


Contents
Preface

I. For Beginners

1 Lab Network
Resources
Virtualization
Hardware
Networks
Firewall
Addressing
Lab Server
Utilization

2 Platform
Preparation
VMware
VirtualBox
Hardware

3 Installation
Operating system
Storage
Post-installation tasks

4 Initial Setup



Initial setup
Secondary setup
Routing
Final testing
Summary

5 IP Version6
Crash course
Lab setup
Addresses and routes
Clients
Connections
Summary

II. For Intermediates

6 Firewall
OPNsense as a firewall
Lab setup
Firewall rules
Logging
Throughput
Best practice
GeoIP
Technical background
Order of processing
Troubleshooting
Summary

7 Transparent Firewall
Pros and cons



Lab setup
Configuration
Filter operation
Ruleset
Uncover transparent firewall
Technical background
Summary

8 Network Address Translation
Lab setup
Scenarios
IPv6
NAT Reflection
Technical background
Summary

9 Management Interface
Summary

III. For Experts

10 IPsec VPN
Security
Lab setup
Connection setup
Address translation
Dead Peer Detection
IPv6
VPN throughput
Troubleshooting
Technical background



Outlook
Summary

11 OpenVPN
Operation
Authentication
Differences to IPsec
Lab setup
Site-to-Site tunnel
Client-server tunnel
Troubleshooting
Certificates
Technical background
Summary

12 High Availability
Basics
Lab network
Address translation
Best practice
Quicker failover
Load balancing
IP version 6
Technical background
Summary

13 NetFlow
The content of a flow
Lab setup
Collector



Troubleshooting
Insight
Technical background
IPv6
Summary

14 Web Proxy
Lab setup
Explicit proxy
Proxy cluster
SSL inspection
Transparent proxy
Technical background
Limitations
Outlook
Summary

15 Central Authentication
Protocols
Lab setup
Microsoft Server
Directory-as-a-Service
Troubleshooting
Technical background
Summary

IV. For Hackers

16 Multi-WAN
Requirements
Load distribution in the WAN



Lab environment
Operation
Configuration
Scenario
Monitoring
IPv6
Technical background
Summary

17 DSL router
DSL types
Lab setup
PPPoE Dial-in
LAN adapters
DNS and DHCP
IPv4 with Address Translation
IPv6 with prefix delegation
Firewall
Technical background
Summary

18 Intrusion Detection
IPS and IDS
Network integration
Lab setup
Attack
Activate IDS
Activate IPS
Transparent IDS
Technical background



Summary

19 Command Line
configd
Configuration changes
Undo changes
Updates
Summary

20 Performance Tuning
Lab setup
Baseline
Virtual network adapter
Routing throughput
IPsec throughput
Increasing performance
Summary

V. For Admins

21 Best Practice
Factory reset
Benchmark throughput
SSH login without password
Password reset

22 Configuration
Dropbox
Google Drive
Summary

23 Life Hacks



Access from Windows
Span port
Telegram
Firewall rules with category
Quick search

24 Application Programming Interface
How does the API work?
Read Access
Write Access
What does the API cover?
API browser
Security
Technical background
Outlook
Summary

Bibliography

Index

A. Editing Files in FreeBSD

B. Pattern Matching

C. Bonus Material



Preface
OPNsense started its life as a bitchy little sister of pfSense
who wanted to be superior: better code, better security,
better licensing, better targets – and even better open
source then its siblings!

With these grandstanding words OPNsense separated from
pfSense in 2014. The OPNsense developers started with a
spring-cleaning of the pfSense source code. They presented
the first version of OPNsense at the beginning of 2015: they
tidied up all the code and added a modern web GUI without
changing the functionality.

After all the effort, did OPNsense actually make the cut and
find friends? If so, who are they? As it turns out, well-
structured and documented source code, as seen in
OPNsense, is apparently a significant attribute for an open-
source firewall! And several celebrities from the security
world have complimented OPNsense, first and foremost of
these being the chief developer of monowall.

Probably every pfSense administrator has taken a brief
look at OPNsense and reviewed its differences. The
OPNsense web interface appears in a responsive design,
while the known features from pfSense are accessible only
from swiveling menus. This improvement adds to the
already positive impression of OPNsense.

This book will show you how to operate OPNsense and the
many features which are all possible with this open-source
firewall.



Enjoy reading and trying things out – and be ready for
wonderful surprises (and even a bit of cursing).



Overview
Part 1, For Beginners, sets up the network environment with
physical devices or on a virtual platform. All machines get
an operating system and a quick configuration, followed by
essential functions, like routing and IPv6.

In part 2, For Intermediates, the firewalls fulfill some
pressing tasks, which must be present in every network. As
a packet filter and address translator, they will connect and
isolate the attached subnets.

Part 3, For Experts, dives into enterprise-grade topics and
establishes site-to-site VPN tunnels and firewall clusters for
high-availability. An in-depth look inside the data flow
provides good-old NetFlow. And the included proxy server
can even sniff inside SSL connections.

Outside the closed lab environment OPNsense acts in part 4,
For Hackers, as DSL router, load-balancer for multiple
Internet links and even as Sheriff for data trespassers.

Part 5, For Admins, provides many small hints that make
daily work with the firewall more fluent and straightforward.
After that, OPNsense uploads its configuration file to the
cloud and stores it revision-safe on a DropBox or Google
Drive. Finally, let’s check out the programming interface of
OPNsense.



Resources
https://opnsense.org
The homepage of OPNsense offers a good start into the
topic and links to the official documentation, to the forum,
and the download area.
https://github.com/opnsense
The source code is hosted at GitHub, where anybody can
review the code and its development process. It also offers
the build tools and tutorials on how to compile the code
yourself.
https://docs.opnsense.org/
OPNsense for reading: manuals for user and developer,
how-to documents with many screenshots and step-by-step
tutorials. Almost as comprehensive as a full book.
https://forum.opnsense.org/
The forum is the first place to find small tutorials,
discussions, and support from the community. The language
is not limited to English, and many posts are in German.

Conventions
Constant Width regular shows the output of a command.

Typewriter font is used for configuration and keywords, and
must be typed exactly as shown.

https://opnsense.org/
https://github.com/opnsense
https://docs.opnsense.org/
https://forum.opnsense.org/


Constant Width bold shows commands that expect some
kind of output.

Accentuations indicate unique words or lines within a
command or its output.
a-very-long-command-string --with --many \

--many "options"

Commands with many arguments can take more space than
fits into one line. For a clear overview, these commands are
printed in several lines indented by two spaces. At the end
of the line is a backslash to indicate that the command
continues on the next line.

Legal
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately
capitalized. The author cannot attest to the accuracy of this
information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or
service mark.

While every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility
for errors or omissions, or for damages resulting from the
use of the information contained herein.



Introduction
OPNsense is an open-source network operating system for
routers and firewalls. It is based on FreeBSD UNIX and
contains such applications as Squid, pf, StrongSwan, and
OpenVPN with a consistent web interface. OPNsense runs on
physical hardware, as a virtual machine, or in the cloud.
Although it offers a wide range of functions, it has not yet
become a well-known brand. Even though it hits it out of the
ballpark for its functionality and usability. OPNsense
combines the charm of UNIX with the functional range of a
professional firewall at a very low budget.

OPNsense is:

Evolving. And that’s said in a positive light because it
means there is room to grow. In addition, implementing
features is sometimes out of the ordinary: the provider-
centric QinQ-tagging and several DNS services are included,
but IPv6 does need focus.

Open Source. The advantage of an open-source solution
isn’t always its price. There is no license cost involved, but
its use requires time and resources from an IT department
to set up; and when it is finally set up, the software may be
poorly documented and not provide vendor support.

Thus, the main advantage of open source is the ability to
detect unwanted code. At the time of writing, it is rumored
that the NSA will force vendors to install backdoors in their
security software. For a consumer who installs a firewall
system, that is almost impossible to discover. But it is a big



drawback when these firewalls are used in your own
network.

On the contrary, security experts can review open-source
products and have a good chance of finding malicious code.
Furthermore, it is challenging for vendors to install a
backdoor in the source code if it is available for everybody
to read and analyze.

Try before Buy. You can (and should) evaluate OPNsense
thoroughly before spending money on infrastructure. That’s
the same idea as with a shareware application. Who is
happy about limited functionality or a demo license that
expires after 30 days?

In this context, try means evaluating with sample
scenarios and buy stands for deployment in the local
environment.

Hardware-independent. OPNsense is a software that
requires some sort of hardware or virtual infrastructure.
Since there are many options, all of which are acceptable,
choosing the right one isn’t easy. In terms of requirements
and desired characteristics, for example, which piece of
electronics is needed to saturate a 34 Mbps link with a VPN
tunnel doing strong encryption? In the past, software-based
network solutions could not keep up with the performance
of a hardware device. The main reason for this was the
terrible cooperation between software drivers and
underlying hardware. The choice of network adapters,
mainboards, CPUs, and memory is virtually unlimited, which
makes it impossible for the software to get the maximum
performance out of every combination.

Nowadays, regular servers or embedded systems have
surprisingly good performance. Even with a non-optimized
software and small packet sizes, it is possible to break the
bandwidth level of 100 Mbps.



The Dutch corporation Deciso [1] and its Netboard A10
tackled the question about which hardware component is
best for the job. Optimization, adaptation and marketing
have led to a respectable firewall appliance.

UNIX. Within OPNsense is a customized FreeBSD. Access to
the operating system is possible but protected by a
password. Login is permitted from the console menu or by
an SSH connection. This flexibility allows you to customize,
enhance, or install additional tools. Be careful though, these
changes might also lead to unstable behavior.

Best Of. Although OPNsense doesn’t reinvent the wheel, it
does implement many services from the UNIX and Linux
domain. The software has attained rock-solid stability after
years of development. The web proxy comes from Squid,
the SSH server is a subsidiary of OpenSSH and the firewall
ruleset is the packet filtering engine pf from BSD.

Is use of OPNsense, an open-source software, theft of
intellectual property? Not at all! It simply proves that open
source works. When license terms are met, it is perfectly
legal to integrate 3rd party software. It is highly
recommended, especially in the security world, that
application developers do not invent another crypto
algorithm; but rather use stable free libraries.

History
The history of OPNsense is coupled with monowall and
pfSense. At the beginning of 2003, monowall started as a
firewall which used FreeBSD as its operating system. One
year later, pfSense forked monowall with the goal of being
better. This approach worked well and in 2006 pfSense out-



performed its predecessor regarding functionality and
popularity.

The concept behind pfSense and its development was
successful. In the following years, they released one version
after the other.

The rivalry apparently ended in January 2014 when
monowall published its ultimate stable version. The project
announced its end later in February 2015 and ceased
development on its firewall software.

Later in 2014, the US enterprise Electric Sheep Fencing
LLC offered commercial support for pfSense and finally took
over the firewall distribution. This acquisition resulted in a
license change, which made it difficult for developers to get
the source code.

This political change to pfSense and the downfall of
monowall was the main reason that some Dutch and
German developers started their firewall distribution as a
fork of pfSense. Their aims were code quality, security,
transparency, and tight integration with the community. The
title OPNsense was intended as a reminder to its origin as
pfSense.

The first version of OPNsense came out in January 2015
and was pfSense code dressed in a nice suit. Then the
developers started working below the surface and replaced
version after version pfSense code by their own code. At
present (2019) both firewall distributions have
approximately 10% common code lines.

OPNsense publishes new releases on a precise semiannual
basis. This regular interval makes update schedules easy,
and the community likes this strategy. Indeed, critical
security patches have been released in the meantime, when
necessary, so there is no need to wait for the next major
release.



OPNsense and pfSense compete with similar goals to win
trust of its users. Which distribution will win has not been
decided yet: OPNsense with a fresh start and clear goals or
pfSense with long-time confidence, stability, and a reputable
name.



Part I

For Beginners



Chapter 1

Lab Network
An OPNsense firewall would be useless without a
surrounding network to protect it. In practical terms, it is
best to set up a separate lab network. Within this
framework, it is safe to experiment with the firewall and its
features without affecting any productive services.

All topics within this book have a practical background. Each
chapter begins with the basics to establish an
understanding or to refresh dusty knowledge. The examples
and exercises are meant to be played with and rebuilt.

All chapters are based on the exact same network
diagram, which represents a small corporate network with
two remote sites and redundant wide area network (WAN)
connections. Depending on the complexity of the topic, it
might be enough to use only a small part of the lab network.
Some chapters might have a different setup or an additional
device. In that case, this will be explained in detail at the
beginning of the section.

Resources
Using the exact same setup for the lab network removes the
need to modify the infrastructure between chapters, i.e.
there is no need to re-cable or modify the virtual



environment. This saves time and prevents error. And after
a few chapters, the lab network will become more and more
familiar, since the names of firewalls, clients, network
adapters, and IP addresses remain unchanged. The
complete network diagram is printed in Figure 1.1. The
following chapters will use only part of this network for
demonstration purposes.

There is no need to have physical access to the devices. It
is even possible to operate the lab remotely.

The choice for hardware components depends on the
expected throughput. More memory, CPU cores, and disk
space will lead to a more powerful firewall that can handle
higher bandwidth and more user sessions.

The official specifications for memory and disk capacity
take into account bandwidth and activated features. The
minimal requirements are low enough to run the full lab on
a laptop computer or on cheap hardware. For example, an
OPNsense firewall requires 512 MB memory and a 4
gigabyte hard disk.

Despite the ability to run a lab on minimal requirements,
more CPU cores, memory space, and disk space are always
encouraged. Table 1.1 gives the specifications for different
configurations. The numbers are based on official
documentation [2].

Specification Processor CPU
cores

Memory Disk
size

Minimum 500 MHz 1 512 MB 4 GB
Reasonable 1 GHz 2 1 GB 40 GB
Recommended 1,5 GHz 2-4 4 GB 120 GB

Table 1.1: Hardware requirements for OPNsense



Some chapters use isolated networks, others need Internet
access. The path to the Internet is always through the
firewall in the core network. The firewall expects Internet
access behind its network adapter em0. This is done with a
NAT adapter in a virtual environment. In a physical setup,
connect the network adapter to the DSL router. Any scenario
that leads to the Internet is welcome.



Figure 1.1: The lab network is a template for all chapters



Virtualization
It is possible to fully virtualize all devices used in the lab
network. Each firewall becomes a separate virtual machine
(VM) with virtual network cables connecting neighboring
VMs. The interconnecting networks between the VMs are
VMnetX (at VMware) and vboxnetX (at VirtualBox). A
physical network adapter in the host system is only required
when mixing the lab with real gear.
Firewall Interface VMnet/vboxnet IPv4 IPv6
RT-1 em0

em1
em2
em3
em4

Management
VMnet1
VMnet4
VMnet7
VMnet6

10.5.1.1
10.1.1.1
10.4.1.1
198.51.100.1
192.0.2.1

fd00:5::1
fd00:1::1
fd00:41
2001:db8:1::1
2001:db8:2::1

RT-2 em0
em1
em2
em3

Management
VMnet1
VMnet4
VMnet7

10.5.1.2
10.1.1.2
10.4.1.2
198.51.100.2

fd00:5::2
fd00:1::2
fd00:4::2
2001:db8:1::2

RT-3 em0
em1
em2

Management
VMnet2
VMnet6

10.5.1.3
10.2.1.3
192.0.2.3

fd00:5::3
fd00:2::3
2001:db8:2::3

RT-core em0
em1
em2

Management
VMnet7
VMnet6

10.5.1.6
198.51.100.6
192.0.2.6

fd00:56
2001:db8:1::6
2001:db8:2::6

labsrv eth0
eth1

Management
VMnet4

10.5.1.7
10.4.1.7

fd00:5::7
fd00:4::7

Table 1.2: All firewalls with network adapters and VMnet/vboxnet

Table 1.2 lists which interface belongs to which virtual
network. Though not technically required, the network
adapters of the VMs can use a predefined MAC address to
help interpret the output. This technique makes it easy to
recognize a device when reading a command output or
when comparing it with the samples in the book.

All labs are tested and validated with VMware Workstation
14, VMware ESXi 6 and VirtualBox 5.0.



Hardware
OPNsense performs well on all devices with i386- or x86_64-
type architecture. Even the brand of the network adapter is
not that important since the lab setup is intended to
demonstrate features and not to provide the best possible
performance. Check the FreeBSD hardware compatibility list
[3] to see compatible gear.

Networks
The network architecture between the firewalls is based on
Ethernet. Every subnet is its own broadcast domain. It is
therefore important not to mix cables of different segments.
Two methods are available to correctly separate the
subnets: by switches or by VLANs.

Separate by switches

Each network segment uses a separate network switch or
hub. The switches are not interconnected.

A smaller 5-port device is sufficient since the subnets are
rather small. Any brand and model should be sufficient for
the job.

Separate by VLANs

All cables are connected to a single switch. Cables and
switch ports that belong to the same network segment are
members in a common virtual LAN (VLAN). For example, all
switch ports leading to the light gray core network will be a
member of VLAN 6.

The switch device must have enough ports to provide
connectivity for all the firewalls. The switch is not required



to provide routing between VLANs. A regular VLAN capable
layer 2 switch is adequate.

It is even possible to mix both modes. For instance, both
WAN segments could connect to one switch and the site
subnets could connect to another switch. The requirements
correspond to the method Separate by VLANs.

Firewall
The OPNsense firewall uses the current stable version 19.1
as a 64-bit image. If different versions or additional devices
are included, then the lab is modified by replacing the
device in question.

Each firewall has one additional network adapter for
management access. That way, a SSH client will still reach
the firewall even if some configuration change has failed
and the regular interfaces become inaccessible. If the
hardware does not provide an extra interface for device
management, it is acceptable to skip this option.

The lab firewalls are serially numbered. The device
number is echoed in the IPv4, IPv6, and MAC addresses. This
allows easy device identification in a command output
listing.

The name of each network adapter is printed next to the
router symbol. The full IPv4 address is added below.
Information about IPv4 subnet and IPv6 prefix is presented
at the network line icon.

Addressing
The subnetworks of the imaginary remote sites use private
IPv4 addresses and unique local IPv6 addresses. Each site



has a client computer, which is used only to validate a
feature or generate traffic. The required command set is
limited to ping, traceroute, netstat and a web browser. Even
the choice of the operating system is irrelevant – the demo
lab picks Debian Linux and Windows due to their popularity.

The area between the sites is the core network. Devices in
this network use the address ranges 192.0.2.0/24 and
198.51.100.0/24, which are reserved for documentation
(RFC 5737).

The addressing of IPv6 also uses two unequal prefixes to
visually simplify the differences: prefix fd00::/16 is used in
site networks and prefix 2001:db8::/32 is used in the core
network.

The address ranges are intended exactly for this purpose
and do not collide with public prefixes. Furthermore, the
addressing is kept straightforward. All ranges are structured
uniformly and have only “regular” netmasks of /24 (IPv4) or
a prefix of /64 (IPv6).

Table 1.3 summarizes the IPv4 and IPv6 ranges attached to
the VMnet networks. Additional addresses (e.g. for PPPoE,
tunnel, CARP) are derived from the same ranges.

vnet Purpose IPv4 IPv6
VMnet1
VMnet2
VMnet4
VMnet5
VMnet6
VMnet7

Site 1
Site 2
DMZ
Management
VPN
WAN light gray
WAN dark gray
VPN

10.1.1.0/24
10.2.1.0/24
10.4.1.0/24
10.5.1.0/24
10.6.0.0/16
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24

fd00:1::/64
fd00:2::/64
fd00:4::/64
fd00:5::/64
fd00:6::/64
2001:db8:2::/64
2001:db8:1::/64
2001:db8:3::/64

Table 1.3: All virtual networks with IP ranges



Lab Server
The lab server provides infrastructure services. It can run on
physical hardware or as a virtual machine. If the OPNsense
firewall is evaluated for a client/ server protocol, the lab
server will be the counterpart. It can accept requests from
the firewalls on NTP, DNS, Syslog, FTP/TFTP, NetFlow and
HTTP. The deployed lab server runs on CentOS 7.

Utilization
Each chapter uses a subset of the full lab network. Lesser
devices provide better control, simpler examples and briefer
command output. This limitation leads to a better overview.
Feel free to insert additional firewalls to dive deeper into
features.



Chapter 2

Platform
The next step is all about setting up the lab components. It
begins with the creation or purchase of the equipment,
followed by installation and finally networking.

As mentioned in Chapter 1, the lab can run on physical
hardware or find its home entirely in a virtual environment.
This makes a big difference in the structure, but is irrelevant
for the example scenarios in the following chapters.

The installation procedure is the same for all methods: it
first begins by creating the virtual networks, which are
separated either by a virtual switch or a port group. The
next step is to set up the virtual machines (VMs) and finally
the new VMs put their network adapters into the local VM
networks.

The choice of virtualization software depends on your
personal preferences. The following explanations apply to
VMware ESXi, Workstation and Player, and VirtualBox.

This chapter cannot substitute as a reference manual for
VMware or VirtualBox! The installation of the VMs requires a
basic knowledge of the respective products. The
descriptions only cover the installation of the new VM and
not why the individual steps are necessary or
advantageous.


