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Einleitung
Das Java Übungsbuch: Für die Versionen Java 8 bis Java 17
ist wie alle meine Übungsbücher aus der Erkenntnis
entstanden, dass zu umfangreiche Beispiele mit
komplizierten Algorithmen beim Lernen von Java am Anfang
keine echte Hilfe bieten. Darum liegt der Schwerpunkt des
Buches nicht auf der Umsetzung von komplizierten
Vorgängen, sondern konzentriert sich stattdessen darauf,
die in der Dokumentation nicht immer verständlich
formulierten Erläuterungen zu Java-Klassen und -Interfaces
mit einfachen Beispielen zu erklären und gleichzeitig die
zugrunde liegenden Konzepte zu erörtern.

Das Java Übungsbuch: Für die Versionen Java 8 bis Java 17
wendet sich in erster Linie an Lehrer, Schüler und Studenten
als Begleitliteratur zum Lernen der Programmiersprache
Java, ist aber auch zum Selbststudium für alle Interessenten
an dem Erlernen der Programmiersprache geeignet.

Durch die Einfachheit und Vollständigkeit der
Aufgabenlösungen sowie die unterschiedlichen
Lösungsmöglichkeiten erhält der Leser ein fundiertes
Verständnis für die Aufgabenstellungen und deren
Lösungen.

Durch das Lösen von Aufgaben soll der in Referenz- und
Lehrbüchern von Java angebotene Stoff vertieft werden, und
die dabei erzielten Ergebnisse können anhand der
Lösungsvorschläge überprüft werden. Die Beispiele im Buch
sind eher selten von zu komplexer Natur, sodass der
eigentliche Zweck nicht in den Hintergrund tritt, und alle
beschriebenen Themen können tiefgehend und präzise
damit eingeübt werden.



Vorkenntnisse
Es ist Voraussetzung, dass der Leser zusätzlich mit einem
Lehrbuch zu Java arbeitet bzw. bereits damit gearbeitet hat.
Die grundlegenden Erläuterungen zu Java in diesem Buch
können lediglich als Wiederholung des bereits vorhandenen
Wissens dienen, reichen aber nicht aus, um die Sprache
Java erst neu zu lernen.

Als weitere Voraussetzung gelten Grundlagen im Bereich der
Programmierung und im Umgang mit dem Betriebssystem.
Ein paralleler Zugriff auf die Java-Online-Dokumentation
kann Hilfe zu den Java-Standard-Klassen bieten.

Aufbau des Buches
Jedes Kapitel beginnt mit einer kurzen und knappen
Wiederholung des Stoffes, der in den Übungsaufgaben
dieses Kapitels verwendet wird. Danach folgen alle
Aufgabenstellungen der Übungen. Am Ende des Kapitels
stehen gesammelt die Lösungen der Übungsaufgaben mit
Kommentaren, Erläuterungen und Hinweisen.

Die Aufgaben haben unterschiedliche Schwierigkeitsgrade.
Dieser wird im Aufgabenkopf durch ein bis drei Sternchen
gekennzeichnet:

ein Sternchen für besonders einfache Aufgaben, die auch
von Anfängern leicht bewältigt werden können



zwei Sternchen für etwas kompliziertere Aufgaben, die einen
durchschnittlichen Aufwand benötigen

drei Sternchen für Aufgaben, die sich an geübte
Programmierer richten und einen wesentlich höheren
Aufwand oder die Kenntnis von speziellen Details erfordern

Die Programme aus früheren Übungen werden teilweise in
späteren Übungen gebraucht und es wird auch immer
wieder auf theoretische Zusammenhänge zurückgekommen
oder hingewiesen.

Die Lösungsvorschläge haben umfangreiche Kommentare,
sodass ein Verständnis für die durchgeführte Aufgabe auch
daraus abgeleitet werden kann und dadurch jede einzelne
Aufgabe im Gesamtkontext unabhängig erscheint.

In den Kapiteln 1, 2 und 3 liegt das Hauptmerkmal auf den
Eigenheiten der objektorientierten Programmierung mit
Java. Durch eine Vielzahl von Beispielen wird gezeigt, was
die Java-Standard-Klassen und Interfaces an
Funktionalitäten bieten und wie diese sinnvoll in die
Definition von eigenen Klassen eingebettet werden können.
Diese Kapitel enthalten zusätzlich Informationen zur
Reflection-API von Java, der Definition von Annotationen und
inneren Klassen sowie Neuerungen aus den Versionen 8 bis
13, die sich auf die neue Date&Time-API, Textblöcke,
Compact Strings und die Weiterentwicklung von Interfaces
beziehen. Mit Java 8 wurden sogenannte Default-Methoden
eingeführt. Diese werden in der Literatur auch als »virtual
extension«- bzw. »defender«-Methoden bezeichnet und



Schnittstellen, die über derartige Methoden verfügen, als
erweiterte Schnittstellen. Damit können Interfaces
zusätzlich zu abstrakten Methoden konkrete Methoden in
Form von Standard-Implementierungen definieren und in
Java wird die Mehrfachvererbung von Funktionalität
ermöglicht. Neben Default-Methoden können Interfaces in
Java nun auch statische Methoden enthalten. Anders als die
statischen Methoden von Klassen werden diese jedoch nicht
von abgeleiteten Typen geerbt.

Kapitel  4 beschäftigt sich im Detail mit Generics und dem
Collection Framework mit all seinen generischen Klassen
und Interfaces sowie mit der Definition von Enumerationen.
Die Typinferenz für Methoden und beim Erzeugen von
generischen Typen (der Diamond-Operator) sowie das
Subtyping von parametrisierten und Wildcard-
parametrisierten Typen sind ebenfalls Gegenstand der
Themen aus diesem Kapitel.

Kapitel  5 erläutert das Exception-Handling.

Kapitel  6 beschäftigt sich mit den neuen Sprachmitteln von
Java 8, Lambdas und Streams sowie mit weiteren
Neuerungen aus den Versionen 8 bis 14, wie Switch-
Expressions und Local Variable Type Inference.

Mit der Java-Version 8 haben sich ganz neue
Betrachtungsweisen und Programmiertechniken in der
Entwicklung von Applikationen mit Java eröffnet. Eine der
wichtigsten Neuerungen in Java 8 sind neue Sprachmittel,
die sogenannten Lambda-Ausdrücke, eine Art anonyme
Methoden, die auf funktionalen Interfaces basieren. Diese
besitzen jedoch eine viel kompaktere Syntax als Methoden.
Das resultiert daraus, dass in ihrer Benutzung auf Namen,
Modifikatoren, Rückgabetyp, throws-Klausel und in vielen
Fällen auch auf Parameter verzichtet werden kann. Mit ihnen



kann Funktionalität ausgeführt, gespeichert und übergeben
werden, wie dies bisher nur von Instanzen in Java bekannt
war.

Damit verbundene Themen wie die Gegenüberstellung zu
anonymen Klassen, Syntax und Semantik, Behandlung von
Exceptions, Scoping und Variable Capture, Methoden- und
Konstruktor-Referenzen werden in den ersten Unterkapiteln
des 6. Kapitels dieses Buches beschrieben und anhand von
vielen Beispielen erläutert.

Des Weiteren finden Sie hier die Beschreibung aller neuen
funktionalen Interfaces und deren Methoden. Die
nachfolgenden Unterkapitel beschäftigen sich im Detail mit
der Definition und Nutzung von Streams. Ein Stream besteht
aus einer Folge von Werten (in der Literatur wird auch von
Sequenzen von Elementen gesprochen), die nur teilweise
von mehreren in einer Pipeline dazwischenliegenden
Operationen ausgewertet und durch eine abschließende
Operation bereitgestellt werden. Diese Operationen werden
in Java als Methodenaufrufe formuliert, die Funktionalität in
Form von Lambdas und Methoden-Referenzen
entgegennehmen können und diese auf alle Elemente der
Folge anwenden.

Mit einer Vielzahl von Aufgaben basierend auf Lambdas,
Streams und Kollektoren (in denen Stream-Elemente
angesammelt und reduziert werden können) werden die
neuen Techniken angewandt und alle neuen Begriffe erklärt.

Kapitel  7 präsentiert das neue Java-Modulsystem. Mit dem
neuen Modulsystem wurde Java selbst modular gemacht
und es können eigene Applikationen und Bibliotheken
modularisiert werden.



Java 9 führt das Modul als eine neue Programmkomponente
ein. Das Erzeugen von Modulen und deren Abhängigkeiten
führen dazu, dass der Zugriffsschutz in Java 9 restriktiver
ist. Das Anlegen der erforderlichen Verzeichnisstrukturen für
modulbasierte Applikationen, das Packaging von Modul-
Code sowie die Implementierung von Services werden
ebenfalls im Detail erklärt. Eine Vielzahl von Applikationen
mit ausführlichen .cmd-Dateien für deren Ausführung
ergänzen die theoretischen Erläuterungen aus diesem
Kapitel.

In Kapitel  8 werden die Weiterentwicklungen aus der
Programmiersprache mit den Versionen 14 bis 17 erläutert.
Dazu gehören die Einführung von Records und Sealed
Classes sowie das Pattern Matching.

Records wurden in der Version 14 entworfen, um die
Wiederholungen von repetitivem Code in Datenklassen zu
unterdrücken. Sie überlassen dem Compiler eine korrekte
Generierung der Methoden equals(), hashCode(), toString()
(die in Klassen, um eine Wertegleichheit von Objekten zu
ermöglichen, überschrieben werden müssen) und von
Zugriffsmethoden.

record-Klassen helfen in Kombination mit den in Java 15 neu
eingeführten sealed-Klassen und -Interfaces, die auch mit
Java 16 im Preview-Status bleiben und mit Java 17 finalisiert
werden, die funktionalen Features von Java zu erweitern,
insbesondere das Pattern Matching und in naher Zukunft die
Destrukturierung von Objekten.

Sealed Classes und Interfaces sind Java-Datentypen, für die
die Definition von Subtypen reduziert wird. Sie können nur
von den in ihrer Deklaration angegebenen Typen erweitert
bzw. implementiert werden.



Auch wenn es keine direkten Abhängigkeiten zwischen den
Previews aus den JEPs 395, 394, 409, 406 und 405 gibt, die
die Einführung dieser neuen Java-Datentypen sowie das
Pattern Matching in Java beschreiben, so sind die von diesen
vorgeschlagenen neuen Java-Features, wie mit vielen
Beispielen in den Kapiteln 8 und 9 illustriert wird, sehr gut
zusammen einsetzbar und im weitesten Sinne auch dafür
gedacht.

Das Pattern Matching wurde in Java ursprünglich für den
Abgleich von regulären Ausdrücken mit einem Text
eingesetzt und für einen Vergleich von Typen im
Zusammenhang mit dem instanceof-Operator und switch
weiterentwickelt.

Der instanceof-Operator wurde erweitert, sodass anstelle
eines Typ-Tests ein Musterabgleich-Test (»type test pattern«)
durchgeführt wird. Dieser prüft die Übereinstimmung eines
Zielobjekts mit einem vorgegebenen Mustertyp und erweist
sich als sehr nützlich beim Schreiben von equals()-
Methoden.

Mit Java 17 sind rund um das Pattern Matching weitere
Funktionen im Zusammenhang mit Switch Statements und
Switch Expressions realisiert worden. Damit werden die
Restriktionen für den Typ des Ausdrucks, der im switch
übergeben wird, weitestgehend aufgehoben. Bei einem
klassischen switch waren zugelassen: ganzzahlige primitive
Typen (char, byte, short, int) und die dazugehörigen Wrapper-
Typen (Character, Byte, Short, Integer) sowie String und enum-
Konstanten. Diese Auswahl wurde nun auf ganzzahlige
primitive Typen und beliebige Referenztypen erweitert,
sodass class-, enum-, record- und array-Typen zugelassen sind,
die zusammen mit einem null-case-Label und einem default-
Label die Angaben in den switch-case-Labels ausmachen
können.



Die Destrukturierung von Objekten wird zusammen mit
Record Patterns und Array Patterns (JEP 405) die Entwickler
von nachfolgenden Java-Versionen weiter beschäftigen.

Neu in dieser Auflage des Buches sind Tests mit JUnit 5 und
Gradle, die in Kapitel  9 beispielhaft präsentiert werden.

JUnit 5 kann von der Website https://junit.org/junit5/ unter
»Latest Release« (aktuelle Version zum Zeitpunkt der
Redaktion dieses Buches waren: Jupiter v5.7.1, Vintage
v5.7.1, Platform v1.7.1) heruntergeladen werden.

Zum Testen von Applikationen werden, wie auch in den
bevorstehenden Versionen von JUnit üblich, sogenannte
Testklassen geschrieben. Sie beinhalten Methoden, die
Testfälle beschreiben, den Rückgabetyp void aufweisen und
durch Annotationen gekennzeichnet sind.

JUnit 5 führt darüber hinaus das Konzept eines
ConsoleLaunchers ein, der benutzt werden kann, um Tests
zu entwickeln, zu filtern und durchzuführen.

Um Ihnen ein gutes Verständnis für Details zu ermöglichen,
wähle ich in diesem Buch die Ausführung über die
Kommandozeile, die der ConsoleLauncher in diesem Fall
ermöglicht.

Sicherlich sind Build-Tools wie Gradle und IDEs wie Eclipse,
Intellij IDEA oder Maven eine große Hilfe nicht nur bei der
Ausführung von JUnit-Tests, sondern generell in der
Programmierung mit Java. Die Angabe von Details in diesem
Zusammenhang würde den Rahmen dieses Buches jedoch
sprengen.

In einem Unterkapitel in Kapitel  9 erfolgt eine kurze
Beschreibung von Gradle und der Ausführung von Tests mit
diesem Tool. Weil es gerade im Zusammenhang mit JUnit-

https://junit.org/junit5/


Tests dem Anwender viel Kopfzerbrechen und Arbeit erspart,
präsentiere ich es als Alternative zum ConsoleLauncher für
die Durchführung von JUnit-Tests für die Java-Applikationen.

Eine neue Gradle-Version kann von der Website
https://gradle.org/releases/ heruntergeladen werden. Zum
Zeitpunkt der Buchredaktion war die Version v7.0.1 aktuell.

Weil der Schwerpunkt des Buches nicht auf der Umsetzung
von aufwendigen Algorithmen liegen soll, verwende ich
einfache Beispiele mit Zahlen, Buchstaben, Wörtern,
Büchern, Wochentagen, geometrischen Figuren etc. und
teilweise auch mit ganz abstrakten Klassennamen wie
Klasse1, Klasse2, KlasseA, KlasseB etc.

An dieser Stelle möchte ich auf das dem Buch zugrunde
liegende Konzept hinweisen, dass parallel zu einfachen
Aufgaben, die zu allen eingeführten Definitionen und
Begriffen gebracht werden, auch Aufgaben von einem
höheren Schwierigkeitsgrad präsentiert werden. Dabei
werden anhand von inhaltlichen Zusammenhängen
zwischen den Beispielen viele Basiskonzepte von Java
erläutert.

Ich habe generell versucht, keine Begriffe, Klassen und
Komponenten zu benutzen, die nicht schon in
vorangehenden Beispielen und Kapiteln definiert oder
erläutert wurden. In den wenigen Fällen, wo es sich nicht
vermieden ließ, wird darauf hingewiesen und auf die
entsprechenden Stellen verwiesen.

Das Buch soll möglichst parallel zu einer Vielzahl von Java-
Lehrbüchern eingesetzt werden können und einen Beitrag
dazu leisten, die große Fülle von Informationen, die auf uns
über die API-Dokumentation zukommt, besser einzuordnen
und korrekt anwenden zu können.

https://gradle.org/releases/

