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Einleitung

Das Java Ubungsbuch: Flir die Versionen Java 8 bis Java 17
ist wie alle meine Ubungsblicher aus der Erkenntnis
entstanden, dass zu umfangreiche Beispiele mit
komplizierten Algorithmen beim Lernen von Java am Anfang
keine echte Hilfe bieten. Darum liegt der Schwerpunkt des
Buches nicht auf der Umsetzung von komplizierten
Vorgangen, sondern konzentriert sich stattdessen darauf,
die in der Dokumentation nicht immer verstandlich
formulierten Erlauterungen zu Java-Klassen und -Interfaces
mit einfachen Beispielen zu erklaren und gleichzeitig die
zugrunde liegenden Konzepte zu erortern.

Das Java Ubungsbuch: Fiir die Versionen Java 8 bis Java 17
wendet sich in erster Linie an Lehrer, Schiler und Studenten
als Begleitliteratur zum Lernen der Programmiersprache
Java, ist aber auch zum Selbststudium fur alle Interessenten
an dem Erlernen der Programmiersprache geeignet.

Durch die Einfachheit und Vollstandigkeit der
Aufgabenlosungen sowie die unterschiedlichen
Losungsmoglichkeiten erhalt der Leser ein fundiertes
Verstandnis fur die Aufgabenstellungen und deren
Losungen.

Durch das Losen von Aufgaben soll der in Referenz- und
Lehrblchern von Java angebotene Stoff vertieft werden, und
die dabei erzielten Ergebnisse konnen anhand der
Losungsvorschlage uberpriuft werden. Die Beispiele im Buch
sind eher selten von zu komplexer Natur, sodass der
eigentliche Zweck nicht in den Hintergrund tritt, und alle
beschriebenen Themen konnen tiefgehend und prazise
damit eingelbt werden.



Vorkenntnisse

Es ist Voraussetzung, dass der Leser zusatzlich mit einem
Lehrbuch zu Java arbeitet bzw. bereits damit gearbeitet hat.
Die grundlegenden Erlauterungen zu Java in diesem Buch
konnen lediglich als Wiederholung des bereits vorhandenen
Wissens dienen, reichen aber nicht aus, um die Sprache
Java erst neu zu lernen.

Als weitere Voraussetzung gelten Grundlagen im Bereich der
Programmierung und im Umgang mit dem Betriebssystem.
Ein paralleler Zugriff auf die Java-Online-Dokumentation
kann Hilfe zu den Java-Standard-Klassen bieten.

Aufbau des Buches

Jedes Kapitel beginnt mit einer kurzen und knappen
Wiederholung des Stoffes, der in den Ubungsaufgaben
dieses Kapitels verwendet wird. Danach folgen alle
Aufgabenstellungen der Ubungen. Am Ende des Kapitels
stehen gesammelt die Lésungen der Ubungsaufgaben mit
Kommentaren, Erlauterungen und Hinweisen.

Die Aufgaben haben unterschiedliche Schwierigkeitsgrade.
Dieser wird im Aufgabenkopf durch ein bis drei Sternchen
gekennzeichnet:

]

ein Sternchen fur besonders einfache Aufgaben, die auch
von Anfangern leicht bewaltigt werden kdnnen



T T
e

zwei Sternchen fur etwas kompliziertere Aufgaben, die einen
durchschnittlichen Aufwand benotigen

w r W r
[ T e T ]

drei Sternchen fur Aufgaben, die sich an geubte
Programmierer richten und einen wesentlich hoheren
Aufwand oder die Kenntnis von speziellen Details erfordern

Die Programme aus friiheren Ubungen werden teilweise in
spateren Ubungen gebraucht und es wird auch immer
wieder auf theoretische Zusammenhange zuruckgekommen
oder hingewiesen.

Die Losungsvorschlage haben umfangreiche Kommentare,
sodass ein Verstandnis fur die durchgefuhrte Aufgabe auch
daraus abgeleitet werden kann und dadurch jede einzelne
Aufgabe im Gesamtkontext unabhangig erscheint.

In den Kapiteln 1, 2 und 3 liegt das Hauptmerkmal auf den
Eigenheiten der objektorientierten Programmierung mit
Java. Durch eine Vielzahl von Beispielen wird gezeigt, was
die Java-Standard-Klassen und Interfaces an
Funktionalitaten bieten und wie diese sinnvoll in die
Definition von eigenen Klassen eingebettet werden konnen.
Diese Kapitel enthalten zusatzlich Informationen zur
Reflection-API von Java, der Definition von Annotationen und
inneren Klassen sowie Neuerungen aus den Versionen 8 bis
13, die sich auf die neue Date&Time-API, Textblocke,
Compact Strings und die Weiterentwicklung von Interfaces
beziehen. Mit Java 8 wurden sogenannte Default-Methoden
eingefuhrt. Diese werden in der Literatur auch als »virtual
extension«- bzw. »defender«-Methoden bezeichnet und



Schnittstellen, die Uber derartige Methoden verflgen, als
erweiterte Schnittstellen. Damit konnen Interfaces
zusatzlich zu abstrakten Methoden konkrete Methoden in
Form von Standard-Implementierungen definieren und in
Java wird die Mehrfachvererbung von Funktionalitat
ermoglicht. Neben Default-Methoden kdonnen Interfaces in
Java nun auch statische Methoden enthalten. Anders als die
statischen Methoden von Klassen werden diese jedoch nicht
von abgeleiteten Typen geerbt.

Kapitel 4 beschaftigt sich im Detail mit Generics und dem
Collection Framework mit all seinen generischen Klassen
und Interfaces sowie mit der Definition von Enumerationen.
Die Typinferenz fGir Methoden und beim Erzeugen von
generischen Typen (der Diamond-Operator) sowie das
Subtyping von parametrisierten und Wildcard-
parametrisierten Typen sind ebenfalls Gegenstand der
Themen aus diesem Kapitel.

Kapitel 5 erlautert das Exception-Handling.

Kapitel 6 beschaftigt sich mit den neuen Sprachmitteln von
Java 8, Lambdas und Streams sowie mit weiteren
Neuerungen aus den Versionen 8 bis 14, wie Switch-
Expressions und Local Variable Type Inference.

Mit der Java-Version 8 haben sich ganz neue
Betrachtungsweisen und Programmiertechniken in der
Entwicklung von Applikationen mit Java eroffnet. Eine der
wichtigsten Neuerungen in Java 8 sind neue Sprachmittel,
die sogenannten Lambda-Ausdricke, eine Art anonyme
Methoden, die auf funktionalen Interfaces basieren. Diese
besitzen jedoch eine viel kompaktere Syntax als Methoden.
Das resultiert daraus, dass in ihrer Benutzung auf Namen,
Modifikatoren, Ruckgabetyp, throws-Klausel und in vielen
Fallen auch auf Parameter verzichtet werden kann. Mit ihnen



kann Funktionalitat ausgeflhrt, gespeichert und Ubergeben
werden, wie dies bisher nur von Instanzen in Java bekannt
war.

Damit verbundene Themen wie die Gegenuberstellung zu
anonymen Klassen, Syntax und Semantik, Behandlung von
Exceptions, Scoping und Variable Capture, Methoden- und
Konstruktor-Referenzen werden in den ersten Unterkapiteln
des 6. Kapitels dieses Buches beschrieben und anhand von
vielen Beispielen erlautert.

Des Weiteren finden Sie hier die Beschreibung aller neuen
funktionalen Interfaces und deren Methoden. Die
nachfolgenden Unterkapitel beschaftigen sich im Detail mit
der Definition und Nutzung von Streams. Ein Stream besteht
aus einer Folge von Werten (in der Literatur wird auch von
Sequenzen von Elementen gesprochen), die nur teilweise
von mehreren in einer Pipeline dazwischenliegenden
Operationen ausgewertet und durch eine abschlieRende
Operation bereitgestellt werden. Diese Operationen werden
in Java als Methodenaufrufe formuliert, die Funktionalitat in
Form von Lambdas und Methoden-Referenzen
entgegennehmen konnen und diese auf alle Elemente der
Folge anwenden.

Mit einer Vielzahl von Aufgaben basierend auf Lambdas,
Streams und Kollektoren (in denen Stream-Elemente
angesammelt und reduziert werden konnen) werden die
neuen Techniken angewandt und alle neuen Begriffe erklart.

Kapitel 7 prasentiert das neue Java-Modulsystem. Mit dem
neuen Modulsystem wurde Java selbst modular gemacht
und es konnen eigene Applikationen und Bibliotheken
modularisiert werden.



Java 9 fuhrt das Modul als eine neue Programmkomponente
ein. Das Erzeugen von Modulen und deren Abhangigkeiten
fuhren dazu, dass der Zugriffsschutz in Java 9 restriktiver
ist. Das Anlegen der erforderlichen Verzeichnisstrukturen fur
modulbasierte Applikationen, das Packaging von Modul-
Code sowie die Implementierung von Services werden
ebenfalls im Detail erklart. Eine Vielzahl von Applikationen
mit ausfuhrlichen .cmd-Dateien fur deren Ausfuhrung
erganzen die theoretischen Erlauterungen aus diesem
Kapitel.

In Kapitel 8 werden die Weiterentwicklungen aus der
Programmiersprache mit den Versionen 14 bis 17 erlautert.
Dazu gehoren die Einfuhrung von Records und Sealed
Classes sowie das Pattern Matching.

Records wurden in der Version 14 entworfen, um die
Wiederholungen von repetitivem Code in Datenklassen zu
unterdrucken. Sie GUberlassen dem Compiler eine korrekte
Generierung der Methoden equals(), hashCode(), toString()
(die in Klassen, um eine Wertegleichheit von Objekten zu
ermoglichen, Uberschrieben werden mussen) und von
Zugriffsmethoden.

record-Klassen helfen in Kombination mit den in Java 15 neu
eingefuhrten sealed-Klassen und -Interfaces, die auch mit
Java 16 im Preview-Status bleiben und mit Java 17 finalisiert
werden, die funktionalen Features von Java zu erweitern,
insbesondere das Pattern Matching und in naher Zukunft die
Destrukturierung von Objekten.

Sealed Classes und Interfaces sind Java-Datentypen, fur die
die Definition von Subtypen reduziert wird. Sie kobnnen nur
von den in ihrer Deklaration angegebenen Typen erweitert
bzw. implementiert werden.



Auch wenn es keine direkten Abhangigkeiten zwischen den
Previews aus den JEPs 395, 394, 409, 406 und 405 gibt, die
die EinfUhrung dieser neuen Java-Datentypen sowie das
Pattern Matching in Java beschreiben, so sind die von diesen
vorgeschlagenen neuen Java-Features, wie mit vielen
Beispielen in den Kapiteln 8 und 9 illustriert wird, sehr gut
zusammen einsetzbar und im weitesten Sinne auch dafur
gedacht.

Das Pattern Matching wurde in Java ursprunglich fur den
Abgleich von regularen Ausdrucken mit einem Text
eingesetzt und fur einen Vergleich von Typen im
Zusammenhang mit dem instanceof-Operator und switch
weiterentwickelt.

Der instanceof-Operator wurde erweitert, sodass anstelle
eines Typ-Tests ein Musterabgleich-Test (»type test pattern«)
durchgefuhrt wird. Dieser prift die Ubereinstimmung eines
Zielobjekts mit einem vorgegebenen Mustertyp und erweist
sich als sehr nutzlich beim Schreiben von equals()-
Methoden.

Mit Java 17 sind rund um das Pattern Matching weitere
Funktionen im Zusammenhang mit Switch Statements und
Switch Expressions realisiert worden. Damit werden die
Restriktionen fur den Typ des Ausdrucks, der im switch
ubergeben wird, weitestgehend aufgehoben. Bei einem
klassischen switch waren zugelassen: ganzzahlige primitive
Typen (char, byte, short, int) und die dazugehorigen Wrapper-
Typen (Character, Byte, Short, Integer) sowie String und enum-
Konstanten. Diese Auswahl wurde nun auf ganzzahlige
primitive Typen und beliebige Referenztypen erweitert,
sodass class-, enum-, record- und array-Typen zugelassen sind,
die zusammen mit einem null-case-Label und einem default-
Label die Angaben in den switch-case-Labels ausmachen
konnen.



Die Destrukturierung von Objekten wird zusammen mit
Record Patterns und Array Patterns (JEP 405) die Entwickler
von nachfolgenden Java-Versionen weiter beschaftigen.

Neu in dieser Auflage des Buches sind Tests mit JUnit 5 und
Gradle, die in Kapitel 9 beispielhaft prasentiert werden.

JUnit 5 kann von der Website https://junit.org/junit5/ unter
»Latest Release« (aktuelle Version zum Zeitpunkt der
Redaktion dieses Buches waren: Jupiter v5.7.1, Vintage
v5.7.1, Platform v1.7.1) heruntergeladen werden.

Zum Testen von Applikationen werden, wie auch in den
bevorstehenden Versionen von JUnit Ublich, sogenannte
Testklassen geschrieben. Sie beinhalten Methoden, die
Testfalle beschreiben, den Ruckgabetyp void aufweisen und
durch Annotationen gekennzeichnet sind.

JUnit 5 fuhrt dartber hinaus das Konzept eines
ConsoleLaunchers ein, der benutzt werden kann, um Tests
zu entwickeln, zu filtern und durchzufuhren.

Um lIhnen ein gutes Verstandnis fur Details zu ermoglichen,
wahle ich in diesem Buch die Ausfuhrung tber die
Kommandozeile, die der ConsoleLauncher in diesem Fall
ermoglicht.

Sicherlich sind Build-Tools wie Gradle und IDEs wie Eclipse,
Intellij IDEA oder Maven eine grofRe Hilfe nicht nur bei der
Ausfuhrung von JUnit-Tests, sondern generell in der
Programmierung mit Java. Die Angabe von Details in diesem
Zusammenhang wurde den Rahmen dieses Buches jedoch
sprengen.

In einem Unterkapitel in Kapitel 9 erfolgt eine kurze
Beschreibung von Gradle und der Ausfuhrung von Tests mit
diesem Tool. Weil es gerade im Zusammenhang mit JUnit-
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Tests dem Anwender viel Kopfzerbrechen und Arbeit erspart,
prasentiere ich es als Alternative zum ConsoleLauncher far
die Durchfidhrung von JUnit-Tests fur die Java-Applikationen.

Eine neue Gradle-Version kann von der Website
https://gradle.org/releases/ heruntergeladen werden. Zum
Zeitpunkt der Buchredaktion war die Version v7.0.1 aktuell.

Weil der Schwerpunkt des Buches nicht auf der Umsetzung
von aufwendigen Algorithmen liegen soll, verwende ich
einfache Beispiele mit Zahlen, Buchstaben, Wortern,
Buchern, Wochentagen, geometrischen Figuren etc. und
teilweise auch mit ganz abstrakten Klassennamen wie
Klassel, Klasse2, KlasseA, KlasseB etc.

An dieser Stelle mochte ich auf das dem Buch zugrunde
liegende Konzept hinweisen, dass parallel zu einfachen
Aufgaben, die zu allen eingefuhrten Definitionen und
Begriffen gebracht werden, auch Aufgaben von einem
hoheren Schwierigkeitsgrad prasentiert werden. Dabei
werden anhand von inhaltlichen Zusammenhangen
zwischen den Beispielen viele Basiskonzepte von Java
erlautert.

Ich habe generell versucht, keine Begriffe, Klassen und
Komponenten zu benutzen, die nicht schon in
vorangehenden Beispielen und Kapiteln definiert oder
erlautert wurden. In den wenigen Fallen, wo es sich nicht
vermieden liel3, wird darauf hingewiesen und auf die
entsprechenden Stellen verwiesen.

Das Buch soll moglichst parallel zu einer Vielzahl von Java-
Lehrbluchern eingesetzt werden kdnnen und einen Beitrag
dazu leisten, die groRRe Fulle von Informationen, die auf uns
uber die API-Dokumentation zukommt, besser einzuordnen
und korrekt anwenden zu kdonnen.
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