MEDICAL GENETICS

EDWARD S. TOBIAS | MICHAEL CONNOR MALCOLM FERGUSON-SMITH

6TH EDITION

with Wiley DESKTOP EDITION

Contents

Preface

Acknowledgements

How to get the best out of your textbook

Part 1: Basic principles

<u>Chapter 1: Medical genetics in perspective</u>

Introduction
Scientific basis of medical genetics
Clinical applications of medical genetics

<u>Chapter 2: The human genome</u>

<u>Introduction</u>

<u>Structure and organisation of the genome</u> Gene identification

The Human Genome Project

<u>Chapter 3: Nucleic acid structure and function</u>

Introduction
Nucleic acid structure
Nucleic acid function

<u>Gene regulation</u> <u>DNA replication</u> <u>Mutation types, effects and nomenclature</u>

<u>Chapter 4: DNA analysis</u>

<u>Introduction</u> Basic methods

Mutation detection

Indirect mutant gene tracking

Analysis of DNA length polymorphisms

<u>Analysis of single-nucleotide</u>

<u>polymorphisms</u>

Chapter 5: Chromosomes

Introduction

Chromosome structure

Chromosome analysis

Chromosome heteromorphisms

Chromosomes in other species

Mitochondrial chromosomes

Mitosis

<u> Chapter 6: Gametogenesis</u>

Introduction

Meiosis

<u>Spermatogenesis</u>

Oogenesis

Fertilisation

X-inactivation and dosage compensation

Sex chromosome aberrations
Sex determination and differentiation
Genomic imprinting (parental imprinting)

<u>Chapter 7: Chromosome aberrations</u>

Introduction

Numerical aberrations

Structural aberrations

Cytogenetic and molecular methods for the detection of chromosomal aberrations
Identification of the chromosomal origin of complex structural rearrangements
Other aberrations

<u>Chapter 8: Typical Mendelian</u> inheritance

<u>Introduction</u>

<u>Introduction to autosomal single-gene</u>

<u>inheritance</u>

Autosomal dominant inheritance

Autosomal recessive inheritance

Introduction to sex-linked inheritance

X-linked recessive inheritance

X-linked dominant inheritance

Y-linked inheritance (holandric inheritance)

<u>Chapter 9: Atypical Mendelian</u> <u>inheritance</u>

Introduction

Genetic	antici	pati	ion
OCHOCKO	all title	701	

Pseudoautosomal inheritance

<u>Autosomal dominant inheritance with sex</u> <u>limitation</u>

Pseudodominant inheritance

X-linked dominant inheritance with male lethality

Mosaicism

<u>Modifier genes and digenic inheritance</u> <u>Uniparental disomy</u> <u>Imprinting disorders</u>

<u>Chapter 10: Non-Mendelian</u> <u>inheritance</u>

Introduction

Multifactorial disorders

Somatic cell genetic disorders

Mitochondrial disorders

<u>Chapter 11: Medical genetics in populations</u>

Introduction

<u>Selection for single-gene disorders</u>

<u>Founder effect and genetic drift for single-gene disorders</u>

<u>Altered mutation rate for single-gene</u> disorders

<u>Linkage analysis and the International</u> <u>HapMap Project</u>

Human population evolution and migration

Part 2: Clinical applications

<u>Chapter 12: Genetic assessment,</u> <u>genetic counselling and reproductive</u> <u>options</u>

Introduction

Communication of advice

Special points in counselling

<u>Prenatal diagnosis</u>

Amniocentesis

Chorionic villus sampling

Cordocentesis, fetal skin biopsy and fetal

liver biopsy

<u>Ultrasonography</u>

fetal cells in the maternal circulation

Free fetal DNA and RNA detection

<u>Preimplantation genetic diagnosis</u>

Chapter 13: Family history of cancer

Introduction

<u>General principles</u>

<u>Tumour suppressor genes</u>

Genes involved in DNA repair mechanisms

Oncogenes

Other cancer-related genes

Genetic counselling aspects of cancer

<u>Common familial cancer predisposition</u> <u>syndromes</u>

<u>Chapter 14: Family history of common</u> <u>adult-onset disorder</u>

Introduction

General principles

<u>Diabetes mellitus: common and monogenic</u> forms

<u>Dementia: Alzheimer disease, Huntington</u> <u>disease, priori diseases and other causes</u>

<u>Chapter 15: Strong family history - typical Mendelian disease</u>

Introduction

Cystic fibrosis

<u>Duchenne and Becker muscular dystrophies</u> <u>Neurofibromatosis type 1</u>

<u>Chapter 16: Strong family history-other inheritance mechanisms</u>

Introduction

<u>Myotonic dystrophy</u>

Fragile X syndrome

<u>Mitochondrial disorder</u>

<u>Imprinting-related disorder</u>

Chromosomal translocation

<u>Chapter 17: Screening for disease</u> <u>and for carriers</u>

Introduction

Prenatal screening

Neonatal screening

Carrier detection in the adult population

Presymptomatic screening of adults

<u>Chapter 18: Family history of one or</u> <u>more congenital malformations</u>

Introduction

<u>Aetiology</u>

Chromosomal disorders

Neural tube defects

Teratogenic effects

Multiple malformation syndromes

<u>Part 3: Electronic databases - a</u> <u>user's guide</u>

<u>Chapter 19: Electronic databases</u> <u>user's guide</u>

Introduction

Finding information regarding specific conditions and names of associated genes Laboratories undertaking genetic testing Patient information and support groups

Gene- and protein-specific sequence,
structure, function and expression
information
Nucleotide sequences and human
mutations
Automatic primer design tools
Displaying map data for genes and markers
Online missense mutation analysis tools
Computer-aided Syndrome diagnosis
Professional genetics societies
The Human Genome Project: ethics and
education

Self-assessment - answers

<u>Appendix 1: Odds, probabilities and applications of Bayes' theorem</u>

<u>Appendix 2: Calculation of the coefficients of relationship and inbreeding</u>

<u>Appendix 3: Population genetics of single-gene disorders</u>

Maintenance of gene frequencies

Appendix 4: Legal aspects

<u>Genetic counselling</u> <u>Prenatal diagnosis</u>

<u>Consanguinity</u> <u>Paternity testing</u>

<u>Glossary</u>

<u>Index</u>

Essential Medical Genetics

Edward S. Tobias

BSc MBChB PhD FRCP
Senior Clinical Lecturer in Medical Genetics
University of Glasgow
and Honorary Consultant in Medical Genetics
West of Scotland Regional Genetics Service
Institute of Medical Genetics
Glasgow

Michael Connor

MD, DSc, FRCP
Professor of Medical Genetics
University of Glasgow
and Director of the West of Scotland
Regional Genetics Service
Institute of Medical Genetics
Glasgow

Malcolm Ferguson-Smith

MBChB, FRCPath, FRCP, FRSE, FRS
Emeritus Professor of Pathology
University of Cambridge
and formerly Director of the East Anglia Regional Genetics Service
Addenbrookes Hospital
Cambridge

Sixth edition

WILEY-BLACKWELL

U 11 ABB A BEA AVER 11 BEE

A John Wiley & Sons, Ltd., Publication

This edition first published 2011, © 2011 by Edward S. Tobias, Michael Connor and Malcolm Ferguson-Smith Previous editions © 1984, 1987, 1991, 1993, 1997 by Blackwell Science Ltd.

Blackwell Publishing was acquired by John Wiley & Sons in February 2001. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell.

Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,

Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names

and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloguing-in-Publication Data Tobias, Edward.

Essential medical genetics / Edward Tobias, Michael Connor, Malcolm Ferguson-Smith. - 6th ed.

p.; cm.

Rev. ed. of: Essential medical genetics / Michael Connor, Malcolm Ferguson-Smith. 5th ed. 1997.

Includes bibliographical references and index.

ISBN 978-1-4051-6974-5 (pbk.: alk. paper) 1. Medical genetics. I. Connor, J. M. (James Michael), 1951- II. Ferguson-Smith, M. A. (Malcolm Andrew) III. Connor, J. M. (James Michael), 1951- Essential medical genetics. IV. Title.

[DNLM: 1. Genetics, Medical. QZ 50]

RB155.C66 2011

616'.042-dc22

2010031705

ISBN: 9781405169745

A catalogue record for this book is available from the British Library.

Preface

This book has been written for those to whom an understanding of modern medical genetics is important in their current or future practice as clinicians, scientists, counsellors and teachers. It is based on the authors' personal experience in both clinical and laboratory aspects of busy regional genetics services over a period of many years. This period has seen the emergence of modern molecular aenetics cvtoaenetics and alongside development of medical genetics from a purely academic discipline into a clinical specialty of relevance to every branch of medicine. As in our undergraduate postgraduate education programmes, we emphasize the central role of the chromosome and the human genome in understanding the molecular mechanisms involved in the pathogenesis of genetic disease. Within the term genetic disease, we include not only the classic Mendelian and chromosomal disorders but also the commoner disorders of adulthood with a genetic predisposition and somatic cell genetic disorders, such as cancer.

For this sixth edition, the text has been extensively updated throughout. The structure of the book has, where appropriate, been reorganised, in order to provide a clear description of the essential principles of the scientific basis and clinical application of modern medical genetics. Where appropriate, we have included descriptions of genetic conditions that have been carefully selected as examples of the important principles being described. Since the last edition of this book, several important and exciting new advances have been made in the field of medical genetics, and we have incorporated information about them into the book. Such advances include, for example, the completion of the sequencing of the human genome (with the generation of huge quantities of publicly accessible data), the identification of new classes of RNA molecules, the

development of a number of invaluable new molecular genetic and cytogenetic laboratory techniques, the further development of preimplantation genetic diagnosis, and improved methods for antenatal and neonatal screening.

A very significant additional advance has been the development and enormous expansion of many invaluable online clinical and molecular genetic databases. These databases have greatly facilitated the medical genetics work of most clinicians and scientists. The optimal use of several important databases is, however, in many cases far from straightforward. Consequently, retrieving specific information or data from them can take a great deal of time and effort for users who do not access them frequently. The final chapter of this book is therefore devoted to providing guidance on the most efficient use of these databases, together with clear illustrated advice explaining how to find different types of information via the internet as quickly as possible. It is hoped that this guidance, which to our knowledge is currently unavailable elsewhere, will make this process much more straightforward for the reader.

have also provided an We accompanying website (accessed via www.wiley.com/go/tobias) that regularly update in order to provide the reader with a way of easily accessing the very latest clinical and molecular genetic information relating to the thousands of genetic conditions, in addition to patient information and support organizations, the identified genes, and gene-testing laboratories worldwide. The links are grouped on the website in a very similar manner to the way in which they are categorised within the final chapter of this book, in order to make it as easy as possible for readers to find relevant information quickly.

Although we have made every effort to ensure that the information contained within this book is accurate at the time of going to press, we look to the continued generosity

of our readers in helping to correct any misconceptions or omissions. We would be happy to receive any comments, or recommendations for improvements, at essentialmedgen@gmail.com.

The role of genetic counselling, prenatal diagnosis, carrier detection and other forms of genetic screening in the prevention of genetic disease is now well established and this is reflected in the increasing provision of genetic services throughout the world. It is hoped that our book will be useful to those in training for this important task.

E.S.T, J.M.C. and M.A.F-S.

Acknowledgements

We wish to thank all of the many people who have influenced the production of this book. These include, particularly, our colleagues and students at the Institute of Medical Genetics in Glasgow and at the Cambridge University Centre for Medical Genetics. We also wish to acknowledge the invaluable contributions made by Professor Carolyn Brown (Life Sciences Centre, Vancouver, Canada), Professor Mark Jobling (University of Leicester, UK) and Dr Zofia Esden-Tempska (Medical University of Gdansk, Poland).

The authors are indebted to the editorial and production team at Wiley-Blackwell, including Martin Sugden, Hayley Salter, Laura Murphy, Elizabeth Bishop and Elizabeth Johnston, in addition to the freelance project manager, Anne Bassett.

E.S.T. would like to express his enormous gratitude to his wife, family and friends for their continuous support and understanding while he worked on the manuscript.

We are most obliged to Professor Tom Ellenberger (Washington University School of Medicine, St Louis, Missouri, USA) for his generous permission to use the front cover image, which depicts the interaction between human DNA ligase I and DNA.

We are very grateful to the patients and their families, and to the following, for permission to reproduce these figures:

```
Fig. 4.2: Alexander Fletcher;
Fig. 4.4: Joan Lavinha;
Figs. 4.5, 4.8 and 4.9: Gillian Stevens;
Figs. 4.6 and 4.7: Maria Jackson and Leah Marks;
Fig. 4.10: Jim Kelly;
Figs. 4.11 and 7.22: Jayne Duncan;
Fig. 4.12, 13.5 and 16.2: Alexander Cooke;
Fig. 4.14: Julia El-Sayed Moustafa;
```

```
Fig. 4.15: Paul Debenham (Cellmark Diagnostics);
Figs 5.2-5.5, 6.17b, 7.6, 7.8, and 9.2: Elizabeth Boyd;
Fig. 5.8: Nigel Carter;
Fig. 5.13: The Editor, Birth Defects Original Article Series;
Fig. 5.14: The Editior, Annales de Genetique;
Fig. 5.15: Peter Pearson;
Figs 6.2, 6.3, 6.9 and 7.9: The Editor, Excerpta Medica;
Figs 6.8 and 7.4(d): Anne Chandley;
Fig. 6.16: John Tolmie;
Fig. 6.18c: Lionel Willatt;
Figs 7.4(b) and 7.4(c): The Editor, Journal of Medical
Genetics;
Fig. 7.15: Maj Hulten and N. Saadallah;
Figs 7.16 and 7.17: The Editor, Cytogenetics and Cell
Genetics;
Fig. 8.6: Brenda Gibson;
Figs 8.12 and 18.4: Douglas Wilcox;
Figs. 7.2, 7.21 and 7.32: Catherine McConnell;
Fig. 7.19: Aspasia Divane;
Fig. 7.20: Diana Johnson and BMJ Publishing Group Ltd.;
Fig. 7.30: Evelyn Schrock and Thomas Ried;
Figs. 11.4 and 11.5: Gary Stix and Nature Publishing Group;
Fig. 12.4, 15.5 and 18.20: Margo Whiteford;
Figs. 12.8 and 7.23-26: Norma Morrison;
Figs. 13.7 and 13.8: Janet Stewart;
Fig. 13.10: Springer, Heidelberg;
Fig. 14.1 and 14.2: Inga Prokopenko and Elsevier;
Fig. 14.3: Bart Dermaut and Elsevier;
Fig. 15.7: Peter Cackett and Nature Publishing Group;
Fig. 16.5: Bernhard Horsthemke, Joseph Wagstaffand
American Journal of Medical genetics;
Figs. 17.1-17.4: Jenny Crossley and David Aitken;
Fig. 17.5: Joan Mackenzie and Arlene Brown;
```

<u>Fig. 18.16</u>: WE Tidyman, KA Rauen and Cambridge Journals; <u>Fig. 18.22</u>: Marie-France Portnoi and Elsevier; and <u>Figs. 19.45-19.48</u>: Michael Baraitser.

We would also like to thank the curators of the following websites for permission to reproduce screenshots: National Center for Biotechnology Information (NCBI), Ensembl (Wellcome Trust Sanger Institute), GeneCards (Weizmann Institute of Science), University of California Santa Cruz (UCSC) Genome Browser, UK Genetic Testing Network (UKGTN), European Directory of DNA Diagnostic Laboratories (EDDNAL), Primer 3Plus, RCSB Protein Data Bank (PDB) and The Phenomizer.

The authors and publisher have made every effort to seek the permission of all copyright holders for the reproduction of copyright material. If any have been overlooked inadvertently, the publisher will be pleased to make the necessary amendments at the earliest opportunity.

How to get the best out of your textbook

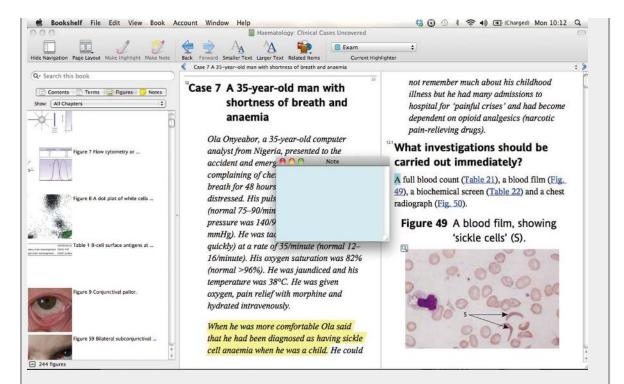
Welcome to the new edition of *Essential Medical Genetics*. Over the next two pages you will be shown how to make the most of the learning features included in the textbook.

An interactive textbook

For the first time, your textbook gives you free access to a Wiley Desktop Edition - a digital, interactive version of this textbook. Your Wiley Desktop Edition allows you to:

Search: Save time by finding terms and topics instantly in your book, your notes, even your whole library (once you've downloaded more textbooks)

Note and Highlight: Colour code highlights and make digital notes right in the text so you can find them quickly and easily

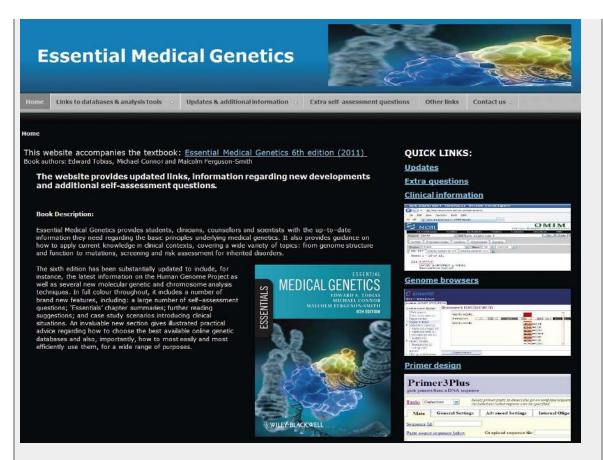

Organize: Keep books, notes and class materials organized in folders inside the application

Share: Exchange notes and highlights with friends, classmates and study groups

Upgrade: Your textbook can be transferred when you need to change or upgrade computers

Link: Link directly from the page of your interactive textbook to all of the material contained on the companion website.

Access to your Wiley Desktop Edition is available with proof of purchase within 90 days. Visit http://support.wiley.com to request via Chat or Ask A Question. When you have the code visit: http://www.vitalsource.com/software/bookshelf/downloads/ to get started.


A companion website

Your textbook is also accompanied by a FREE companion website that contains:

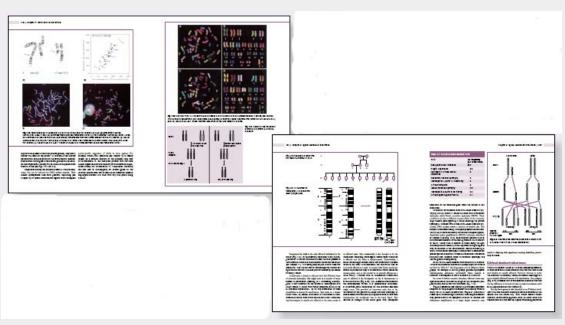
- Regularly updated links to genetic databases and analysis tools
- Updated information relating to the book's content
- Additional self-assessment questions and answers
- Figures from the book in Powerpoint format.

Log on to www.wiley.com/go/tobias to find out more.

Simply find your unique Wiley Desktop Edition product code and carefully scratch away the top coating on the label on the front cover of this textbook and visit: http://www.vitalsource.com/software/bookshelf/downloads/ to get started.

Features contained within your textbook

Tevery chapter has its own chapter-opening page that offers a list of key topics contained within the chapter.



Throughout your textbook you will find this icon which points you to the online databases and resources found on the

companion website. You can also access the website by clicking on this icon in your Desktop Edition.

Your textbook is full of useful photographs, illustrations and tables. The Desktop Edition version of your textbook will allow you to copy and paste any photograph or illustration into assignments, presentations and your own notes.

Every chapter ends with a summary which can be used for both study and revision purposes.

SUMMARY

- Multifactorial inheritance implies a contribution of both conditional environmental factors.
- both genetic and environmental factors.

 II Twin concordance and family correlation studies can
- provide support for the multifactorial inheritance of a trait. The observed frequencies in relatives provide the empiric risks upon which genetic counselling for multifactorial disorders is based.

 Multifactorial traits that are continuous (such as
- memberchail was that are continuous (such as height) have a continuously graded distribution, while those that are discontinuous (i.e. with individuals being after affected or unaffected) are present only when a certain threshold of genetic factors is reached.
- For twins, placental membranes that are monochorionic indicate monozygosity, whereas dichorionic membranes represent either monozygous or dizygous twins. Zygosity is determined most reliably by DNA fingerprinting.
 ■ Monozygotic twins are identical genetically (i.e. at the
- DNA level), whereas dizygotic twins exhibit the same degree of genetic similarity as siblings.

 Genome-wide analyses of the genetic determinants
- Genome-wide analyses of the genetic determinants of multitacional traits may now be undertaken by association studies of the thequencies of each of hundreds of thousands of SNPs in cases and controls.

We hope you enjoy using your new textbook. Good luck with your studies!

Part 1 Basic Principles

Chapter 1

Medical genetics in perspective

Key Topics

- Scientific basis of medical genetics
- Clinical applications of medical genetics

Introduction

Medical genetics is the science of human biological variation as it relates to health and disease. Although people have long been aware that individuals differ, that children tend to resemble their parents and that certain diseases tend to run in families, the scientific basis for these observations was only discovered during the past 140 years. The clinical applications of this knowledge are even more recent, with most progress confined to the past 50 years (see Table 1.1). In particular, the rapid sequencing of the entire human genome, completed in 2003, has greatly accelerated the process of gene mapping for genetic conditions and a vast quantity of valuable and continuously updated information has become readily accessible via the internet (as described in detail in Part 3 and on this book's accompanying website at www.wiley.com/go/tobias).

<u>Table 1.1</u> Some important landmarks in the development of medical genetics

Year	Landmark	Key figure(s)
1839	Cell theory	Schleiden and Schwann
1859	Theory of evolution	Darwin

Year	Landmark	Key figure(s)
1865	Particulate inheritance	Mendel
1882	Chromosomes observed	Flemming
1902	Biochemical variation	Garrod
1903	Chromosomes carry genes	Sutton, Boveri
1910	First US genetic clinic	Davenport
1911	First human gene assignment	Wilson
1944	Role of DNA	Avery
1953	DNA structure	Watson, Crick, Franklin and Wilkins
1956	Amino acid sequence of sickle haemoglobin (HbS)	Ingram
1956	46 chromosomes in humans	Tjio and Levan
1959	First human chromosomal abnormality	Lejeune
1960	Prenatal sexing	Riis and Fuchs
1960	Chromosome analysis on blood	Moorhead
1961	Biochemical screening	Guthrie
1961	X chromosome inactivation	Lyon
1961	Genetic code	Nirenberg
1964	Antenatal ultrasound	Donald
1966	First prenatal chromosomal analysis	Breg and Steel
1966	First print edition of Mendelian Inheritance in Man (MIM)	McKusick
1967	First autosomal assignment	Weiss and Green
1970	Prevention of Rhesus isoimmunisation	Clarke
1970	Chromosome banding	Caspersson and Zech
1975	DNA sequencing	Sanger, Maxam and Gilbert
1976	First DNA diagnosis	Kan
1977	First human gene cloned	Shine
1977	Somatostatin made by genetic engineering	Itakura
1979	<i>In vitro</i> fertilization	Edwards and Steptoe
1979	Insulin produced by genetic engineering	Goeddel

Year	Landmark	Key figure(s)
1982	First genetic engineering product marketed (Humulin)	Many contributors
1985	DNA fingerprinting	Jeffreys
1986	Polymerase chain reaction (PCR)	Mullis
1987	Linkage map of human chromosomes developed	Many contributors
1987	Online Mendelian Inheritance in Man (OMIM) first available	McKusick
1990	First treatment by supplementation gene therapy	Rosenberg, Anderson, Blaese
1990	First version of London Dysmorphology Database	Baraitser and Winter
1990	First clinical use of preimplantation genetic diagnosis (PGD)	Handyside, Winston and others
1991	First version of London Neurogenetics Database	Baraitser and Winter
1993	First physical map of the human genome	Many contributors
2000	First draft of the human genome sequence	Many contributors
2003	Completion of human genome sequencing (99.999%)	HGSC and Celera
2006	Preimplantation genetic haplotyping (PGH) announced	Renwick, Abbs and others
2007	Human genome SNP map (3.1 million SNPs) reported	International HapMap Consortium
2007	Completion of DNA sequencing of personal genomes	Watson and Venter
2008	Launch of project to sequence the genomes of over 1000 individuals from 20 different populations worldwide	International 1000 Genomes Project
2010	Publication of catalogue of human genetic variation (believed to be 95% complete)	International 1000 Genomes Project

HGSC: Human Genome Sequencing Consortium; OMIM: Online Mendelian Inheritance in Man; SNP: single nucleotide polymorphism.

Scientific basis of medical genetics

Mendel's contribution

Prior to Mendel, parental characteristics were believed to blend in the offspring. While this was acceptable for continuous traits such as height or skin pigmentation, it was clearly difficult to account for the family patterns of discontinuous traits such as haemophilia or albinism. Mendel studied clearly defined pairs of contrasting characters in the offspring of the garden pea (Pisum sativum). These peas were, for example, either round or wrinkled and were either yellow or green. Pure-bred strains for each of these characteristics were available but when cross-bred (the first filial or F₁ progeny) were all round or yellow. If F₁ progeny were bred then each characteristic was re-observed in a ratio of approximately 3 round to 1 wrinkled or 3 yellow to 1 green (in the second filial or F2 progeny). Mendel concluded that inheritance of these characteristics must be particulate with pairs of hereditary elements (now called genes). In these two examples, one characteristic (or trait) was dominant to the other (i.e. all the F₁ showed it). The fact that both characteristics were observed in the F₂ progeny entailed segregation of each pair of genes with one member to one gamete and one to another gamete (Mendel's first law).

<u>Figures 1.1</u> and <u>1.2</u> illustrate these experiments with uppercase letters used for the dominant characteristic and lower-case letters used for the masked (or recessive) characteristic. If both members of the pair of genes are identical, this is termed homozygous (for the dominant or recessive trait), whereas a heterozygote has one gene of each type.

In his next series of experiments Mendel crossed pure-bred strains with two characteristics, e.g. pure-bred round/yellow with pure-bred wrinkled/green. The F_1 generation showed only the two dominant characteristics – in this case round/yellow. The F_2 showed four combinations: the original two, namely round/yellow and wrinkled/green, in a ratio of approximately 9:1 and two new combinations – wrinkled/yellow and round/ green in a ratio of approximately 3:3 (Fig. 1.3).

In these experiments, there was thus no tendency for the genes arising from one parent to stay together in the offspring. In other words, *members of different gene pairs assort to gametes independently of one another* (Mendel's second law).

Although Mendel presented and published his work in 1865, after cultivating and studying around 28,000 pea plants, the significance of his discoveries was not realised until the early 1900s when three plant breeders, De Vries, Correns and Tschermak, confirmed his findings.

Chromosomal basis of inheritance

In 1839, Schleiden and Schwann established the concept of cells as the fundamental living units. Hereditary transmission through the sperm and egg was known by 1860, and in 1868, Haeckel, noting that the sperm was largely nuclear material, postulated that the nucleus was responsible for heredity. Flemming identified chromosomes within the nucleus in 1882, and in 1903 Sutton and Boveri independently realised that the behaviour of chromosomes during the production of gametes paralleled the behaviour of Mendel's hereditary elements. Thus, the chromosomes were discovered to carry the genes. However, at that time, although the chromosomes were known to consist of protein