


Introduction

Welcome to R For Dummies, the book that helps you

learn the statistical programming language R quickly

and easily.

We can’t guarantee that you’ll be a guru if you read this

book, but you should be able to

Perform data analysis by using a variety of powerful

tools.

Use the power of R to do statistical analysis and data-

processing tasks.

Appreciate the beauty of using vector-based

operations (rather than loops) to do speedy

calculations.

Appreciate the meaning of the following line of code:

knowledge <- apply(theory, 1, sum)

Know how to find, download, and use code that has

been contributed to R by its very active community of

developers.

Know where to find extra help and resources to take

your R coding skills to the next level.

Create beautiful graphs and visualizations of your

data.

About This Book

R For Dummies is an introduction to the statistical

programming language known as R. We start by

introducing the interface and work our way from the

very basic concepts of the language through more

sophisticated data manipulation and analysis.



We illustrate every step with easy-to-follow examples.

This book contains numerous code snippets, several

write-it-yourself functions you can use later on, and

complete analysis scripts. All these are for you to try out

yourself.

We don’t attempt to give a technical description of how R

is programmed internally, but we do focus as much on

the why as on the how. R has many features that may

seem surprising at first, so we believe it’s important to

explain both how you should talk to R, and how the R

engine interprets what you say. After reading this book,

you should be able to manipulate your data in the form

you want and understand how to use functions we didn’t

cover in the book (as well as the ones we do cover).

This book is a reference. You don’t have to read it from

beginning to end. Instead, you can use the table of

contents and index to find the information you need. We

cross-reference other chapters where you can find more

information.

Changes in the Second

Edition

Since the publication of the first edition, R has kept

evolving and improving. To keep the book accurate, we

updated the code to reflect any changes in the latest

version of R (version 3.2.0). With the feedback from

readers, students, and colleagues we could rework some

sections to clarify issues and correct inaccuracies. For

example, we modified the code to use double quotes

instead of single quotes when using text strings. We also

refer to the fundamental units of lists as components,

rather than elements.



The new rfordummies package contains code examples

in the book. Read all about it in Appendix B.

R and RStudio

R For Dummies can be used with any operating system that R runs on.

Whether you use Mac, Linux, or Windows, this book will get you on your way

with R.

R is more a programming language than an application. When you download

R, you automatically download a console application that’s suitable for your

operating system. However, this application has only basic functionality, and

it differs to some extent from one operating system to the next.

RStudio is a cross-platform application, also known as an Integrated

Development Environment (IDE) with some very neat features to support R.

In this book, we don’t assume you use any specific console application.

However, RStudio provides a common user interface across the major

operating systems. For this reason, we use RStudio to demonstrate some of

the concepts rather than any specific operating-system version of R.

Conventions Used in This

Book

Code snippets appear like this example, where we

simulate 1 million throws of two six-sided dice:

> set.seed(42) 

> throws <- 1e6 

> dice <- replicate(2, 

+                   sample(1:6, throws, replace = TRUE) 

+ ) 

> table(rowSums(dice)) 

     2     3     4      5      6      7      8 

 28007 55443 83382 110359 138801 167130 138808 

     9    10    11    12 

110920 83389 55816 27945

Each line of R code in this example is preceded by one of

two symbols:



>: The prompt symbol, >, is not part of your code, and

you should not type this when you try the code

yourself.

+: The continuation symbol, +, indicates that this line

of code still belongs to the previous line of code. In

fact, you don’t have to break a line of code into two,

but we do this frequently, because it improves the

readability of code and helps it fit into the pages of a

book.

Lines that start without either the prompt or the

continuation symbol are output produced by R. In this

case, you get the total number of throws where the dice

added up to the numbers 2 through 12. For example, out

of 1 million throws of the dice, on 28,007 occasions the

numbers on the dice added to 2.

You can copy these code snippets and run them in R, but

you have to type them exactly as shown. There are only

three exceptions:

Don’t type the prompt symbol, >.

Don’t type the continuation symbol, +.

Where you put spaces or tabs isn’t critical, as long as it

isn’t in the middle of a keyword. Pay attention to new

lines, though.

Instructions to type code into the R console has the >

symbol to the left:

> print("Hello world!")

If you type this into a console and press Enter, R

responds with:

[1] "Hello world!"



For convenience, we collapse these two events into a

single block, like this:

> print("Hello world!") 

[1] "Hello world!"

Functions, arguments, and other R keywords appear in

monofont. For example, to create a plot, you use the

plot() function. Function names are followed by

parentheses — for example, plot(). We don't add

arguments to the function names mentioned in the text,

unless it’s really important.

On some occasions we talk about menu commands, such

as File⇒Save. This just means that you open the File

menu and choose the Save option.

What You’re Not to Read

You can use this book however works best for you, but if

you’re pressed for time (or just not interested in the

nitty-gritty details), you can safely skip anything marked

with a Technical Stuff icon. You also can skip sidebars

(text in gray boxes); they contain interesting information,

but nothing critical to your understanding of the subject

at hand.

Foolish Assumptions

This book makes the following assumptions about you

and your computer:

You know your way around a computer. You know

how to download and install software. You know how to

find information on the Internet and you have Internet

access.



You’re not necessarily a programmer. If you are a

programmer, and you’re used to coding in other

languages, you may want to read the notes marked by

the Technical Stuff icon — there, we fill you in on how

R is similar to, or different from, other common

languages.

You’re not a statistician, but you understand the

very basics of statistics. R For Dummies isn’t a

statistics book, although we do show you how to do

some basic statistics using R. If you want to

understand the statistical stuff in more depth, we

recommend Statistics For Dummies, 2nd Edition, by

Deborah J. Rumsey, PhD (Wiley).

You want to explore new stuff. You like to solve

problems and aren’t afraid of trying things out in the R

console.



How This Book Is

Organized

The book is organized in six parts. Here’s what each of

the six parts covers.

Part I: Getting Started with R

Programming
In this part, you write your first script. You use the

powerful concept of vectors to make simultaneous

calculations on many variables at once. You work with

the R workspace (in other words, how to create, modify,

or remove variables). You find out how to save your work

and retrieve and modify script files that you wrote in

previous sessions. We also introduce some fundamentals

of R (for example, how to install packages).

Part II: Getting Down to Work in R
In this part, we fill you in on the three R’s: reading,

’riting, and ’rithmetic — in other words, working with

text and numbers (and dates for good measure). You also

get to use the very important data structures of lists and

data frames.

Part III: Coding in R
R is a programming language, so you need to know how

to write and understand functions. In this part, we show

you how to do this, as well as how to control the logic

flow of your scripts by making choices using if

statements, as well as looping through your code to

perform repetitive actions. We explain how to make

sense of and deal with warnings and errors that you may

experience in your code. Finally, we show you some tools

to debug any issues that you may experience.



Part IV: Making the Data Talk
In this part, we introduce the different data structures

that you can use in R, such as lists and data frames. You

find out how to get your data in and out of R (for

example, by reading data from files or the Clipboard).

You also see how to interact with other applications, such

as Microsoft Excel.

Then you discover how easy it is to do some advanced

data reshaping and manipulation in R. We show you how

to select a subset of your data and how to sort and order

it. We explain how to merge different datasets based on

columns they may have in common. Finally, we show you

a very powerful generic strategy of splitting and

combining data and applying functions over subsets of

your data. When you understand this strategy, you can

use it over and over again to do sophisticated data

analyses in only a few small steps.

After reading this part, you’ll know how to describe and

summarize your variables and data using R. You’ll be

able to do some classical tests (for example, calculating a

t-test). And you’ll know how to use random numbers to

simulate some distributions.

Finally, we show you some of the basics of using linear

models (for example, linear regression and analysis of

variance). We also show you how to use R to predict the

values of new data using models that you’ve fitted to

your data.

Part V: Working with Graphics
They say that a picture is worth a thousand words. This

is certainly the case when you want to share your results

with other people. In this part, you discover how to

create basic and more sophisticated plots to visualize

your data. We move on from bar charts and line charts,



and show you how to present cuts of your data using

facets.

Part VI: The Part of Tens
In this part, we show you how to do ten things in R that

you probably use Microsoft Excel for at the moment (for

example, how to do the equivalent of pivot tables and

lookup tables). We also give you ten tips for working with

packages that are not part of base R.

Icons Used in This Book

As you read this book, you’ll find little pictures in the

margins. These pictures, or icons, mark certain types of

text:

 When you see the Tip icon, you can be sure to find

a way to do something more easily or quickly.

 You don’t have to memorize this book, but the

Remember icon points out some useful things that

you really should remember. Usually this indicates a

design pattern or idiom that you’ll encounter in more

than one chapter.

 When you see the Warning icon, listen up. It points

out something you definitely don’t want to do.

Although it’s really unlikely that using R will cause

something disastrous to happen, we use the Warning

icon to alert you if something is bound to lead to

confusion.



 The Technical Stuff icon indicates technical

information you can merrily skip over. We do our best

to make this information as interesting and relevant

as possible, but if you’re short on time or you just

want the information you absolutely need to know,

you can move on by.

Beyond the Book

R For Dummies includes the following goodies online for

easy download:

Cheat Sheet: You can find the Cheat Sheet for this

book here:

www.dummies.com/cheatsheet/r

Extras: We provide a few extra articles here:

www.dummies.com/extras/r

Example code: We provide the example code for the

book here:

www.dummies.com/extras/r

If we have updates to the content of the book, look here

for it:

www.dummies.com/extras/r

Where to Go from Here

There’s only one way to learn R: Use it! In this book, we

try to make you familiar with the usage of R, but you’ll

have to sit down at your PC and start playing around

with it yourself. Crack the book open so the pages don’t

flip by themselves, and start hitting the keyboard!

http://www.dummies.com/cheatsheet/r
http://www.dummies.com/extras/r
http://www.dummies.com/extras/r
http://www.dummies.com/extras/r


Part I

Getting Started with R

Programming

 Visit www.dummies.com for great Dummies content

online.

http://www.dummies.com/


In this part …

 Introducing R programming concepts.

 Creating your first script.

 Making clear, legible code.

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/


Chapter 1

Introducing R: The Big

Picture

In This Chapter

 Discovering the benefits of R

 Identifying some programming concepts that make R

special

With an estimated worldwide user base of more than 2

million people, the R language has rapidly grown and

extended since its origin as an academic demonstration

language in the 1990s.

Some people would argue — and we think they’re right

— that R is much more than a statistical programming

language. It’s also

A very powerful tool for all kinds of data processing

and manipulation

A community of programmers, users, academics, and

practitioners

A tool that makes all kinds of publication-quality

graphics and data visualizations

A collection of freely distributed add-on packages

A versatile toolbox for extensive automation of your

work

In this chapter, we fill you in on the benefits of R, as well

as its unique features and quirks.



 You can download R at www.r-project.org. This

website also provides more information on R and

links to the online manuals, mailing lists,

conferences, and publications.

Tracing the history of R

Ross Ihaka and Robert Gentleman developed R as a free software

environment for their teaching classes when they were colleagues at the

University of Auckland in New Zealand. Because they were both familiar with

S, a programming language for statistics, it seemed natural to use similar

syntax in their own work. After Ihaka and Gentleman announced their

software on the S-news mailing list, several people became interested and

started to collaborate with them, notably Martin Mächler.

Currently, a group of 21 people has rights to modify the central archive of

source code (http://www.r-project.org/contributors.html). This group is referred

to as the R Core Team. In addition, many other people have contributed new

code and bug fixes to the project.

Here are some milestone dates in the development of R:

Early 1990s: The development of R began.

August 1993: The software was announced on the S-news mailing

list. Since then, a set of active R mailing lists has been created. The

web page at www.r-project.org/mail.html provides descriptions of these

lists and instructions for subscribing. (For more information, turn to

“It provides an engaged community,” later in this chapter.)

June 1995: After some persuasive arguments by Martin Mächler

(among others) to make the code available as “free software,” the

code was made available under the Free Software Foundation’s GNU

General Public License (GPL), Version 2.

Mid-1997: The initial R Development Core Team was formed

(although, at the time, it was simply known as the core group).

February 2000: The first version of R, version 1.0.0, was released.

October 2004: Release of R version 2.0.0.

April 2013: Release of R version 3.0.0.

April 2015: Release of R-3.2.0 (the version used in this book).

http://www.r-project.org/
http://www.r-project.org/contributors.html
http://www.r-project.org/mail.html


Ross Ihaka wrote a comprehensive overview of the development of R. The

web page http://cran.r-project.org/doc/html/interface98-paper/paper.html

provides a fascinating history.

Recognizing the Benefits

of Using R

Of the many attractive benefits of R, a few stand out: It’s

actively maintained, it has good connectivity to various

types of data and other systems, and it’s versatile

enough to solve problems in many domains. Possibly best

of all, it’s available for free, in more than one sense of

the word.

It comes as free, open-source code
R is available under an open-source license, which

means that anyone can download and modify the code.

This freedom is often referred to as “free as in speech.”

R is also available free of charge — a second kind of

freedom, sometimes referred to as “free as in beer.” In

practical terms, this means that you can download and

use R free of charge.

As a result of this freedom, many excellent programmers

have contributed improvements and fixes to the R code.

For this reason, R is very stable and reliable.

 Any freedom also has associated obligations. In

the case of R, these obligations are described in the

conditions of the license under which it is released:

GNU General Public License (GPL), Version 2. The

full text of the license is available at www.r-

project.org/COPYING. It’s important to stress that the

GPL does not pertain to your usage of R. There are

http://cran.r-project.org/doc/html/interface98-paper/paper.html
http://www.r-project.org/COPYING


no obligations for using the software — the

obligations just apply to redistribution. In short, if

you change and redistribute the R source code, you

have to make those changes available for anybody

else to use.

It runs anywhere
The R Core Team has put a lot of effort into making R

available for different types of hardware and software.

This means that R is available for Windows, Unix systems

(such as Linux), and the Mac.

It supports extensions
R itself is a powerful language that performs a wide

variety of functions, such as data manipulation,

statistical modeling, and graphics. One really big

advantage of R, however, is its extensibility. Developers

can easily write their own software and distribute it in

the form of add-on packages. Because of the relative

ease of creating and using these packages, literally

thousands of packages exist. In fact, many new (and not-

so-new) statistical methods are published with an R

package attached.

It provides an engaged community
The R user base keeps growing. Many people who use R

eventually start helping new users and advocating the

use of R in their workplaces and professional circles.

Sometimes they also become active on

The R mailing lists (http://www.r-project.org/mail.html

Question-and-answer (Q&A) websites, such as

StackOverflow, a programming Q&A website

(www.stackoverflow.com/questions/tagged/r)

http://www.r-project.org/mail.html
http://www.stackoverflow.com/questions/tagged/r


CrossValidated, a statistics Q&A website

(http://stats.stackexchange.com/questions/tagged/r)

In addition to these mailing lists and Q&A websites, R

users may

Blog actively (www.r-bloggers.com).

Participate in social networks such as Twitter

(www.twitter.com/search/rstats).

Attend regional and international R conferences.

See Chapter 11 for more information on R communities.

It connects with other languages
As more and more people moved to R for their analyses,

they started trying to incorporate R in their previous

workflows. This led to a whole set of packages for linking

R to file systems, databases, and other applications.

Many of these packages have since been incorporated

into the base installation of R.

For example, the R package foreign (http://cran.r-

project.org/web/packages/foreign/index.html) forms part of

the recommended packages of R and enables you to read

data from the statistical packages SPSS, SAS, Stata, and

others (see Chapter 12).

Several add-on packages exist to connect R to database

systems, such as

RODBC, to read from databases using the Open

Database Connectivity protocol (ODBC) (http://cran.r-

project.org/web/packages/RODBC/index.html)

ROracle, to read Oracle data bases (http://cran.r-

project.org/web/packages/ROracle/index.html).

http://stats.stackexchange.com/questions/tagged/r
http://www.r-bloggers.com/
http://www.twitter.com/search/rstats
http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://cran.r-project.org/web/packages/ROracle/index.html


 Initially, most of R was based on Fortran and C.

Code from these two languages easily could be called

from within R. As the community grew, C++, Java,

Python, and other popular programming languages

got more and more connected with R.

As more data analysts started using R, the developers of

commercial data software no longer could ignore the

new kid on the block. Many of the big commercial

packages have add-ons to connect with R. Notably, both

IBM’s SPSS and SAS Institute’s SAS allow you to move

data and graphics between the two packages, and also

call R functions directly from within these packages.

Other third-party developers also have contributed to

better connectivity between different data analysis tools.

For example, Statconn developed RExcel, an Excel add-

on that allows users to work with R from within Excel

(http://www.statconn.com/products.html).

Looking At Some of the

Unique Features of R

R is more than just a domain-specific programming

language aimed at data analysis. It has some unique

features that make it very powerful, the most important

one arguably being the notion of vectors. These vectors

allow you to perform sometimes complex operations on a

set of values in a single command.

Performing multiple calculations

with vectors

http://www.statconn.com/products.html


R is a vector-based language. You can think of a vector

as a row or column of numbers or text. The list of

numbers {1,2,3,4,5}, for example, could be a vector.

Unlike most other programming languages, R allows you

to apply functions to the whole vector in a single

operation without the need for an explicit loop.

It is time to illustrate vectors with some real R code.

First, assign the values 1:5 to a vector called x:

> x <- 1:5

> x

[1] 1 2 3 4 5

Next, add the value 2 to each element in the vector x:

> x + 2

[1] 3 4 5 6 7

You can also add one vector to another. To add the values

6:10 element-wise to x, you do the following:

> x + 6:10

[1] 7 9 11 13 15

To do this in most other programming language would

require an explicit loop to run through each value of x.

However, R is designed to perform many operations in a

single step. This functionality is one of the features that

make R so useful — and powerful — for data analysis.

We introduce the concept of vectors in Chapter 2 and

expand on vectors and vectorization in much more depth

in Chapter 4.

Processing more than just statistics
R was developed by statisticians to make statistical data

analysis easier. This heritage continues, making R a very

powerful tool for performing virtually any statistical

computation.



As R started to expand away from its origins in statistics,

many people who would describe themselves as

programmers rather than statisticians have become

involved with R. The result is that R is now eminently

suitable for a wide variety of nonstatistical tasks,

including data processing, graphical visualization, and

analysis of all sorts. R is being used in the fields of

finance, natural language processing, genetics, biology,

and market research, to name just a few.

 R is Turing complete, which means that you can

use R alone to program anything you want. (Not

every task is easy to program in R, though.)

In this book, we assume that you want to find out about

R programming, not statistics, although we provide an

introduction to statistics with R in Part IV.

Running code without a compiler
R is an interpreted language, which means that —

contrary to compiled languages like C and Java — you

don’t need a compiler to first create a program from your

code before you can use it. R interprets the code you

provide directly and converts it into lower-level calls to

pre-compiled code/functions.

In practice, it means that you simply write your code and

send it to R, and the code runs, which makes the

development cycle easy. This ease of development comes

at the cost of speed of code execution, however. The

downside of an interpreted language is that the code

usually runs slower than the equivalent compiled code.



 If you have experience in other languages, be

aware that R is not C or Java. Although you can use R

as a procedural language such as C or an object-

oriented language such as Java, R is mostly based on

the functional programming paradigm. As we discuss

later in this book, especially in Part III, this

characteristic requires a bit of a different mindset.

Forget what you know about other languages, and

prepare for something completely different.



Chapter 2

Exploring R

In This Chapter

 Looking at your R editing options

 Starting R

 Writing your first R script

 Finding your way around the R environment

In order to start working in R, you need two things. First,

you need a tool to easily write and edit code (an editor).

You also need an interface, so you can send that code to

R. Which tools you use depend to some extent on your

operating system. The basic R install gives you these

options:

Windows: A basic user interface called RGui.

Mac OS X: A basic user interface called R.app.

Linux: There is no specific interface on Linux, but you

can use any code editor (like Vim or Emacs) to edit

your R code. R itself opens by default in a terminal

window.

At a practical level, this difference between operating

systems and interfaces doesn’t matter very much. R is a

programming language, and you can be sure that R

interprets your code identically across operating

systems.

Still, we want to show you how to use a standard R

interface, so in this chapter we briefly illustrate how to



use R with the Windows RGui. Our advice also works on

the Mac R.app.

Fortunately, there is an alternative, third-party interface

called RStudio that provides a consistent user interface

regardless of operating system. RStudio increasingly is

the standard editing tool for R, so we also illustrate how

to use RStudio.

In this chapter, after opening an R console, you flex your

R muscles and write some scripts. You do some

calculations, create some numeric and text objects, take

a look at the built-in help, and save your work.

Working with a Code

Editor

R is many things: a programming language, a statistical

processing environment, a way to solve problems, and a

collection of helpful tools to make your life easier. The

one thing that R is not is an application, which means

that you have the freedom of selecting your own editing

tools to interact with R.

In this section we discuss the Windows R interface, RGui

(short for R graphical user interface). This interface also

includes a very basic editor for your code. Since this

standard editor is so, well, basic, we also introduce you

to RStudio. RStudio offers a richer editing environment

than RGui and many handy shortcuts for common tasks

in R.

Alternatives to the standard R

editors



Among the many freedoms that R offers you is the freedom to choose your

own code editor and development environment, so you don’t have to use the

standard R editors or RStudio.

These are powerful full-featured editors and development environments:

Eclipse StatET (www.walware.de/goto/statet): Eclipse, another

powerful integrated development environment, has an R add-in

called StatET. If you’ve done software development on large projects,

you may find Eclipse useful. Eclipse requires you to install Java on

your computer.

Emacs Speaks Statistics (http://ess.r-project.org): Emacs, a

powerful text and code editor, is widely used in the Linux world and

also is available for Windows. It has a statistics add-in called Emacs

Speaks Statistics (ESS), which is famous for having keyboard

shortcuts for just about everything you could possibly do and for its

very loyal fan base. If you’re a programmer coming from the Linux

world, this editor may be a good choice for you.

Tinn-R (http://nbcgib.uesc.br/lec/software/editores/tinn-r/en): This

editor, developed specifically for working with R, is available only for

Windows. It has some nice features for setting up collections of R

scripts in projects. Tinn-R is easier to install and use than either

Eclipse or Emacs, but it isn’t as fully featured.

A couple of interfaces are designed as tools for special purposes:

Rcommander (http://www.rcommander.com/): Rcommander provides a

simple GUI for data analysis in R and contains a variety of plugins for

different tasks.

Rattle (http://rattle.togaware.com/): Rattle is a GUI designed for

typical data mining tasks.

Exploring RGui
As part of the process of downloading and installing R,

you get the standard graphical user interface (GUI),

called RGui. RGui gives you some tools to manage your R

environment — most important, a console window. The

console is where you type instructions and generally get

R to do useful things for you.

Seeing the naked R console

http://www.walware.de/goto/statet
http://ess.r-project.org/
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en
http://www.rcommander.com/
http://rattle.togaware.com/


The standard installation process creates useful menu

shortcuts (although this may not be true if you use Linux,

because there is no standard GUI interface for Linux). In

the menu system, look for a folder called R, and then find

an icon called R followed by a version number (for

example, R 3.2.0, as shown in Figure 2-1).

Figure 2-1: Shortcut icons for RGui (R x64) and RStudio.

When you open RGui for the first time, you see the R

Console screen (shown in Figure 2-2), which lists some

basic information such as your version of R and the

licensing conditions.



Figure 2-2: A brand-new session in RGui.

Below all this information is the R prompt, denoted by a

> symbol. The prompt indicates where you type your

commands to R; you see a blinking cursor to the right of

the prompt.

We explore the R console in more depth in “Navigating

the Environment,” later in this chapter.

Issuing a simple command

Use the console to issue a very simple command to R.

Type the following to calculate the sum of some

numbers, directly after the prompt:

> 24 + 7 + 11



R responds immediately to your command, calculates

and displays the total in the console:

> 24 + 7 + 11

[1] 42

The answer is 42. R gives you one other piece of

information: The [1] preceding 42 indicates that the

value 42 is the first element in your answer. It is, in fact,

the only element in your answer! One of the clever

things about R is that it can deal with calculating many

values at the same time, which is called vector

operations. We talk about vectors later in this chapter —

for now, all you need to know is that R can handle more

than one value at a time.

Closing the console

To quit your R session, type the following code in the

console, after the command prompt (>):

> quit()

R asks you a question to make sure that you meant to

quit, as shown in Figure 2-3. Click No, because you have

nothing to save. This action closes your R session (as

well as RGui, if you’ve been using RGui as your code

editor). In fact, saving a workspace image rarely is

useful.

Figure 2-3: R asks you a simple question.

Dressing up with RStudio



RStudio is a code editor and development environment

with some very nice features that make code

development in R easy and fun:

Code highlighting that gives different colors to

keywords and variables, making it easier to read

Automatic bracket and parenthesis matching

Code completion, so you don’t have to type out all

commands in full

Easy access to R Help, with some nice features for

exploring functions and parameters of functions

Easy exploration of variables and values

Because RStudio is available free of charge for Linux,

Windows, and Apple OS X, we think it’s a good option to

use with R. In fact, we like RStudio so much that we use

it to illustrate the examples in this book. Throughout the

book, you find some tips and tricks on how things can be

done in RStudio. If you decide to use a different code

editor, you can still use all the code examples and you’ll

get identical results.

To open RStudio, click the RStudio icon in your menu

system or on your desktop. (You can find installation

instructions in this book’s appendix.)

Once RStudio starts, choose File⇒New⇒R Script to open

a new script file.

Your screen should look like Figure 2-4. You have four

work areas (also called panes):

Source: The top-left corner of the screen contains a

text editor that lets you work with source script files.

Here, you can enter multiple lines of code, save your

script file to disk, and perform other tasks on your



script. This code editor works a bit like every other text

editor you’ve ever seen, but it’s smart. It recognizes

and highlights various elements of your code, for

example (using different colors for different elements),

and it also helps you find matching brackets in your

scripts.

Console: In the bottom-left corner, you find the

console. The console in RStudio can be used in the

same way as the console in RGui (refer to “Seeing the

naked R console,” earlier in this chapter). This is where

you do all the interactive work with R.

Environment and History: The top-right corner is a

handy overview of your environment, where you can

inspect the variables you created in your session, as

well as their values. (We discuss the environment in

more detail later in this chapter.) This is also the area

where you can see a history of the commands you’ve

issued in R.

Files, plots, package, help, and viewer: In the

bottom-right corner, you have access to several tools:

Files: This is where you can browse the folders

and files on your computer.

Plots: This is where R displays your plots (charts

or graphs). We discuss plots in Part V.

Packages: You can view a list of all installed

packages.

 A package is a self-contained set of code

that adds functionality to R, similar to the way

that add-ins add functionality to Microsoft Excel.

Help: This is where you can browse R's built-in

Help system.


