i Elisabeth
| s
\

Aufgaben mit vollstandigen Losungen
Fur die Versionen Java 8 bis Java 17

Y .
. P

e

o

Hinweis des Verlages zum Urheberrecht und Digitalen
Rechtemanagement (DRM)

Liebe Leserinnen und Leser,

dieses E-Book, einschlieflich aller seiner Teile, ist
urheberrechtlich geschiitzt. Mit dem Kauf raumen wir
lhnen das Recht ein, die Inhalte im Rahmen des
geltenden Urheberrechts zu nutzen. Jede Verwertung
aulerhalb dieser Grenzen ist ohne unsere Zustimmung
unzuldssig und strafbar. Das gilt besonders fir
Vervielfiltigungen, Ubersetzungen sowie
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Je nachdem wo Sie |hr E-Book gekauft haben, kann
dieser Shop das E-Book vor Missbrauch durch ein
digitales Rechtemanagement schiitzen. Haufig erfolgt
dies in Form eines nicht sichtbaren digitalen
Wasserzeichens, das dann individuell pro Nutzer
signiert ist. Angaben zu diesem DRM finden Sie auf den
Seiten der jeweiligen Anbieter.

Beim Kauf des E-Books in unserem Verlagsshop ist lhr
E-Book DRM-frei.

Viele GriRe und viel SpaR beim Lesen, ‘

Olw MJ/'/D—VU%IILMM mitp

Neuerscheinungen, Praxistipps, Gratiskapitel,
Einblicke in den Verlagsalltag -
gibt es alles bei uns auf Instagram und Facebook

instagram.com/mitp_verlag facebook.com/mitp.verlag

Inhaltsverzeichnis

Impressum

Einleitung
Vorkenntnisse
Aufbau des Buches
Benotigte Software
Downloads

Autorin

Kapitel 1: Klassendefinition und Objektinstanziierung
1.1 Klassen und Objekte

W Aufgabe 1.1: Definition einer Klasse
W Aufgabe 1.2: Objekt (Instanz) einer Klasse
erzeugen

1.2 Das Uberladen von Methoden

W Aufgabe 1.3: Eine Methode Uberladen
1.3 Die Datenkapselung, ein Prinzip der
objektorientierten Programmierung

W Aufgabe 1.4: Zugriffsmethoden

1.4 Das »aktuelle Objekt« und die »this-Referenz«

wiw Aufgabe 1.5: Konstruktordefinitionen
1.5 Die Wert- und Referenzubergabe in
Methodenaufrufen

ww i Aufgabe 1.6: Wertlbergabe in Methoden
(»call by value«)

1.6 Globale und lokale Referenzen
ww Aufgabe 1.7: Der Umgang mit Referenzen

1.7 Java-Pakete
w Aufgabe 1.8: Die package-Anweisung
W Aufgabe 1.9: Die import-Anweisung
1.8 Die Modifikatoren flr Felder und Methoden in
Zusammenhang mit der Definition von Paketen
ww Aufgabe 1.10: Pakete und die Sichtbarkeit
von Membern einer Klasse
1.9 Standard-Klassen von Java
1.10 Die Wrapper-Klassen von Java und das
Auto(un)boxing
ww Aufgabe 1.11: Das Auto(un)boxing
1.11 Das Paket java.lang.reflect
1.12 Arrays (Reihungen) und die Klassen Array und
Arrays
ww Aufgabe 1.12: Der Umgang mit Array-
Objekten
1.13 Zeichenketten und die Klasse String

W Aufgabe 1.13: Der Umgang mit String-
Objekten

ww Aufgabe 1.14: Der Umgang mit Textblocken
1.14 Sprachmerkmale, die in den weiteren Beispielen
genutzt werden

W Aufgabe 1.15: Methoden mit variablen

Argumentenlisten

1.15 Den Zugriff auf Klassen und Felder minimieren:
Unveranderliche (immutable) Klassen und Objekte

1.16 Die alte und neue Date&Time-API als Beispiel far
veranderliche und unveranderliche Klassen

www Aufgabe 1.16: Die Methoden von Date/Time-
Klassen
1.17 Private Konstruktoren
W Aufgabe 1.17: Objekte mithilfe eines privaten
Konstruktors erzeugen
1.18 Losungen
Losung 1.1
Losung 1.2
Losung 1.3
Losung 1.4
Losung 1.5
Losung 1.6
Losung 1.7
Losung 1.8
Losung 1.9
Losung 1.10
Losung 1.11
Losung 1.12
Losung 1.13
Losung 1.14
Losung 1.15
Losung 1.16
Losung 1.17

Kapitel 2: Abgeleitete Klassen und Vererbung
2.1 Abgeleitete Klassen
2.2 Die Konstruktoren von abgeleiteten Klassen

2.3 Abgeleitete Klassen und die Sichtbarkeit von Feldern
und Methoden

W Aufgabe 2.1: Test von Sichtbarkeitsebenen im
Zusammenhang mit abgeleiteten Klassen
2.4 Das Verdecken von Klassenmethoden und das
statische Binden von Methoden
wiw Aufgabe 2.2: Der Aufruf von verdeckten
Klassenmethoden
2.5 Das Uberschreiben von Instanzmethoden und das
dynamische Binden von Methoden
W Aufgabe 2.3: Das dynamische Binden von
Methoden
2.6 Vererbung und Komposition
W Aufgabe 2.4: Die Komposition
W Aufgabe 2.5: Die Vererbung

2.7 Kovariante Ruckgabetypen in Methoden
ww Aufgabe 2.6: Die Benutzung von kovarianten
Ruckgabetypen

2.8 Verdeckte Felder

2.9 Vergrollernde und verkleinernde Konvertierung (»up-
und down-casting«)

2.10 Der Polymorphismus, ein Prinzip der
objektorientierten Programmierung

ww Aufgabe 2.7: Der »Subtyp-Polymorphismus«
im Kontext einer Klassenhierarchie

2.11 Die Methoden der Klassen java.lang.Object und
java.util.Objects

W Aufgabe 2.8: Die equals()- und hashCode()-
Methoden von Object

v Aufgabe 2.9: Die equals()-Methode und die
Vererbung

2.12 Das Klonen und die Gleichheit von geklonten
Objekten

W Aufgabe 2.10: Das Klonen von Instanzen der
eigenen Klasse
W Aufgabe 2.11: Das Klonen von Instanzen

anderer Klassen
w Aufgabe 2.12: Das Klonen und der Copy-
Konstruktor

2.13 Der Garbage Collector und das Beseitigen von

Objekten

2.14 Losungen
Losung 2.1
LOosung 2.2
Losung 2.3
Losung 2.4
Losung 2.5
LOosung 2.6
LOosung 2.7
Losung 2.8
Losung 2.9
Losung 2.10
Losung 2.11
LOosung 2.12

Kapitel 3: Die Definition von abstrakten Klassen,
Interfaces und Annotationen

3.1 Abstrakte Klassen

3.2 Abstrakte Java-Standard-Klassen und eigene
Definitionen von abstrakten Klassen

W Aufgabe 3.1: Die abstrakte Klasse Number
und ihre Unterklassen

W Aufgabe 3.2: Definition einer eigenen
abstrakten Klasse
3.3 Interfaces (Schnittstellen)
ww Aufgabe 3.3: Die Definition eines Interface
3.4 Die Entscheidung zwischen abstrakten Klassen und
Interfaces
ww Aufgabe 3.4: Paralleler Einsatz von Interfaces
und abstrakten Klassen
3.5 Implementieren mehrerer Interfaces fur eine Klasse
ww Aufgabe 3.5: Das Ableiten von Interfaces

3.6 Die Definition von inneren Klassen

W Aufgabe 3.6: Ein Beispiel mit anonymer
Klasse

3.7 Erweiterungen in der Definition von Interfaces
Wt Aufgabe 3.7: Private Interface-Methoden

3.8 Die Definition von Annotationen
3.9 Vordefinierte Annotationstypen

W Aufgabe 3.8: Annotationen an Methoden und
Parameter von Methoden anheften
W Aufgabe 3.9: Eine Klasse annotieren

ww Aufgabe 3.10: Die @Override- und
@Inherited-Annotation
3.10 Losungen
Losung 3.1
Losung 3.2

Losung 3.3
Losung 3.4
Losung 3.5
Losung 3.6
Losung 3.7
Losung 3.8
Losung 3.9
Losung 3.10

Kapitel 4: Generics
4.1 Die Generizitat

4.2 Generische Klassen und Interfaces

W Aufgabe 4.1: Generischer Datentyp als
Behalter fur die Instanzen vom Typ des
Klassenparameters

g Aufgabe 4.2: Generischer Datentyp als
»Uber-Typ« fur die Instanzen vom Typ des
Klassenparameters

4.3 Wildcardtypen
ww Aufgabe 4.3: Ungebundene Wildcardtypen
ww Aufgabe 4.4: Obere und untere Schranken flr
Wildcardtypen

4.4 Legacy Code, Erasure und Raw-Typen

ww Aufgabe 4.5: Raw-Typen am Beispiel einer
generischen Klasse mit zwei Typparametern

Wi Aufgabe 4.6: Brickenmethoden (»bridge
methods«)
4.5 Generische Arrays

wi Aufgabe 4.7: Erzeugen von generischen
Arrays

4.6 Generische Methoden
ww Aufgabe 4.8: Generische
Methodendefinitionen

4.7 Generische Standard-Klassen und -Interfaces

4.8 for-each-Schleifen fur Collections

W Aufgabe 4.9: Das Interface List<E> und die
Klasse ArrayList<E>

ww Aufgabe 4.10: Das Interface Collection<E>
und die Klasse Vector<E>

ww Aufgabe 4.11: Das Interface Map<K,V> und
die Klasse TreeMap<K,V>

4.9 Factory-Methoden in Collections
W Aufgabe 4.12: Factory-Methoden fur List, Set
und Map

4.10 Die Interfaces Enumeration<E>, lterable<T> und
lterator<E>

4.11 Enumerationen und die generische Klasse Enum<E
extends Enum<E>>
ww Aufgabe 4.13: Die Definition von
Enumerationen
4.12 Die Interfaces Comparable<T> und
Comparator<T> und das Sortieren von Objekten
W Aufgabe 4.14: Das Comparable<T>-Interface
ww vt Aufgabe 4.15: Comparable<T> versus
Comparator<T>
4.13 Typinferenz fur Methoden
4.14 Typinferenz beim Erzeugen von Instanzen eines
generischen Typs

w3 Aufgabe 4.16: Typinferenz beim Instanziieren
von generischen Klassen

ww Aufgabe 4.17: Der Diamond-Operator in Java
9

4.15 Losungen
Losung 4.1
Losung 4.2
Losung 4.3
Losung 4.4
Losung 4.5
Losung 4.6
LOosung 4.7
LOosung 4.8
Losung 4.9
Losung 4.10
Losung 4.11
Losung 4.12
Losung 4.13
Losung 4.14
LOosung 4.15
Losung 4.16
Losung 4.17

Kapitel 5: Exceptions und Errors
5.1 Ausnahmen auslosen

5.2 Ausnahmen abfangen oder weitergeben

W Aufgabe 5.1: Unbehandelte
RuntimeExceptions

W Aufgabe 5.2: Behandelte RuntimeExceptions
5.3 Das Verwenden von finally in der
Ausnahmebehandlung

W Aufgabe 5.3: Der finally-Block

5.4 Aushahmen manuell auslosen

5.5 Exception-Unterklassen erzeugen
W Aufgabe 5.4: Benutzerdefinierte Ausnahmen
manuell auslosen
5.6 Multi-catch-Klausel und verbesserte Typprufung
beim Rethrowing von Exceptions
ww Aufgabe 5.5: Disjunction-Typ flr Exceptions

w¥ Aufgabe 5.6: Typprifung beim Rethrowing
von Exceptions

5.7 Losungen
Losung 5.1
Losung 5.2
Losung 5.3
Losung 5.4
Losung 5.5
LOosung 5.6

Kapitel 6: Lambdas und Streams

6.1 Mittels anonymer Klassen Code an Methoden
ubergeben

6.2 Funktionale Interfaces

6.3 Syntax und Deklaration von Lambda-Ausdrucken

W Aufgabe 6.1: Lambda-Ausdruck ohne
Parameter versus anonymer Klasse

W Aufgabe 6.2: Lambda-Ausdruck mit
Parameter versus anonymer Klasse

6.4 Scoping und Variable Capture

ww Aufgabe 6.3: Die Umgebung von Lambda-
Ausdrucken

6.5 Methoden- und Konstruktor-Referenzen

W Aufgabe 6.4: Methoden-Referenzen in
Zuweisungen

ww Aufgabe 6.5: Konstruktor-Referenzen und die
neuen funktionalen Interfaces Supplier<T> und
Function<T,R>

6.6 Default- und statische Methoden in Interfaces
6.7 Das neue Interface Stream
6.8 Die forEach-Methoden von lterator, Iterable und

Stream

W Aufgabe 6.6: Die funktionalen Interfaces
BiConsumer<T,U>, BiPredicate<T,U> und
BiFunction<T,U,R>

ww Aufgabe 6.7: Die Methoden des Interface
Stream und die Behandlung von Exceptions in
Lambda-Ausdrucken

6.9 Das Interface Collector und die Klasse Collectors:
Reduktion mittels Methoden von Streams und
Kollektoren.

ww Aufgabe 6.8: Weitere Methoden des Interface
Stream: limit(), count(), max(), min(), skip(),
reduce() und collect()

Wi Aufgabe 6.9: Das Interface Collector und die
Klasse Collectors
6.10 Parallele Streams
w v Aufgabe 6.10: Parallele Streams
6.11 Die map()- und flatMap()-Methoden von Stream
und Optional
wi Aufgabe 6.11: map() versus flatMap()

6.12 Spracherweiterungen mit Java 10, Java 11, Java 12
und Java 13

wi Aufgabe 6.12: Typinferenz fur lokale
Variablen in Java 10 und Java 11

ww Aufgabe 6.13: Switch-Statements und

Switch-Expressions
6.13 Losungen

Losung 6.1

LOosung 6.2

Losung 6.3

Losung 6.4

Losung 6.5

Losung 6.6

Losung 6.7

Losung 6.8

Losung 6.9

LOosung 6.10

LOosung 6.11

Losung 6.12

Losung 6.13

Kapitel 7: Die Modularitat von Java

7.1 Das Java-Modulsystem
W Aufgabe 7.1: Eine einfache Modul-Definition

ww Aufgabe 7.2: Eine Applikation mit mehreren
Modulen

ww Aufgabe 7.3: Implizites Lesen von Modulen
ww Aufgabe 7.4: Eine modulbasierte Service-
Implementierung

7.2 Losungen
Losung 7.1
Losung 7.2

Losung 7.3
Losung 7.4

Kapitel 8: Records, Sealed Classes und Pattern
Matching

8.1 Das Pattern Matching fur den instanceof-Operator
8.2 Der neue Java-Typ Record
8.3 Sealed Classes in Java

8.4 Das Pattern Matching fur switch

W Aufgabe 8.1: Die Definition von record-
Klassen und das Pattern Matching fur den
instanceof-Operator

W Aufgabe 8.2: sealed-, final- und non-sealed-
Klassen
W Aufgabe 8.3: sealed-Interfaces und das

Pattern Matching

ww Aufgabe 8.4: Algebraische Datentypen
(ADTs), ein weiterer Schritt in Richtung funktionale
Programmierung

ww Aufgabe 8.5: Das Pattern Matching fur switch

8.5 Losungen
Losung 8.1
Losung 8.2
Losung 8.3

Kapitel 9: JUnit-Tests
9.1 JUnit 5 im Uberblick
9.2 Tests schreiben

9.3 Testen mit dem ConsoleLauncher und der
JupiterEngine

W Aufgabe 9.1: Die Klassen App und AppTest

W Aufgabe 9.2: Die Klasse
PublishingBookmitOrderingTest

W Aufgabe 9.3: Die Klassen AdditionmitMap und
AdditionmitMapTest

ww Aufgabe 9.4: Die Klassen MyClassTest und
BuchmitEqualsTest

ww Aufgabe 9.5: Die Klasse TestBeispiele

ww Aufgabe 9.6: Die Klassen
RechenOperationenTest und
RechenOperationenParametrisierteTests

Wi Aufgabe 9.7: Die Klasse AssertThrowsTest
9.4 JUnit-Tests mit Gradle

9.5 Losungen
Losung 9.1
Losung 9.3
Losung 9.4
Losung 9.5

Elisabeth Jung

Java Ubungsbuch

Fur die Versionen Java 8 bis Java 17

Aufgaben mit vollstandigen Losungen

mitp

Impressum

Bibliografische Information der Deutschen
Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese
Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet tUber
<http://dnb.d-nb.de> abrufbar.

ISBN 978-3-7475-0451-2
1. Auflage 2021

www.mitp.de

E-Mail: mitp-verlag@sigloch.de
Telefon: +49 7953 /7189 - 079
Telefax: +49 7953 /7189 - 082

© 2021 mitp Verlags GmbH & Co. KG

Dieses Werk, einschlieBlich aller seiner Teile, ist
urheberrechtlich geschutzt. Jede Verwertung aulserhalb der
engen Grenzen des Urheberrechtsgesetzes ist ohne
Zustimmung des Verlages unzulassig und strafbar. Dies gilt
insbesondere fur Vervielfaltigungen, Ubersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung
in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen,
Warenbezeichnungen usw. in diesem Werk berechtigt auch
ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und
Markenschutz-Gesetzgebung als frei zu betrachten waren
und daher von jedermann benutzt werden durften.

http://dnb.d-nb.de/
https://www.mitp.de/
mailto:mitp-verlag@sigloch.de

Lektorat: Sabine Schulz

Sprachkorrektorat: Petra Heubach-Erdmann
Covergestaltung: © maxec / stock.adobe.com
electronic publication: lll-satz, Husby, www.drei-satz.de

Dieses Ebook verwendet das ePub-Format und ist optimiert
far die Nutzung mit dem iBooks-reader auf dem iPad von
Apple. Bei der Verwendung anderer Reader kann es zu
Darstellungsproblemen kommen.

Der Verlag raumt Ihnen mit dem Kauf des ebooks das Recht
ein, die Inhalte im Rahmen des geltenden Urheberrechts zu
nutzen. Dieses Werk, einschlielSlich aller seiner Teile, ist
urheberrechtlich geschutzt. Jede Verwertung aulserhalb der
engen Grenzen des Urheherrechtsgesetzes ist ohne
Zustimmung des Verlages unzulassig und strafbar. Dies gilt
insbesondere fur Vervielfaltigungen, Ubersetzungen,
Mikroverfilmungen und Einspeicherung und Verarbeitung in
elektronischen Systemen.

Der Verlag schutzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement. Bei
Kauf im Webshop des Verlages werden die ebooks mit
einem nicht sichtbaren digitalen Wasserzeichen individuell
pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signatur
durch die Shopbetreiber. Angaben zu diesem DRM finden Sie
auf den Seiten der jeweiligen Anbieter.

https://stock.adobe.com/
https://www.drei-satz.de/

Einleitung

Das Java Ubungsbuch: Flir die Versionen Java 8 bis Java 17
ist wie alle meine Ubungsblicher aus der Erkenntnis
entstanden, dass zu umfangreiche Beispiele mit
komplizierten Algorithmen beim Lernen von Java am Anfang
keine echte Hilfe bieten. Darum liegt der Schwerpunkt des
Buches nicht auf der Umsetzung von komplizierten
Vorgangen, sondern konzentriert sich stattdessen darauf,
die in der Dokumentation nicht immer verstandlich
formulierten Erlauterungen zu Java-Klassen und -Interfaces
mit einfachen Beispielen zu erklaren und gleichzeitig die
zugrunde liegenden Konzepte zu erortern.

Das Java Ubungsbuch: Fiir die Versionen Java 8 bis Java 17
wendet sich in erster Linie an Lehrer, Schiler und Studenten
als Begleitliteratur zum Lernen der Programmiersprache
Java, ist aber auch zum Selbststudium fur alle Interessenten
an dem Erlernen der Programmiersprache geeignet.

Durch die Einfachheit und Vollstandigkeit der
Aufgabenlosungen sowie die unterschiedlichen
Losungsmoglichkeiten erhalt der Leser ein fundiertes
Verstandnis fur die Aufgabenstellungen und deren
Losungen.

Durch das Losen von Aufgaben soll der in Referenz- und
Lehrblchern von Java angebotene Stoff vertieft werden, und
die dabei erzielten Ergebnisse konnen anhand der
Losungsvorschlage uberpriuft werden. Die Beispiele im Buch
sind eher selten von zu komplexer Natur, sodass der
eigentliche Zweck nicht in den Hintergrund tritt, und alle
beschriebenen Themen konnen tiefgehend und prazise
damit eingelbt werden.

Vorkenntnisse

Es ist Voraussetzung, dass der Leser zusatzlich mit einem
Lehrbuch zu Java arbeitet bzw. bereits damit gearbeitet hat.
Die grundlegenden Erlauterungen zu Java in diesem Buch
konnen lediglich als Wiederholung des bereits vorhandenen
Wissens dienen, reichen aber nicht aus, um die Sprache
Java erst neu zu lernen.

Als weitere Voraussetzung gelten Grundlagen im Bereich der
Programmierung und im Umgang mit dem Betriebssystem.
Ein paralleler Zugriff auf die Java-Online-Dokumentation
kann Hilfe zu den Java-Standard-Klassen bieten.

Aufbau des Buches

Jedes Kapitel beginnt mit einer kurzen und knappen
Wiederholung des Stoffes, der in den Ubungsaufgaben
dieses Kapitels verwendet wird. Danach folgen alle
Aufgabenstellungen der Ubungen. Am Ende des Kapitels
stehen gesammelt die Lésungen der Ubungsaufgaben mit
Kommentaren, Erlauterungen und Hinweisen.

Die Aufgaben haben unterschiedliche Schwierigkeitsgrade.
Dieser wird im Aufgabenkopf durch ein bis drei Sternchen
gekennzeichnet:

]

ein Sternchen fur besonders einfache Aufgaben, die auch
von Anfangern leicht bewaltigt werden kdnnen

T T
e

zwei Sternchen fur etwas kompliziertere Aufgaben, die einen
durchschnittlichen Aufwand benotigen

w r W r
[T e T]

drei Sternchen fur Aufgaben, die sich an geubte
Programmierer richten und einen wesentlich hoheren
Aufwand oder die Kenntnis von speziellen Details erfordern

Die Programme aus friiheren Ubungen werden teilweise in
spateren Ubungen gebraucht und es wird auch immer
wieder auf theoretische Zusammenhange zuruckgekommen
oder hingewiesen.

Die Losungsvorschlage haben umfangreiche Kommentare,
sodass ein Verstandnis fur die durchgefuhrte Aufgabe auch
daraus abgeleitet werden kann und dadurch jede einzelne
Aufgabe im Gesamtkontext unabhangig erscheint.

In den Kapiteln 1, 2 und 3 liegt das Hauptmerkmal auf den
Eigenheiten der objektorientierten Programmierung mit
Java. Durch eine Vielzahl von Beispielen wird gezeigt, was
die Java-Standard-Klassen und Interfaces an
Funktionalitaten bieten und wie diese sinnvoll in die
Definition von eigenen Klassen eingebettet werden konnen.
Diese Kapitel enthalten zusatzlich Informationen zur
Reflection-API von Java, der Definition von Annotationen und
inneren Klassen sowie Neuerungen aus den Versionen 8 bis
13, die sich auf die neue Date&Time-API, Textblocke,
Compact Strings und die Weiterentwicklung von Interfaces
beziehen. Mit Java 8 wurden sogenannte Default-Methoden
eingefuhrt. Diese werden in der Literatur auch als »virtual
extension«- bzw. »defender«-Methoden bezeichnet und

Schnittstellen, die Uber derartige Methoden verflgen, als
erweiterte Schnittstellen. Damit konnen Interfaces
zusatzlich zu abstrakten Methoden konkrete Methoden in
Form von Standard-Implementierungen definieren und in
Java wird die Mehrfachvererbung von Funktionalitat
ermoglicht. Neben Default-Methoden kdonnen Interfaces in
Java nun auch statische Methoden enthalten. Anders als die
statischen Methoden von Klassen werden diese jedoch nicht
von abgeleiteten Typen geerbt.

Kapitel 4 beschaftigt sich im Detail mit Generics und dem
Collection Framework mit all seinen generischen Klassen
und Interfaces sowie mit der Definition von Enumerationen.
Die Typinferenz fGir Methoden und beim Erzeugen von
generischen Typen (der Diamond-Operator) sowie das
Subtyping von parametrisierten und Wildcard-
parametrisierten Typen sind ebenfalls Gegenstand der
Themen aus diesem Kapitel.

Kapitel 5 erlautert das Exception-Handling.

Kapitel 6 beschaftigt sich mit den neuen Sprachmitteln von
Java 8, Lambdas und Streams sowie mit weiteren
Neuerungen aus den Versionen 8 bis 14, wie Switch-
Expressions und Local Variable Type Inference.

Mit der Java-Version 8 haben sich ganz neue
Betrachtungsweisen und Programmiertechniken in der
Entwicklung von Applikationen mit Java eroffnet. Eine der
wichtigsten Neuerungen in Java 8 sind neue Sprachmittel,
die sogenannten Lambda-Ausdricke, eine Art anonyme
Methoden, die auf funktionalen Interfaces basieren. Diese
besitzen jedoch eine viel kompaktere Syntax als Methoden.
Das resultiert daraus, dass in ihrer Benutzung auf Namen,
Modifikatoren, Ruckgabetyp, throws-Klausel und in vielen
Fallen auch auf Parameter verzichtet werden kann. Mit ihnen

kann Funktionalitat ausgeflhrt, gespeichert und Ubergeben
werden, wie dies bisher nur von Instanzen in Java bekannt
war.

Damit verbundene Themen wie die Gegenuberstellung zu
anonymen Klassen, Syntax und Semantik, Behandlung von
Exceptions, Scoping und Variable Capture, Methoden- und
Konstruktor-Referenzen werden in den ersten Unterkapiteln
des 6. Kapitels dieses Buches beschrieben und anhand von
vielen Beispielen erlautert.

Des Weiteren finden Sie hier die Beschreibung aller neuen
funktionalen Interfaces und deren Methoden. Die
nachfolgenden Unterkapitel beschaftigen sich im Detail mit
der Definition und Nutzung von Streams. Ein Stream besteht
aus einer Folge von Werten (in der Literatur wird auch von
Sequenzen von Elementen gesprochen), die nur teilweise
von mehreren in einer Pipeline dazwischenliegenden
Operationen ausgewertet und durch eine abschlieRende
Operation bereitgestellt werden. Diese Operationen werden
in Java als Methodenaufrufe formuliert, die Funktionalitat in
Form von Lambdas und Methoden-Referenzen
entgegennehmen konnen und diese auf alle Elemente der
Folge anwenden.

Mit einer Vielzahl von Aufgaben basierend auf Lambdas,
Streams und Kollektoren (in denen Stream-Elemente
angesammelt und reduziert werden konnen) werden die
neuen Techniken angewandt und alle neuen Begriffe erklart.

Kapitel 7 prasentiert das neue Java-Modulsystem. Mit dem
neuen Modulsystem wurde Java selbst modular gemacht
und es konnen eigene Applikationen und Bibliotheken
modularisiert werden.

Java 9 fuhrt das Modul als eine neue Programmkomponente
ein. Das Erzeugen von Modulen und deren Abhangigkeiten
fuhren dazu, dass der Zugriffsschutz in Java 9 restriktiver
ist. Das Anlegen der erforderlichen Verzeichnisstrukturen fur
modulbasierte Applikationen, das Packaging von Modul-
Code sowie die Implementierung von Services werden
ebenfalls im Detail erklart. Eine Vielzahl von Applikationen
mit ausfuhrlichen .cmd-Dateien fur deren Ausfuhrung
erganzen die theoretischen Erlauterungen aus diesem
Kapitel.

In Kapitel 8 werden die Weiterentwicklungen aus der
Programmiersprache mit den Versionen 14 bis 17 erlautert.
Dazu gehoren die Einfuhrung von Records und Sealed
Classes sowie das Pattern Matching.

Records wurden in der Version 14 entworfen, um die
Wiederholungen von repetitivem Code in Datenklassen zu
unterdrucken. Sie GUberlassen dem Compiler eine korrekte
Generierung der Methoden equals(), hashCode(), toString()
(die in Klassen, um eine Wertegleichheit von Objekten zu
ermoglichen, Uberschrieben werden mussen) und von
Zugriffsmethoden.

record-Klassen helfen in Kombination mit den in Java 15 neu
eingefuhrten sealed-Klassen und -Interfaces, die auch mit
Java 16 im Preview-Status bleiben und mit Java 17 finalisiert
werden, die funktionalen Features von Java zu erweitern,
insbesondere das Pattern Matching und in naher Zukunft die
Destrukturierung von Objekten.

Sealed Classes und Interfaces sind Java-Datentypen, fur die
die Definition von Subtypen reduziert wird. Sie kobnnen nur
von den in ihrer Deklaration angegebenen Typen erweitert
bzw. implementiert werden.

Auch wenn es keine direkten Abhangigkeiten zwischen den
Previews aus den JEPs 395, 394, 409, 406 und 405 gibt, die
die EinfUhrung dieser neuen Java-Datentypen sowie das
Pattern Matching in Java beschreiben, so sind die von diesen
vorgeschlagenen neuen Java-Features, wie mit vielen
Beispielen in den Kapiteln 8 und 9 illustriert wird, sehr gut
zusammen einsetzbar und im weitesten Sinne auch dafur
gedacht.

Das Pattern Matching wurde in Java ursprunglich fur den
Abgleich von regularen Ausdrucken mit einem Text
eingesetzt und fur einen Vergleich von Typen im
Zusammenhang mit dem instanceof-Operator und switch
weiterentwickelt.

Der instanceof-Operator wurde erweitert, sodass anstelle
eines Typ-Tests ein Musterabgleich-Test (»type test pattern«)
durchgefuhrt wird. Dieser prift die Ubereinstimmung eines
Zielobjekts mit einem vorgegebenen Mustertyp und erweist
sich als sehr nutzlich beim Schreiben von equals()-
Methoden.

Mit Java 17 sind rund um das Pattern Matching weitere
Funktionen im Zusammenhang mit Switch Statements und
Switch Expressions realisiert worden. Damit werden die
Restriktionen fur den Typ des Ausdrucks, der im switch
ubergeben wird, weitestgehend aufgehoben. Bei einem
klassischen switch waren zugelassen: ganzzahlige primitive
Typen (char, byte, short, int) und die dazugehorigen Wrapper-
Typen (Character, Byte, Short, Integer) sowie String und enum-
Konstanten. Diese Auswahl wurde nun auf ganzzahlige
primitive Typen und beliebige Referenztypen erweitert,
sodass class-, enum-, record- und array-Typen zugelassen sind,
die zusammen mit einem null-case-Label und einem default-
Label die Angaben in den switch-case-Labels ausmachen
konnen.

Die Destrukturierung von Objekten wird zusammen mit
Record Patterns und Array Patterns (JEP 405) die Entwickler
von nachfolgenden Java-Versionen weiter beschaftigen.

Neu in dieser Auflage des Buches sind Tests mit JUnit 5 und
Gradle, die in Kapitel 9 beispielhaft prasentiert werden.

JUnit 5 kann von der Website https://junit.org/junit5/ unter
»Latest Release« (aktuelle Version zum Zeitpunkt der
Redaktion dieses Buches waren: Jupiter v5.7.1, Vintage
v5.7.1, Platform v1.7.1) heruntergeladen werden.

Zum Testen von Applikationen werden, wie auch in den
bevorstehenden Versionen von JUnit Ublich, sogenannte
Testklassen geschrieben. Sie beinhalten Methoden, die
Testfalle beschreiben, den Ruckgabetyp void aufweisen und
durch Annotationen gekennzeichnet sind.

JUnit 5 fuhrt dartber hinaus das Konzept eines
ConsoleLaunchers ein, der benutzt werden kann, um Tests
zu entwickeln, zu filtern und durchzufuhren.

Um lIhnen ein gutes Verstandnis fur Details zu ermoglichen,
wahle ich in diesem Buch die Ausfuhrung tber die
Kommandozeile, die der ConsoleLauncher in diesem Fall
ermoglicht.

Sicherlich sind Build-Tools wie Gradle und IDEs wie Eclipse,
Intellij IDEA oder Maven eine grofRe Hilfe nicht nur bei der
Ausfuhrung von JUnit-Tests, sondern generell in der
Programmierung mit Java. Die Angabe von Details in diesem
Zusammenhang wurde den Rahmen dieses Buches jedoch
sprengen.

In einem Unterkapitel in Kapitel 9 erfolgt eine kurze
Beschreibung von Gradle und der Ausfuhrung von Tests mit
diesem Tool. Weil es gerade im Zusammenhang mit JUnit-

https://junit.org/junit5/

Tests dem Anwender viel Kopfzerbrechen und Arbeit erspart,
prasentiere ich es als Alternative zum ConsoleLauncher far
die Durchfidhrung von JUnit-Tests fur die Java-Applikationen.

Eine neue Gradle-Version kann von der Website
https://gradle.org/releases/ heruntergeladen werden. Zum
Zeitpunkt der Buchredaktion war die Version v7.0.1 aktuell.

Weil der Schwerpunkt des Buches nicht auf der Umsetzung
von aufwendigen Algorithmen liegen soll, verwende ich
einfache Beispiele mit Zahlen, Buchstaben, Wortern,
Buchern, Wochentagen, geometrischen Figuren etc. und
teilweise auch mit ganz abstrakten Klassennamen wie
Klassel, Klasse2, KlasseA, KlasseB etc.

An dieser Stelle mochte ich auf das dem Buch zugrunde
liegende Konzept hinweisen, dass parallel zu einfachen
Aufgaben, die zu allen eingefuhrten Definitionen und
Begriffen gebracht werden, auch Aufgaben von einem
hoheren Schwierigkeitsgrad prasentiert werden. Dabei
werden anhand von inhaltlichen Zusammenhangen
zwischen den Beispielen viele Basiskonzepte von Java
erlautert.

Ich habe generell versucht, keine Begriffe, Klassen und
Komponenten zu benutzen, die nicht schon in
vorangehenden Beispielen und Kapiteln definiert oder
erlautert wurden. In den wenigen Fallen, wo es sich nicht
vermieden liel3, wird darauf hingewiesen und auf die
entsprechenden Stellen verwiesen.

Das Buch soll moglichst parallel zu einer Vielzahl von Java-
Lehrbluchern eingesetzt werden kdnnen und einen Beitrag
dazu leisten, die groRRe Fulle von Informationen, die auf uns
uber die API-Dokumentation zukommt, besser einzuordnen
und korrekt anwenden zu kdonnen.

https://gradle.org/releases/

