der Physiologie bereits ab dem 25. bis 30. Lebensalter einsetzen, sind die Tage längst noch nicht gezählt. Denn es wurden Wege gefunden, die Mechanismen zu entschleunigen beziehungsweise die Funktionalität des Körpers möglichst lange aufrechtzuerhalten. Unter anderem durch Bewegung und Training.

Humoristen zufolge ist man erst alt, wenn man sich die Schuhe zubindet und sich gleichzeitig fragt, was man noch alles erledigen kann, jetzt, wo man schon mal hier unten ist. Während die Kinder und Enkelkinder noch munter durch den Garten springen, wirkt für einen der Sonnenstuhl attraktiver als die Schaukel. Dabei lässt sich physiologisch erklären, wieso unser innerer Schweinehund immer größer und wir selbst immer kleiner werden.

»Es ist am Morgen vierfüßig, am Mittag zweifüßig, am Abend dreifüßig. Von allen Geschöpfen wechselt es allein mit der Zahl seiner Füße; aber eben wenn es die meisten Füße bewegt, sind Kraft und Schnelligkeit seiner Glieder ihm am geringsten.«¹

Schon die alten Griechen hatten beobachtet, dass sich im Verlauf der Zeit Kraft und Schnelligkeit verändern. Heutzutage wissen wir präziser, wieso wir uns mit 60 schwerer tun, der Sphinx davonzulaufen, als mit 25: Unsere mehr als 600 Muskeln, knapp 200 Knochen, zahllosen Sehnen und Bänder sowie zig Milliarden Nervenzellen, geradezu fast die gesamten Prozesse des menschlichen Körpers, verändern sich.

In den folgenden Kapiteln möchten wir in die altersbedingte körperliche Transformation ausgewählter Systeme blicken. Tatsächlich hilft hierbei ein Verständnis des Aufbaus der einzelnen Strukturen, welches wir jedoch nur übersichtlich darstellen werden, da seit dem Jahre 1444 bereits unzählige Aufbereitungen der Anatomie des Menschen schriftlich dokumentiert sind.


Veränderungen im Bewegungsapparat

Praxisalltag begegnen Patienten unserem uns unterschiedlichsten Beschwerden muskulären von Disbalancen über Schmerzen am Sehnen- und Bandapparat bis hin zu Frakturen. Nicht immer müssen für Schmerzen oder Verletzungen tatsächlich Unfälle verantwortlich sein. Manchmal ist die Antwort auf die Frage der Ursache schlicht: 7eit. Sie Veränderungen Lassen die des uns

Bewegungsapparates im Altersverlauf etwas näher betrachten.

Veränderung der Muskulatur

Um ein Verständnis für Veränderungen im Altersverlauf zu entwickeln, eignet sich ein Blick auf den strukturellen Aufbau unserer Muskulatur: Ein Muskel, der von einer dünnen Hülle (der Faszie) umgeben ist, besteht aus mehreren Muskelfaserbündeln. Diese wiederum sind aus einzelnen Muskelfasern zusammengesetzt, die ihrerseits aus sogenannten Sarkomeren bestehen – der kleinsten funktionellen Einheit. Klingt zwar komisch, ist aber so.

Die Muskulatur ist fein strukturiert und sehr komplex aufgebaut. Durch das Zusammenspiel der einzelnen Bestandteile wird eine Kontraktion und somit eine Bewegung des Körpers ermöglicht. Ein Nervenimpuls, der den Muskel erreicht, führt zu einer Kontraktion. Filamente gleiten ineinander und ermöglichen so Bewegungen unseres Körpers.

Verantwortlich für die Kontraktionsfähigkeit der Muskeln ist Zusammenspiel aus Myosin- und Aktinfilamenten innerhalb der Sarkomere, die eine energetisch gesteuerte Verankerung des Myosins am Aktin erlauben. Um diese zu und das Ineinandergleiten beider Filamente ermöalichen. bedarf es eines der wichtigsten Energiespeicher Organismus: unseres Adenosintriphosphats (ATP). Dieses wird. sobald ein relevanter Impuls über eine Nervenbahn an den Muskel herangetragen wurde, aufgespalten und löst somit eine Verkürzung der Filamente beziehungsweise des Muskels aus. Nebenbei bemerkt: Das erklärt ebenfalls, wieso wir beim Eintreten des Todes in eine Starre verfallen. Der Körper ist nach seinem Ableben nicht mehr in der Lage, ATP zu synthetisieren, weshalb sich die Myosinköpfchen nicht mehr vom Aktin lösen können und die Muskulatur nicht mehr in der Lage ist, sich zu entspannen.

Hauptgrund für orthopädische Degenerationen Altersverlauf liegt in dem sich ändernden Verhältnis (aufbauender) kataboler anaboler zu (abbauender) Mit zunehmendem Alter erhöht sich Prozesse. Moleküle (unter Freisetzung kataboler Stresshormone oder Myostatin) bei gleichzeitiger Reduktion anaboler Hormone (unter anderem IGF-1 oder Testosteron). Abbau wodurch einem der Muskelmasse es zu beziehungsweise Verringerung der Anzahl an Muskelfasern kommt und sich Fettgewebe schneller anlagern kann. Muskelproteine werden folglich verstärkt abgebaut, während gleichzeitig weniger aufgebaut Bemerkenswert ist, dass sich von den zwei existierenden Muskelfasertypen eher die schnellen (Typ-2)langsamen (Typ- 1) zu verändern scheinen.

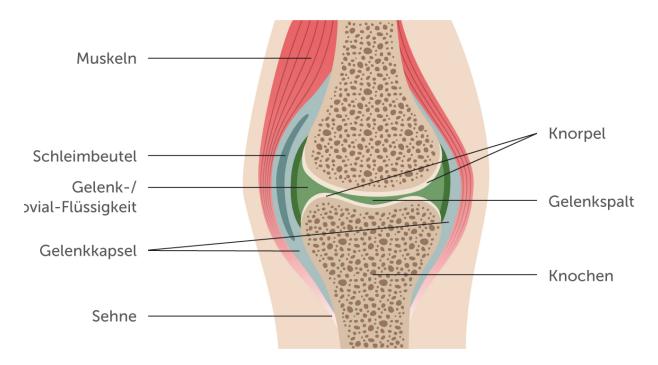
Im Alter sinkt durchschnittlich die Schnelligkeit, mit der sich die Muskulatur anspannen beziehungsweise mit der man auf

Belastung reagieren kann. Zusätzlich verringert sich die Muskulatur im Ansteuerbarkeit der Alter. sogenannten Alpha-Motoneurone des Rückenmarks, die für Ansprechen der Muskulatur zuständig das degenerieren. Die Muskulatur kann nicht mehr so gut genutzt werden wie in jüngeren Jahren und baut ab (atrophiert). Es fällt somit nicht nur schwerer. sie aufrechtzuerhalten, sondern ebenso, Muskeln durch Training Deshalb gewinnt regelmäßiges aufzubauen. und abwechslungsreiches Training (Kraft, Koordination und Kognition) im Alterungsprozess an Bedeutung.

Abbauprozesse verlaufen jedoch nicht gleichmäßig, da weder die Muskeln unseres Körpers über identische Voraussetzungen verfügen noch in gleichem Maße belastet können sich schleichend So Disbalancen entwickeln. die in mehr oder weniger orthopädischen Beeinträchtigungen resultieren und sichtbar werden. Vergleichbar wäre dies mit dem Reifensatz eines Wagens, der anfangs identisch scheint, sich jedoch über die Zeit hinweg unterschiedlich abnutzt. Aus diesem Anlass Wissenschaftler findiae sportmotorische konstruiert, die medizinische Tests es beschreibende Parameter körperlicher Beweauna erfassen. Betrachten Sie diese Untersuchungen als eine Art TÜV, den Sie im günstigsten Falle regelmäßig und in sinnvollen Zeitabständen wiederholen.

Aufbau unserer Gelenke

Muskeln spielen bei jeder Bewegung unseres Körpers die im wahrsten Sinne des Wortes – tragende Rolle. Ohne sie könnten wir uns weder rühren noch atmen und infolgedessen nicht mal denken (die Geschichte lehrt uns: Muskulatur ist hier nur eine notwendige, aber nicht hinreichende Bedingung). Für unsere Bewegungen sind aber ebenso Gelenke verantwortlich, die uns – je nach anatomischem Aufbau – Handlungen in unterschiedlichen Ebenen erlauben. Man unterscheidet dabei drei Arten von Gelenken: echte, straffe und unechte. Letztere sind band-, knorpel- oder knochenhafte, teilweise funktionslose Verbindungen ohne Gelenkspalt (wie sie beispielsweise zwischen Schädelknochen, Elle und Speiche oder den Rippenknorpeln und dem Brustbein vorkommen).

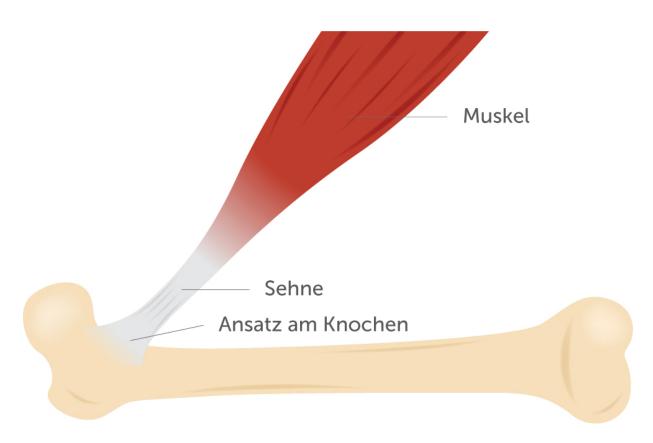

Umschließende Bänder schränken straffe Gelenke in mehrere Bewegungsrichtungen ein, wodurch eine erhöhte Stabilität gewährleistet werden kann. Echte Gelenke, welche in einer Kapsel liegend den Großteil aller menschlichen Gelenke bilden, können hingegen, abhängig von ihrer Bauart, verschiedene Funktionen und Bewegungen ermöglichen.

Funktionelle Anatomie: Am menschlichen Arm befinden sich gleich vier verschiedene Gelenktypen: Kugel,- Dreh-, Sattel- und Ei-Gelenk.

Der menschliche Körper besitzt eine Vielzahl unterschiedlicher Gelenktypen wie unter anderem Kugel-, Ei-, Nuss-, Scharnier- und Sattelgelenke. Die Freiheitsgrade, die Anzahl der Ebenen, in welchen wir uns bewegen können,

unterscheidet sich unter den Gelenktypen. Das Kugelgelenk (zum Beispiel an der Schulter) erlaubt drei Freiheitsgrade in Bewegungen dadurch verschiedene und sechs Richtungen. Fingerglieder hingegen besitzen beispielsweise ein sogenanntes Scharniergelenk, welches Aktionen in nur einer Ebene zulässt. Sie werden feststellen, dass Rotationen des Zeigefingers sowie Seitneigungen der vorderen Glieder nicht möglich sind. Hingegen ist das Kugelgelenk der Schulter sehr frei (zum Leidwesen mancher orthopädischer Luxationspatienten) und ermöglicht uns Bewegungen in allen drei Ebenen. Das liegt daran, dass wir keinen engen Kapsel- und Bandapparat in der Schulter besitzen wie an den Fingern, sondern diese weitgehend muskulär stabilisiert hauptsächlichen Bestandteile eines Gelenks wird. Die unterscheiden sich nicht groß untereinander, sodass jedes Gelenk über einen Knorpel sowie einen Gelenkspalt (mit Synovialflüssigkeit) und einer Gelenkkapsel besteht. Zudem dienen Bänder, Sehnen und Muskeln der Befestigung des Gelenks. Hierdurch erlangen wir sowohl Bewegungsfreiheit als auch Stabilität. Ohne diese Struktur ist Bewegung für uns schwer vorstellbar.

Die Grundstruktur eines Gelenks beinhaltet in der Regel Knorpel, einen Gelenkspalt und eine -kapsel sowie Muskeln, Sehnen und Bänder.


Die Notwendigkeit von Gelenken für Bewegung können wir mit einem Versuch verdeutlichen. Ganz gleich, ob Sie aufrecht stehen, sitzen oder liegen, haben Sie folgende Aufgabe: Versuchen Sie sich zu bewegen, ohne ein Gelenk zu verwenden (dabei schließen wir mal die Zunge oder Augen aus Anschaulichkeit aus). Es wird Ihnen schnell auffallen, dass dies nicht möglich ist. An jeder Bewegung unseres Körpers ist ein Gelenk beteiligt, seien es die Sprunggelenke, Knie und Hüfte beim Gehen, die Arme, Hände und Finger beim Lesen oder einfach nur die Wirbelsäule, wenn wir uns umsehen oder umdrehen wollen. Gelenke werden, ebenso wie Muskeln, Sehnen und Bänder, unzählige Male am Tag belastet² und beansprucht³, je nach Bewegung. Das veranschaulicht, warum mit dem Alter die Gelenke beginnen, Verschleißerscheinungen aufzuweisen.

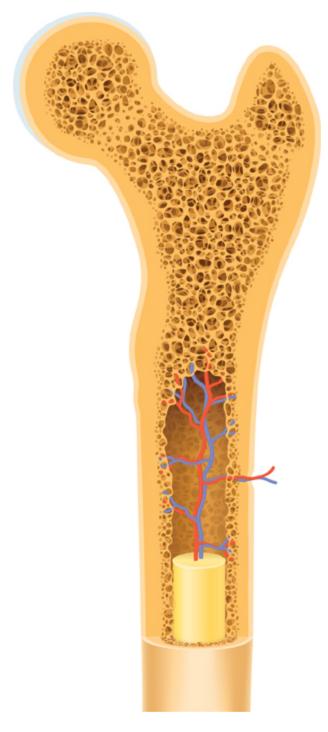
Neben der Abnutzung der Gelenkflächen und des am Gelenk beteiligten Knorpels spielt aber auch fehlende Bewegung

oder Belastung eine entscheidende Rolle. Da wir im Alter dazu neigen, inaktiver zu werden, werden auch die Gelenke weniger bewegt. Dies hat zur Folge, dass Gelenkflüssigkeit (Synovialflüssigkeit) gebildet wird, die essenziell für die Nährstoffversorgung des Gelenks ist. Zudem verlieren ebenfalls die umliegenden Strukturen (Knorpel, Sehnen und Bänder) an Elastizität. Dadurch kann Bewegungsbereich Gelenkes des zunehmend eingeschränkt sein und es zu einer sogenannten Gelenksteife kommen. Sollte der Gelenkverschleiß über das (individuelle) altersentsprechende Maß hinausreichen. spricht man von einer Arthrose, deren Ursprung in vielerlei Gründen (von Übergewicht, genetischen Prädispositionen, als Folae oder Unfällen Fehlstellungen von Erkrankungen) liegen kann. Ob Sie an einer Arthrose leiden, kann Ihnen Ihr Orthopäde anhand einer Anamnese und bildgebenden Verfahren mitteilen.

Veränderung von Knorpeln, Sehnen und Bändern

Bei optimaler Belastung hält ein Knorpel ein Leben lang. Unfälle, zu wenig, zu viel oder falsche Belastungen können dazu führen, dass der Knorpel zerstört wird oder sich zurückbildet. Entgegen anderer Substanzen werden Knorpel nämlich nicht über eigene Blutgefäße versorgt, sondern sind abhängig von der sie umgebenden Synovialflüssigkeit.

Funktionelle Einheit: Muskeln sind immer über Sehnen mit dem Knochen verbunden.


Diese schmiert wie bereits erwähnt das Gelenk und versorgt es mit Nährstoffen. Auch hier gilt aber wieder: Werden die Gelenke nicht regelmäßig bewegt und belastet, reduziert Synovialflüssiakeit gebildeten sich die Menae der beziehungsweise der abgegebenen Nährstoffe. Infolgedessen kann sich der Knorpel zurückbilden und legt Stellen der darunterliegenden, empfindlichen Knochenhaut frei.

Sehnen und Bänder halten Gelenke zusammen, verbinden Muskeln und Knochen und verleihen Gelenken Stabilität und Kraft. Während Sehnen überwiegend aus festen Kollagenfasern bestehen und Muskeln mit Knochen zur Kraftübertragung verbinden, besitzen Bänder zusätzlich elastische Fasern, die für ein gewisses Maß an Beweglichkeit sorgen und zwischen Knochen aufgespannt sind. Kollagen

ist ein Eiweiß und Bestandteil aller Bindegewebe, welches Ihnen garantiert bereits in zahlreichen Beauty-Werbespots als Mittel gegen Hautalterung angepriesen wurde. Denn zumindest eines den Aussagen mag an der Kosmetikhersteller wissenschaftlich belegt sein: Die Bildung kollagener Strukturen nimmt im Alter ab. Für Sehnen und Bänder bedeutet dies, dass sich ihre Elastizität verringert beziehungsweise sich die Kollagenstruktur verändert (es werden mehr Glukose- und Pentosebrücken statt kovalenter aebildet) sich ebenfalls Bindungen und somit biomechanischen Eigenschaften verändern. Das führt dazu, dass die maximale Toleranz einwirkender Kräfte im Alter sinkt, Sehnen und Bänder sind verletzungsanfälliger.

Veränderung der Knochen

Unser Skelett wiegt ungefähr zehn Kilogramm und besteht aus etwa 206 bis 212 einzelnen Knochen. Die Rolle des Größten unter ihnen nimmt der Oberschenkelknochen mit bis zu 50 Zentimetern ein. Der kleinste Knochen, der Steigbügel, ist einer der drei Gehörknöchelchen befindet sich im Mittelohr. Neben der Stütz-, besitzen Knochen auch eine Schutzfunktion. Sie schützen das innerhalb der Wirbelsäule liegende Rückenmark und das weiche Gewebe des Körpers - darunter auch unsere Organe. Zudem ist unser Skelett ein wesentlicher Bestandteil des (Stoffwechsel), Metabolismus beispielsweise Kalziumspeicher. Diese Stützpfeiler des Menschen folgen einem bestimmten, universellen Aufbau. Von außen nach innen reihen sich verschiedene Zellschichten aneinander. Innerste. der Markraum. wird von schwammartigen Trabekelstruktur, einer kompakten Schicht und abschließend von der Knochenhaut begrenzt. In einem dauerhaften auf- und abbauenden Zyklus werden Knochen durch sogenannte Osteoklasten und Osteoblasten erneuert.

Die innere Trabekelstruktur vieler Knochen ist ein Kompromiss aus Festigkeit, dynamischer Anpassung, Gewicht und großer stoffwechselaktiver Oberfläche.

Allgemein können kurze und platte Knochen sowie Röhrenknochen, Sesambeine und pneumatische Knochen unterschieden werden. Prinzipiell werden jene aufgrund ihrer Funktion differenziert - Röhrenknochen beispielsweise zeichnen sich durch hohe Stabilität und Widerstandsfähigkeit aeaenüber Druckund Zugbelastungen aus und finden vor allem in den oberen und unteren Extremitäten Verwendung. Wirken jedoch zu hohe Kräfte auf unser Skelett, führt dies zu Makroschäden, welche in akuten Frakturen und Ermüdungsbrüchen resultieren können. Erstere treten spontan und sehr häufig auf, von letzteren hingegen sind in den meisten Fällen ältere Menschen mit dauerhaften Überlastungen betroffen. Ob es tatsächlich sich eine Fraktur handelt. um (ausgenommen offene Brüche) anhand von Röntgenbildern festgestellt.

Unabhängig der zuvor erwähnten Art des Bruches kann grundsätzlich in Frakturen mit einfacher, keilförmiger wie auch komplexer Morphologie unterteilt werden. Abhängig Schwere der Fraktur werden von im Regelfall Maßnahmen konservative operativen Behandlungsmethoden vorgezogen. Im Idealfall setzt bei Ruhe die Frakturheilung ausreichend in aufeinanderfolgenden Schritten ein. Nach der Bildung eines Blutergusses wird die Bruchstelle mit Bindegewebe gefüllt, das mit der Zeit in einen Faserknorpel umgewandelt wird. Bei ausreichender Versorgung tritt die Mineralisierung des Knorpels nach ungefähr sechs bis acht Wochen ein. Schlussendlich entsteht daraus wiederum normales. funktionsfähiges Knochenmaterial.

sind während des Knochen Alterns Wandel einem Eine verringerte Kalziumresorption, unterzogen: also führt Demineralisation im Alter zur Abnahme Knorpelsubstanz beziehungsweise des Knochenmarks und Frakturrisiko. ein erhöhtes birat somit lm Altersverlauf zeigt sich eine Abnahme der Biegefestigkeit um bis zu 20 Prozent und der Kompressionsfestigkeit um bis zu 50 Prozent. Für derartige Verringerungen der Knochendichte gelten unter anderem Bewegungsmangel, Eiweiß- und Mineralstoffwechselstörungen oder ein Vitamin-D-Mangel als Risikofaktoren. Knochen passen sich mechanischer Belastung an, indem bei erhöhtem Zug oder Druck Knochensubstanz gebildet wird (über sogenannte Osteoplasten). Eine konstante Verringerung der Belastung hat hingegen den Abbau des Materials zur Folge.

Im Altersverlauf nimmt die Dichte der Knochen und somit auch ihre strukturelle Stabilität ab. Besonders eine Erkrankung an Osteoporose kann den Abbau der Knochensubstanz beschleunigen.

Körperlichen Veränderungen mit Bewegung entgegenwirken

Es wäre eine falsche Schlussfolgerung, aufgrund der genannten Veränderungen die Last auf unsere Strukturen verringern zu wollen, um diesen keinen Schaden zuzufügen. Ganz im Gegenteil! Nur durch Bewegung und Training gewöhnen wir unseren Körper an Belastungen und bewirken Anpassungen. Strukturen, die wir nicht verwenden, sind

besonders stark von katabolen Prozessen betroffen. Dies lässt sich auch an Heilungsprozessen des Körpers zeigen: Nach Frakturen (Knochenbrüchen) wird der Aufbau neuer Knochensubstanz durch (den Umständen entsprechende) Belastung angekurbelt. Daher versucht man, Patienten möglichst früh wieder an Bewegung zu gewöhnen. Dies Muskelabbau dem entgegen und fördert Neubildung des Gewebes. Ein besonders beeindruckendes Beispiel ist die Behandlung nach Hüftprotheseneinsatz: Nach dieser sehr aufwendigen Operation werden Patienten in der Regel sogar noch am gleichen Tag passiv bewegt und kehren bereits nach ein bis drei Tagen zu selbständiger aktiver Bewegung zurück. Das verdeutlicht eindrucksvolle Weise, welchen Stellenwert Belastung für die Funktionalität unseres Körpers besitzt.

Bewegung hat noch zahlreiche andere Vorteile. Sie resultiert in einer regionalen Durchblutungserhöhung der Muskulatur, da diese einen gesteigerten Nährstoffbedarf aufweist. Dies hat zur Folge, dass das Herz schneller schlägt (das Schlagvolumen steigt von circa vier Liter je Minute auf bis zu 25 Liter pro Minute), um die Versorgung des Körpers mit Sauerstoff, Glukose, Stickstoffmonoxid und anderen Bausteinen sicherzustellen. Unsere Herzfrequenz steigt und unsere Atmung beschleunigt sich. Von diesem Prozess profitieren potenziell auch andere Bereiche des Körpers, die nun ebenfalls besser versorgt werden, wie innere Organe oder das Gehirn – wir werden leistungsfähiger und unsere Fokussierung steigt. Ergo: Sport ist für den gesamten Körper positiv.

Veränderungen im Organsystem

Nicht nur der orthopädische Aufbau des menschlichen Körpers ist einem Wandel unterzogen, auch Prozesse und Funktionsweisen der Organe verändern sich mit der Zeit. Da wir uns hauptsächlich mit orthopädischen Veränderungen und aktiven Maßnahmen zum Erhalt der Strukturen statt internistischen Entwicklungen befassen wollen, werden Veränderungen der Organe nur kurz angerissen. Diese sind wichtig, um Ihnen zu verdeutlichen, dass Veränderungen der bisher vorgestellten Anatomie auch auf Veränderungen internistischer Prozesse zurückzuführen sind, vorrangig aber, um unsere Position zu stärken, Ihnen Bewegung ans Herz zu legen.

Veränderungen im Gehirn

Den wohl merklichsten Einfluss auf unseren Alltag haben Veränderungen innerhalb unserer zentralen Schaltstelle: des Gehirns, Schon die leichte Reduktion der Gehirnmasse (an grauer und weißer Hirnsubstanz) im Alter führt zur Verlangsamung der Informationsverarbeitung. Verringerung der Plastizität und einer verringerten Kapazität des Gedächtnisses. Hierdurch sinkt die Fähigkeit selektiven Aufmerksamkeit simultanen. und der Merkfähigkeit. Demzufolge fällt es schwerer, koordinativ anspruchsvolle Aufgaben bereits im frühen Alterungsprozess ab 30 Jahren zu lösen und neue Fertigkeiten zu erwerben. Verantwortlich dafür scheint nicht nur die Abnahme der Gehirnmasse zu sein, sondern ebenfalls die verminderte Synthese von Neurotransmittern, Botenstoffen, die unter anderem für die Reizweiterleitung verantwortlich sind (unter anderem Dopamin, Serotonin und Endorphine). Vergleichbar ist dies passenderweise mit einem alternden Postboten: Die Briefe werden immer langsamer zugestellt und landen auch immer seltener dort, wo sie hin sollen. Das heißt im Klartext: Das Nervensystem verändert sich. Bewegungen werden

unpräziser, Reflexe langsamer, unsere Thermoregulation ist eingeschränkt und das Gehör sowie die Augen verschlechtern sich.

Das heißt jedoch nicht, dass man im Alter nichts mehr dazulernen könnte! Ganz im Gegenteil: Sich mit neuen auseinanderzusetzen, schafft Verbindungen unserem Gehirn und wirkt somit dem Verfall entgegen. Ungebrauchte Areale bauen sich ab, während Aufgaben anderer Areale übernommen werden. Wenn Ihr Postbote also immer noch so schnell wie früher ist, dann hat er wohl eine neue Abkürzung entdeckt! Übrigens: Es hat sich gezeigt, dass sich sportliches Training positiv auf das Gehirn im Alter auswirken kann, da unter anderem ein erhöhter Puls für eine gesteigerte Sauerstoffversorgung im Blut und sorgt. Eine gute Grundlagenausdauer langfristig gesehen den Blutdruck verringern und somit zahlreichen Herz-Kreislauf-Erkrankungen und vaskulärer entgegenwirken! Geistige körperliche und Demenz Gesundheit gehen folglich Hand in Hand.

Einfluss auf unsere Hormone

Mit dem Gehirn sind auch endokrinologische (hormonelle) Prozesse unseres Körpers verbunden. Durchschnittlich sinkt die Produktion von Hormonen im Altersverlauf. Das wohl bekannteste Beispiel sind die Wechseljahre der Frau, die durch ein rapides Abfallen des Östrogenspiegels verursacht werden und mit diversen Beschwerden einhergehen können. Analog hierzu fällt auch der Testosteronspiegel des Mannes, jedoch bei weitem nicht in derartiger Plötzlichkeit, sodass die meisten Veränderungen (unter anderem verringerte Libido und Muskelkraft sowie steigender Körperfettanteil) eher schleichend und über einen langen Zeitraum sichtbar werden. Aber auch der Spiegel anderer Stoffe wie Melatonin Schlafrhythmus), (Regulierung Progesteron des

(Steroidhormon) oder Dehydroepiandrosteron (Prohormon) sinkt und hat starke Auswirkungen auf unser Verhalten, unser Wohlbefinden und körperliche Regelungsprozesse. Doch es gibt eine positive Nachricht: Auch hier lässt sich mit Bewegung etwas tun. Sport fördert die Bildung von Testosteron, Human Growth Hormones (unter anderem verantwortlich für den Fettstoffwechsel), Endorphinen und fördert den Umgang mit Cortisol. Sie ahnen schon, worauf das hinausläuft.

Veränderungen im Herzen

altersbedingten Veränderungen der Muskulatur unterworfen, aber als Zentralorgan weiteren Besonderheiten unterlegen, ist das Herz. Auch hier greifen die sich Alter Größe sodass im Prozesse. Hauptherzkammer und des linken Herzventrikels verringert, während das Myokard (der Herzmuskel) bei Männern sogar zur Vergrößerung neigt. Da sich die Stimulierbarkeit der Reizweiterleitung Rezeptoren und die innerhalb der verändern. Muskulatur wird das anfälliger für Herz Rhythmusstörungen (Bradyoder Tachykardien). Anpassungsfähigkeit nimmt ab die und funktionieren nicht mehr zuverlässig. Obendrein sorgen Bindegewebsveränderung und Ablagerungen innerhalb der Koronararterien zu einer Verringerung des Blutflusses und einem erhöhten systolischen Blutdruck. Infolgedessen sinkt Belastbarkeit. was auch maximale sich näherungsweisen Berechnung der maximalen Herzfreguenz ausdrückt: 220 minus Lebensalter. All diese Veränderungen schwerwiegenden führen Erkrankungen wie zu Thrombosen, Herzinfarkten. Schlaganfällen oder der koronaren Herzerkrankung. häufigsten der bis dato Todesursache westlicher Nationen, Höchste Zeit, die Beine in die Hand zu nehmen.