








Inhaltsverzeichnis
Impressum

Einleitung
Vorkenntnisse
Aufbau des Buches
Benötigte Software
Downloads

Autorin

Kapitel 1: Klassendefinition und Objektinstanziierung
1.1 Klassen und Objekte

 Aufgabe 1.1: Definition einer Klasse
 Aufgabe 1.2: Objekt (Instanz) einer Klasse

erzeugen
1.2 Das Überlad en von Methoden

 Aufgabe 1.3: Eine Methode überladen
1.3 Die Datenkapselu ng, ein Prinzip der
objektorientierten Programmierung

 Aufgabe 1.4: Zugriffsmethod en
1.4 Das »aktuelle Objekt« und die »this-Refere nz«

 Aufgabe 1.5: Konstruktordefinitionen
1.5 Die Wert- und Referenzübergabe in
Methodenaufrufen

 Aufgabe 1.6: Wertübergabe in Methoden
(»call by value«)



1.6 Globa le und lokale Referen zen
 Aufgabe 1.7: Der Umgang mit Referenzen

1.7 Java-Pakete 
 Aufgabe 1.8: Die package-Anweisu ng
 Aufgabe 1.9: Die import-Anweisung

1.8 Die Modifikatoren für Felder und Methoden in
Zusammenhang mit der Definition von Paket en

 Aufgabe 1.10: Pakete und die Sichtbarkeit
von Membern einer Klasse

1.9 Standard-Klassen von Java
1.10 Die Wrapper-Klass en von Java und das
Auto(un)boxing

 Aufgabe 1.11: Das Auto(un)boxing
1.11 Das Paket java.lang.reflect
1.12 Arrays (Reihungen) und die Klassen Arr ay und
Arr ays

 Aufgabe 1.12: Der Umgang mit Array-
Objekten

1.13 Zeichenketten und die Klasse String
 Aufgabe 1.13: Der Umgang mit String-

Objekten
 Aufgabe 1.14: Der Umgang mit Textblöcken

1.14 Sprachmerkmale, die in den weiteren Beispielen
genutzt werden

 Aufgabe 1.15: Methoden mit variablen
Argumentenlis ten

1.15 Den Zugriff auf Klassen und Felder minimieren:
Unveränderliche (immutable) Klassen und Objekte



1.16 Die alte und neue Date&Time-API als Beispiel für
veränderliche und unveränderliche Klassen

 Aufgabe 1.16: Die Methoden von Date/Time-
Klassen

1.17 Private Konstruktoren 
 Aufgabe 1.17: Objekte mithilfe eines privaten

Konstruktors erzeugen
1.18 Lösungen

Lösung 1.1
Lösung 1.2
Lösung 1.3
Lösung 1.4
Lösung 1.5
Lösung 1.6
Lösung 1.7
Lösung 1.8
Lösung 1.9
Lösung 1.10
Lösung 1.11
Lösung 1.12
Lösung 1.13
Lösung 1.14
Lösung 1.15
Lösung 1.16
Lösung 1.17

Kapitel 2: Abgeleitete Klassen und Vererbung
2.1 Abgeleitete Klassen
2.2 Die Konstruktoren von abgeleiteten Klassen



2.3 Abgeleitete Klassen und die Sichtbarkeit von Feldern
und Methoden

 Aufgabe 2.1: Test von Sichtbarkeitsebenen im
Zusammenhang mit abgeleiteten Klassen

2.4 Das Verdecken von Klassenmethoden und das
statische Binden von Methoden

 Aufgabe 2.2: Der Aufruf von verdeckten
Klassenmethoden

2.5 Das Überschreiben von Instanzmethoden und das
dynamische Binden von Methoden

 Aufgabe 2.3: Das dynamische Binden von
Methoden

2.6 Vererbung und Komposition
 Aufgabe 2.4: Die Komposition
 Aufgabe 2.5: Die Vererbung

2.7 Kovariante Rückgabetypen in Methoden
 Aufgabe 2.6: Die Benutzung von kovarianten

Rückgabetypen
2.8 Verdeckte Felder
2.9 Vergrößernde und verkleinernde Konvertierung (»up-
und down-casting«)
2.10 Der Polymorphismus, ein Prinzip der
objektorientierten Programmierung

 Aufgabe 2.7: Der »Subtyp-Polymorphismus«
im Kontext einer Klassenhierarchie

2.11 Die Methoden der Klassen java.lang.Object  und
java.util.Objects 

 Aufgabe 2.8: Die equals() - und hashCode() -
Methoden von Object



 Aufgabe 2.9: Die equals()-Methode und die
Vererbung

2.12 Das Klonen und die Gleichheit von geklonten
Objekten

 Aufgabe 2.10: Das Klonen von Instanzen der
eigenen Klasse

 Aufgabe 2.11: Das Klonen von Instanzen
anderer Klassen

 Aufgabe 2.12: Das Klonen und der Copy-
Konstrukto r

2.13 Der Garbage Collector und das Beseitigen von
Objekten
2.14 Lösungen

Lösung 2.1
Lösung 2.2
Lösung 2.3
Lösung 2.4
Lösung 2.5
Lösung 2.6
Lösung 2.7
Lösung 2.8
Lösung 2.9
Lösung 2.10
Lösung 2.11
Lösung 2.12

Kapitel 3: Die Definition von abstrakten Klassen,
Interfaces und Annotationen

3.1 Abstrakte Klassen



3.2 Abstrakte Java-Standard-Klassen und eigene
Definitionen von abstrakten Klassen

 Aufgabe 3.1: Die abstrakte Klasse Number
und ihre Unterklassen

 Aufgabe 3.2: Definition einer eigenen
abstrakten Klasse

3.3 Interfaces (Schnittstelle n)
 Aufgabe 3.3: Die Definition eines Interface

3.4 Die Entscheidung zwischen abstrakten Klassen und
Interfaces

 Aufgabe 3.4: Paralleler Einsatz von Interfaces
und abstrakten Klassen

3.5 Implementieren mehrerer Interfaces für eine Klasse
 Aufgabe 3.5: Das Ableiten von Interfaces

3.6 Die Definition von inneren Klassen
 Aufgabe 3.6: Ein Beispiel mit anonymer

Klasse
3.7 Erweiterungen in der Definition von Interfaces

 Aufgabe 3.7: Private Interface-Methoden
3.8 Die Definition von Annotationen
3.9 Vordefinierte Annotationstypen

 Aufgabe 3.8: Annotationen an Methoden und
Parameter von Methoden anheften

 Aufgabe 3.9: Eine Klasse annotieren
 Aufgabe 3.10: Die @Overrid e- und

@Inherited-Annotation
3.10 Lösungen

Lösung 3.1
Lösung 3.2



Lösung 3.3
Lösung 3.4
Lösung 3.5
Lösung 3.6
Lösung 3.7
Lösung 3.8
Lösung 3.9
Lösung 3.10

Kapitel 4: Generics
4.1 Die Generizitä t
4.2 Generische Klassen und Interfaces

 Aufgabe 4.1: Generischer Datentyp als
Behälter für die Instanzen vom Typ des
Klassenparameters

 Aufgabe 4.2: Generischer Datentyp als
»Über-Typ« für die Instanzen vom Typ des
Klassenparameters

4.3 Wildcardtyp en
 Aufgabe 4.3: Ungebundene Wildcardtypen
 Aufgabe 4.4: Obere und untere Schranken für

Wildcardtypen
4.4 Legacy Co de, Eras ure und Raw-T ypen

 Aufgabe 4.5: Raw-Typen am Beispiel einer
generischen Klasse mit zwei Typparametern

 Aufgabe 4.6: Brückenmethode n (»bridge
metho ds«)

4.5 Generische Arrays
 Aufgabe 4.7: Erzeugen von generischen

Arrays



4.6 Generische Methoden
 Aufgabe 4.8: Generische

Methodendefinitionen
4.7 Generische Standard-Klassen und -Interfaces
4.8 for-each-Schleifen  für Collections

 Aufgabe 4.9: Das Interface List <E> und die
Klasse  ArrayList<E>

 Aufgabe 4.10: Das Interface Collection<E >
und die Klasse Vector <E>

 Aufgabe 4.11: Das Interface Map<K,V>  und
die Klasse TreeMap<K, V>

4.9 Factory-Methoden in Collections
 Aufgabe 4.12: Factory-Methoden für List, Set

und Map
4.10 Die Interfaces Enumeration< E>, Iterable <T> und
Iterato r<E>
4.11 Enumerationen und die generische Klasse Enum<E
extends Enum<E>>

 Aufgabe 4.13: Die Definition von
Enumerationen

4.12 Die Interfaces Comparable<T> und
Comparator<T> und das Sortieren von Objekten

 Aufgabe 4.14: Das Comparable<T> -Interface
 Aufgabe 4.15: Comparable<T> versus

Comparator<T> 
4.13 Typinferenz  für Methoden
4.14 Typinferenz  beim Erzeugen von Instanzen eines
generischen Typs

 Aufgabe 4.16: Typinferenz beim Instanziieren
von generischen Klassen



 Aufgabe 4.17: Der Diamond-Operator in Java
9

4.15 Lösungen
Lösung 4.1
Lösung 4.2
Lösung 4.3
Lösung 4.4
Lösung 4.5
Lösung 4.6
Lösung 4.7
Lösung 4.8
Lösung 4.9
Lösung 4.10
Lösung 4.11
Lösung 4.12
Lösung 4.13
Lösung 4.14
Lösung 4.15
Lösung 4.16
Lösung 4.17

Kapitel 5: Exceptions und Errors
5.1 Ausnahmen auslösen
5.2 Ausnahmen abfangen oder weitergeben

 Aufgabe 5.1: Unbehandelte
RuntimeExceptions

 Aufgabe 5.2: Behandelte RuntimeExceptions
5.3 Das Verwenden von finally in der
Ausnahmebehandlung

 Aufgabe 5.3: Der finally-Block



5.4 Ausnahmen manuell auslösen
5.5 Exception-Unterklassen erzeugen

 Aufgabe 5.4: Benutzerdefinierte Ausnahmen
manuell auslösen

5.6 Multi-catch-Klausel und verbesserte Typprüfung
beim Rethrowing von Exceptions

 Aufgabe 5.5: Disjunction-Typ für Exceptions
 Aufgabe 5.6: Typprüfung beim Rethrowing

von Exceptions
5.7 Lösungen

Lösung 5.1
Lösung 5.2
Lösung 5.3
Lösung 5.4
Lösung 5.5
Lösung 5.6

Kapitel 6: Lambdas und Streams
6.1 Mittels anonymer Klassen Code an Methoden
übergeben
6.2 Funktionale Interfaces
6.3 Syntax und Deklaration von Lambda-Ausdrücken

 Aufgabe 6.1: Lambda-Ausdruck ohne
Parameter versus anonymer Klasse

 Aufgabe 6.2: Lambda-Ausdruck mit
Parameter versus anonymer Klasse 

6.4 Scoping  und Variable Capture 
 Aufgabe 6.3: Die Umgebung von Lambda-

Ausdrücken
6.5 Methoden - und Konstruktor-Referenzen 



 Aufgabe 6.4: Methoden-Referenzen  in
Zuweisungen

 Aufgabe 6.5: Konstruktor-Referenzen und die
neuen funktionalen Interfaces Supplier<T>  und
Function<T,R> 

6.6 Default- und statische Methoden in Interfaces
6.7 Das neue Interface Stream
6.8 Die forEach-Methoden von Iterator, Iterable und
Stream

 Aufgabe 6.6: Die funktionalen Interfaces
BiConsumer<T,U>, BiPredicate<T,U> und
BiFunction<T,U,R>

 Aufgabe 6.7: Die Methoden des Interface
Stream und die Behandlung von Exceptions in
Lambda-Ausdrücken

6.9 Das Interface Collector und die Klasse Collectors:
Reduktion mittels Methoden von Streams und
Kollektoren.

 Aufgabe 6.8: Weitere Methoden des Interface
Stream: limit(), count(), max(), min(), skip(),
reduce() und collect()

 Aufgabe 6.9: Das Interface Collector  und die
Klasse Collectors 

6.10 Parallele Streams
 Aufgabe 6.10: Parallele Streams

6.11 Die map( )- und flatMap ()-Methoden von Stream
und Optional

 Aufgabe 6.11: map() versus flatMap()
6.12 Spracherweiterungen mit Java 10, Java 11, Java 12
und Java 13



 Aufgabe 6.12: Typinferenz für lokale
Variablen in Java 10 und Java 11

 Aufgabe 6.13: Switch-Statements  und
Switch-Expressions 

6.13 Lösungen
Lösung 6.1
Lösung 6.2
Lösung 6.3
Lösung 6.4
Lösung 6.5
Lösung 6.6
Lösung 6.7
Lösung 6.8
Lösung 6.9
Lösung 6.10
Lösung 6.11
Lösung 6.12
Lösung 6.13

Kapitel 7: Die Modularität von Java
7.1 Das Java-Modulsystem

 Aufgabe 7.1: Eine einfache Modul-Definition
 Aufgabe 7.2: Eine Applikation mit mehreren

Modulen
 Aufgabe 7.3: Implizites Lesen von Modulen
 Aufgabe 7.4: Eine modulbasierte Service-

Implementierung
7.2 Lösungen

Lösung 7.1
Lösung 7.2



Lösung 7.3
Lösung 7.4

Kapitel 8: Records, Sealed Classes und Pattern
Matching

8.1 Das Pattern Matching für den instanceof -Operator
8.2 Der neue Java-Typ Record 
8.3 Sealed Classes  in Java
8.4 Das Pattern Matching für switch 

 Aufgabe 8.1: Die Definition von record-
Klassen und das Pattern Matching für den
instanceof-Operator 

 Aufgabe 8.2: sealed-, final- und non-sealed-
Klassen

 Aufgabe 8.3: sealed-Interfaces und das
Pattern Matching

 Aufgabe 8.4: Algebraische Datentypen 
(ADTs), ein weiterer Schritt in Richtung funktionale
Programmierung

 Aufgabe 8.5: Das Pattern Matching für switch 
8.5 Lösungen

Lösung 8.1
Lösung 8.2
Lösung 8.3

Kapitel 9: JUnit-Tests
9.1 JUnit 5 im Überblick
9.2 Tests schreiben
9.3 Testen mit dem ConsoleLauncher  und der
JupiterEngine



 Aufgabe 9.1: Die Klassen App und AppTest
 Aufgabe 9.2: Die Klasse

PublishingBookmitOrderingTest
 Aufgabe 9.3: Die Klassen AdditionmitMap und

AdditionmitMapTest
 Aufgabe 9.4: Die Klassen MyClassTest und

BuchmitEqualsTest
 Aufgabe 9.5: Die Klasse TestBeispiele
 Aufgabe 9.6: Die Klassen

RechenOperationenTest und
RechenOperationenParametrisierteTests

 Aufgabe 9.7: Die Klasse AssertThrowsTest
9.4 JUnit-Tests mit Gradle 
9.5 Lösungen

Lösung 9.1
Lösung 9.3
Lösung 9.4
Lösung 9.5



Elisabeth Jung

Java Übungsbuch
Für die Versionen Java 8 bis Java 17

Aufgaben mit vollständigen Lösungen



Impressum
Bibliografische Information der Deutschen
Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese
Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über
<http://dnb.d-nb.de> abrufbar.

ISBN 978-3-7475-0451-2
1. Auflage 2021

www.mitp.de
E-Mail: mitp-verlag@sigloch.de
Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 / 7189 - 082

© 2021 mitp Verlags GmbH & Co. KG

Dieses Werk, einschließlich aller seiner Teile, ist
urheberrechtlich geschützt. Jede Verwertung außerhalb der
engen Grenzen des Urheberrechtsgesetzes ist ohne
Zustimmung des Verlages unzulässig und strafbar. Dies gilt
insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung
in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen,
Warenbezeichnungen usw. in diesem Werk berechtigt auch
ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und
Markenschutz-Gesetzgebung als frei zu betrachten wären
und daher von jedermann benutzt werden dürften.

http://dnb.d-nb.de/
https://www.mitp.de/
mailto:mitp-verlag@sigloch.de


Lektorat: Sabine Schulz
Sprachkorrektorat: Petra Heubach-Erdmann
Covergestaltung: © maxec / stock.adobe.com
electronic publication: III-satz, Husby, www.drei-satz.de

Dieses Ebook verwendet das ePub-Format und ist optimiert
für die Nutzung mit dem iBooks-reader auf dem iPad von
Apple. Bei der Verwendung anderer Reader kann es zu
Darstellungsproblemen kommen.

Der Verlag räumt Ihnen mit dem Kauf des ebooks das Recht
ein, die Inhalte im Rahmen des geltenden Urheberrechts zu
nutzen. Dieses Werk, einschließlich aller seiner Teile, ist
urheberrechtlich geschützt. Jede Verwertung außerhalb der
engen Grenzen des Urheherrechtsgesetzes ist ohne
Zustimmung des Verlages unzulässig und strafbar. Dies gilt
insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und Einspeicherung und Verarbeitung in
elektronischen Systemen.

Der Verlag schützt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement. Bei
Kauf im Webshop des Verlages werden die ebooks mit
einem nicht sichtbaren digitalen Wasserzeichen individuell
pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signatur
durch die Shopbetreiber. Angaben zu diesem DRM finden Sie
auf den Seiten der jeweiligen Anbieter.

https://stock.adobe.com/
https://www.drei-satz.de/


Einleitung
Das Java Übungsbuch: Für die Versionen Java 8 bis Java 17
ist wie alle meine Übungsbücher aus der Erkenntnis
entstanden, dass zu umfangreiche Beispiele mit
komplizierten Algorithmen beim Lernen von Java am Anfang
keine echte Hilfe bieten. Darum liegt der Schwerpunkt des
Buches nicht auf der Umsetzung von komplizierten
Vorgängen, sondern konzentriert sich stattdessen darauf,
die in der Dokumentation nicht immer verständlich
formulierten Erläuterungen zu Java-Klassen und -Interfaces
mit einfachen Beispielen zu erklären und gleichzeitig die
zugrunde liegenden Konzepte zu erörtern.

Das Java Übungsbuch: Für die Versionen Java 8 bis Java 17
wendet sich in erster Linie an Lehrer, Schüler und Studenten
als Begleitliteratur zum Lernen der Programmiersprache
Java, ist aber auch zum Selbststudium für alle Interessenten
an dem Erlernen der Programmiersprache geeignet.

Durch die Einfachheit und Vollständigkeit der
Aufgabenlösungen sowie die unterschiedlichen
Lösungsmöglichkeiten erhält der Leser ein fundiertes
Verständnis für die Aufgabenstellungen und deren
Lösungen.

Durch das Lösen von Aufgaben soll der in Referenz- und
Lehrbüchern von Java angebotene Stoff vertieft werden, und
die dabei erzielten Ergebnisse können anhand der
Lösungsvorschläge überprüft werden. Die Beispiele im Buch
sind eher selten von zu komplexer Natur, sodass der
eigentliche Zweck nicht in den Hintergrund tritt, und alle
beschriebenen Themen können tiefgehend und präzise
damit eingeübt werden.



Vorkenntnisse
Es ist Voraussetzung, dass der Leser zusätzlich mit einem
Lehrbuch zu Java arbeitet bzw. bereits damit gearbeitet hat.
Die grundlegenden Erläuterungen zu Java in diesem Buch
können lediglich als Wiederholung des bereits vorhandenen
Wissens dienen, reichen aber nicht aus, um die Sprache
Java erst neu zu lernen.

Als weitere Voraussetzung gelten Grundlagen im Bereich der
Programmierung und im Umgang mit dem Betriebssystem.
Ein paralleler Zugriff auf die Java-Online-Dokumentation
kann Hilfe zu den Java-Standard-Klassen bieten.

Aufbau des Buches
Jedes Kapitel beginnt mit einer kurzen und knappen
Wiederholung des Stoffes, der in den Übungsaufgaben
dieses Kapitels verwendet wird. Danach folgen alle
Aufgabenstellungen der Übungen. Am Ende des Kapitels
stehen gesammelt die Lösungen der Übungsaufgaben mit
Kommentaren, Erläuterungen und Hinweisen.

Die Aufgaben haben unterschiedliche Schwierigkeitsgrade.
Dieser wird im Aufgabenkopf durch ein bis drei Sternchen
gekennzeichnet:

ein Sternchen für besonders einfache Aufgaben, die auch
von Anfängern leicht bewältigt werden können



zwei Sternchen für etwas kompliziertere Aufgaben, die einen
durchschnittlichen Aufwand benötigen

drei Sternchen für Aufgaben, die sich an geübte
Programmierer richten und einen wesentlich höheren
Aufwand oder die Kenntnis von speziellen Details erfordern

Die Programme aus früheren Übungen werden teilweise in
späteren Übungen gebraucht und es wird auch immer
wieder auf theoretische Zusammenhänge zurückgekommen
oder hingewiesen.

Die Lösungsvorschläge haben umfangreiche Kommentare,
sodass ein Verständnis für die durchgeführte Aufgabe auch
daraus abgeleitet werden kann und dadurch jede einzelne
Aufgabe im Gesamtkontext unabhängig erscheint.

In den Kapiteln 1, 2 und 3 liegt das Hauptmerkmal auf den
Eigenheiten der objektorientierten Programmierung mit
Java. Durch eine Vielzahl von Beispielen wird gezeigt, was
die Java-Standard-Klassen und Interfaces an
Funktionalitäten bieten und wie diese sinnvoll in die
Definition von eigenen Klassen eingebettet werden können.
Diese Kapitel enthalten zusätzlich Informationen zur
Reflection-API von Java, der Definition von Annotationen und
inneren Klassen sowie Neuerungen aus den Versionen 8 bis
13, die sich auf die neue Date&Time-API, Textblöcke,
Compact Strings und die Weiterentwicklung von Interfaces
beziehen. Mit Java 8 wurden sogenannte Default-Methoden
eingeführt. Diese werden in der Literatur auch als »virtual
extension«- bzw. »defender«-Methoden bezeichnet und



Schnittstellen, die über derartige Methoden verfügen, als
erweiterte Schnittstellen. Damit können Interfaces
zusätzlich zu abstrakten Methoden konkrete Methoden in
Form von Standard-Implementierungen definieren und in
Java wird die Mehrfachvererbung von Funktionalität
ermöglicht. Neben Default-Methoden können Interfaces in
Java nun auch statische Methoden enthalten. Anders als die
statischen Methoden von Klassen werden diese jedoch nicht
von abgeleiteten Typen geerbt.

Kapitel  4 beschäftigt sich im Detail mit Generics und dem
Collection Framework mit all seinen generischen Klassen
und Interfaces sowie mit der Definition von Enumerationen.
Die Typinferenz für Methoden und beim Erzeugen von
generischen Typen (der Diamond-Operator) sowie das
Subtyping von parametrisierten und Wildcard-
parametrisierten Typen sind ebenfalls Gegenstand der
Themen aus diesem Kapitel.

Kapitel  5 erläutert das Exception-Handling.

Kapitel  6 beschäftigt sich mit den neuen Sprachmitteln von
Java 8, Lambdas und Streams sowie mit weiteren
Neuerungen aus den Versionen 8 bis 14, wie Switch-
Expressions und Local Variable Type Inference.

Mit der Java-Version 8 haben sich ganz neue
Betrachtungsweisen und Programmiertechniken in der
Entwicklung von Applikationen mit Java eröffnet. Eine der
wichtigsten Neuerungen in Java 8 sind neue Sprachmittel,
die sogenannten Lambda-Ausdrücke, eine Art anonyme
Methoden, die auf funktionalen Interfaces basieren. Diese
besitzen jedoch eine viel kompaktere Syntax als Methoden.
Das resultiert daraus, dass in ihrer Benutzung auf Namen,
Modifikatoren, Rückgabetyp, throws-Klausel und in vielen
Fällen auch auf Parameter verzichtet werden kann. Mit ihnen



kann Funktionalität ausgeführt, gespeichert und übergeben
werden, wie dies bisher nur von Instanzen in Java bekannt
war.

Damit verbundene Themen wie die Gegenüberstellung zu
anonymen Klassen, Syntax und Semantik, Behandlung von
Exceptions, Scoping und Variable Capture, Methoden- und
Konstruktor-Referenzen werden in den ersten Unterkapiteln
des 6. Kapitels dieses Buches beschrieben und anhand von
vielen Beispielen erläutert.

Des Weiteren finden Sie hier die Beschreibung aller neuen
funktionalen Interfaces und deren Methoden. Die
nachfolgenden Unterkapitel beschäftigen sich im Detail mit
der Definition und Nutzung von Streams. Ein Stream besteht
aus einer Folge von Werten (in der Literatur wird auch von
Sequenzen von Elementen gesprochen), die nur teilweise
von mehreren in einer Pipeline dazwischenliegenden
Operationen ausgewertet und durch eine abschließende
Operation bereitgestellt werden. Diese Operationen werden
in Java als Methodenaufrufe formuliert, die Funktionalität in
Form von Lambdas und Methoden-Referenzen
entgegennehmen können und diese auf alle Elemente der
Folge anwenden.

Mit einer Vielzahl von Aufgaben basierend auf Lambdas,
Streams und Kollektoren (in denen Stream-Elemente
angesammelt und reduziert werden können) werden die
neuen Techniken angewandt und alle neuen Begriffe erklärt.

Kapitel  7 präsentiert das neue Java-Modulsystem. Mit dem
neuen Modulsystem wurde Java selbst modular gemacht
und es können eigene Applikationen und Bibliotheken
modularisiert werden.



Java 9 führt das Modul als eine neue Programmkomponente
ein. Das Erzeugen von Modulen und deren Abhängigkeiten
führen dazu, dass der Zugriffsschutz in Java 9 restriktiver
ist. Das Anlegen der erforderlichen Verzeichnisstrukturen für
modulbasierte Applikationen, das Packaging von Modul-
Code sowie die Implementierung von Services werden
ebenfalls im Detail erklärt. Eine Vielzahl von Applikationen
mit ausführlichen .cmd-Dateien für deren Ausführung
ergänzen die theoretischen Erläuterungen aus diesem
Kapitel.

In Kapitel  8 werden die Weiterentwicklungen aus der
Programmiersprache mit den Versionen 14 bis 17 erläutert.
Dazu gehören die Einführung von Records und Sealed
Classes sowie das Pattern Matching.

Records wurden in der Version 14 entworfen, um die
Wiederholungen von repetitivem Code in Datenklassen zu
unterdrücken. Sie überlassen dem Compiler eine korrekte
Generierung der Methoden equals(), hashCode(), toString()
(die in Klassen, um eine Wertegleichheit von Objekten zu
ermöglichen, überschrieben werden müssen) und von
Zugriffsmethoden.

record-Klassen helfen in Kombination mit den in Java 15 neu
eingeführten sealed-Klassen und -Interfaces, die auch mit
Java 16 im Preview-Status bleiben und mit Java 17 finalisiert
werden, die funktionalen Features von Java zu erweitern,
insbesondere das Pattern Matching und in naher Zukunft die
Destrukturierung von Objekten.

Sealed Classes und Interfaces sind Java-Datentypen, für die
die Definition von Subtypen reduziert wird. Sie können nur
von den in ihrer Deklaration angegebenen Typen erweitert
bzw. implementiert werden.



Auch wenn es keine direkten Abhängigkeiten zwischen den
Previews aus den JEPs 395, 394, 409, 406 und 405 gibt, die
die Einführung dieser neuen Java-Datentypen sowie das
Pattern Matching in Java beschreiben, so sind die von diesen
vorgeschlagenen neuen Java-Features, wie mit vielen
Beispielen in den Kapiteln 8 und 9 illustriert wird, sehr gut
zusammen einsetzbar und im weitesten Sinne auch dafür
gedacht.

Das Pattern Matching wurde in Java ursprünglich für den
Abgleich von regulären Ausdrücken mit einem Text
eingesetzt und für einen Vergleich von Typen im
Zusammenhang mit dem instanceof-Operator und switch
weiterentwickelt.

Der instanceof-Operator wurde erweitert, sodass anstelle
eines Typ-Tests ein Musterabgleich-Test (»type test pattern«)
durchgeführt wird. Dieser prüft die Übereinstimmung eines
Zielobjekts mit einem vorgegebenen Mustertyp und erweist
sich als sehr nützlich beim Schreiben von equals()-
Methoden.

Mit Java 17 sind rund um das Pattern Matching weitere
Funktionen im Zusammenhang mit Switch Statements und
Switch Expressions realisiert worden. Damit werden die
Restriktionen für den Typ des Ausdrucks, der im switch
übergeben wird, weitestgehend aufgehoben. Bei einem
klassischen switch waren zugelassen: ganzzahlige primitive
Typen (char, byte, short, int) und die dazugehörigen Wrapper-
Typen (Character, Byte, Short, Integer) sowie String und enum-
Konstanten. Diese Auswahl wurde nun auf ganzzahlige
primitive Typen und beliebige Referenztypen erweitert,
sodass class-, enum-, record- und array-Typen zugelassen sind,
die zusammen mit einem null-case-Label und einem default-
Label die Angaben in den switch-case-Labels ausmachen
können.



Die Destrukturierung von Objekten wird zusammen mit
Record Patterns und Array Patterns (JEP 405) die Entwickler
von nachfolgenden Java-Versionen weiter beschäftigen.

Neu in dieser Auflage des Buches sind Tests mit JUnit 5 und
Gradle, die in Kapitel  9 beispielhaft präsentiert werden.

JUnit 5 kann von der Website https://junit.org/junit5/ unter
»Latest Release« (aktuelle Version zum Zeitpunkt der
Redaktion dieses Buches waren: Jupiter v5.7.1, Vintage
v5.7.1, Platform v1.7.1) heruntergeladen werden.

Zum Testen von Applikationen werden, wie auch in den
bevorstehenden Versionen von JUnit üblich, sogenannte
Testklassen geschrieben. Sie beinhalten Methoden, die
Testfälle beschreiben, den Rückgabetyp void aufweisen und
durch Annotationen gekennzeichnet sind.

JUnit 5 führt darüber hinaus das Konzept eines
ConsoleLaunchers ein, der benutzt werden kann, um Tests
zu entwickeln, zu filtern und durchzuführen.

Um Ihnen ein gutes Verständnis für Details zu ermöglichen,
wähle ich in diesem Buch die Ausführung über die
Kommandozeile, die der ConsoleLauncher in diesem Fall
ermöglicht.

Sicherlich sind Build-Tools wie Gradle und IDEs wie Eclipse,
Intellij IDEA oder Maven eine große Hilfe nicht nur bei der
Ausführung von JUnit-Tests, sondern generell in der
Programmierung mit Java. Die Angabe von Details in diesem
Zusammenhang würde den Rahmen dieses Buches jedoch
sprengen.

In einem Unterkapitel in Kapitel  9 erfolgt eine kurze
Beschreibung von Gradle und der Ausführung von Tests mit
diesem Tool. Weil es gerade im Zusammenhang mit JUnit-

https://junit.org/junit5/


Tests dem Anwender viel Kopfzerbrechen und Arbeit erspart,
präsentiere ich es als Alternative zum ConsoleLauncher für
die Durchführung von JUnit-Tests für die Java-Applikationen.

Eine neue Gradle-Version kann von der Website
https://gradle.org/releases/ heruntergeladen werden. Zum
Zeitpunkt der Buchredaktion war die Version v7.0.1 aktuell.

Weil der Schwerpunkt des Buches nicht auf der Umsetzung
von aufwendigen Algorithmen liegen soll, verwende ich
einfache Beispiele mit Zahlen, Buchstaben, Wörtern,
Büchern, Wochentagen, geometrischen Figuren etc. und
teilweise auch mit ganz abstrakten Klassennamen wie
Klasse1, Klasse2, KlasseA, KlasseB etc.

An dieser Stelle möchte ich auf das dem Buch zugrunde
liegende Konzept hinweisen, dass parallel zu einfachen
Aufgaben, die zu allen eingeführten Definitionen und
Begriffen gebracht werden, auch Aufgaben von einem
höheren Schwierigkeitsgrad präsentiert werden. Dabei
werden anhand von inhaltlichen Zusammenhängen
zwischen den Beispielen viele Basiskonzepte von Java
erläutert.

Ich habe generell versucht, keine Begriffe, Klassen und
Komponenten zu benutzen, die nicht schon in
vorangehenden Beispielen und Kapiteln definiert oder
erläutert wurden. In den wenigen Fällen, wo es sich nicht
vermieden ließ, wird darauf hingewiesen und auf die
entsprechenden Stellen verwiesen.

Das Buch soll möglichst parallel zu einer Vielzahl von Java-
Lehrbüchern eingesetzt werden können und einen Beitrag
dazu leisten, die große Fülle von Informationen, die auf uns
über die API-Dokumentation zukommt, besser einzuordnen
und korrekt anwenden zu können.

https://gradle.org/releases/

