


Contents

Introduction

Overview of This Book

How This Book Is Organized

Who Should Read This Book

Tools You Will Need

What's on the Website

Chapter 1 Mobile Application (In)security

The Evolution of Mobile Applications

Mobile Application Security

Summary

Chapter 2 Analyzing iOS Applications

Understanding the Security Model

Understanding iOS Applications

Jailbreaking Explained

Understanding the Data Protection API

Understanding the iOS Keychain

Understanding Touch ID

Reverse Engineering iOS Binaries

Summary

Chapter 3 Attacking iOS Applications

Introduction to Transport Security

Identifying Insecure Storage

Patching iOS Applications with Hopper

Attacking the iOS Runtime

Understanding Interprocess Communication



Attacking Using Injection

Summary

Chapter 4 Identifying iOS Implementation Insecurities

Disclosing Personally Identifiable Information

Identifying Data Leaks

Memory Corruption in iOS Applications

Summary

Chapter 5 Writing Secure iOS Applications

Protecting Data in Your Application

Avoiding Injection Vulnerabilities

Securing Your Application with Binary Protections

Summary

Chapter 6 Analyzing Android Applications

Creating Your First Android Environment

Understanding Android Applications

Understanding the Security Model

Reverse-Engineering Applications

Summary

Chapter 7 Attacking Android Applications

Exposing Security Model Quirks

Attacking Application Components

Accessing Storage and Logging

Misusing Insecure Communications

Exploiting Other Vectors

Additional Testing Techniques

Summary

Chapter 8 Identifying and Exploiting Android

Implementation Issues



Reviewing Pre-Installed Applications

Exploiting Devices

Infiltrating User Data

Summary

Chapter 9 Writing Secure Android Applications

Principle of Least Exposure

Essential Security Mechanisms

Advanced Security Mechanisms

Slowing Down a Reverse Engineer

Summary

Chapter 10 Analyzing Windows Phone Applications

Understanding the Security Model

Understanding Windows Phone 8.x Applications

Building a Test Environment

Analyzing Application Binaries

Summary

Chapter 11 Attacking Windows Phone Applications

Analyzing for Data Entry Points

Attacking Transport Security

Attacking WebBrowser and WebView Controls

Identifying Interprocess Communication

Vulnerabilities

Attacking XML Parsing

Attacking Databases

Attacking File Handling

Patching .NET Assemblies

Summary

Chapter 12 Identifying Windows Phone Implementation

Issues



Identifying Insecure Application Settings Storage

Identifying Data Leaks

Identifying Insecure Data Storage

Insecure Random Number Generation

Insecure Cryptography and Password Use

Identifying Native Code Vulnerabilities

Summary

Chapter 13 Writing Secure Windows Phone Applications

General Security Design Considerations

Storing and Encrypting Data Securely

Secure Random Number Generation

Securing Data in Memory and Wiping Memory

Avoiding SQLite Injection

Implementing Secure Communications

Avoiding Cross-Site Scripting in WebViews and

WebBrowser Components

Secure XML Parsing

Clearing Web Cache and Web Cookies

Avoiding Native Code Bugs

Using Exploit Mitigation Features

Summary

Chapter 14 Analyzing BlackBerry Applications

Understanding BlackBerry Legacy

Understanding BlackBerry 10

Understanding the BlackBerry 10 Security Model

BlackBerry 10 Jailbreaking

Using Developer Mode

The BlackBerry 10 Device Simulator



Accessing App Data from a Device

Accessing BAR Files

Looking at Applications

Summary

Chapter 15 Attacking BlackBerry Applications

Traversing Trust Boundaries

Summary

Chapter 16 Identifying BlackBerry Application Issues

Limiting Excessive Permissions

Resolving Data Storage Issues

Checking Data Transmission

Handling Personally Identifiable Information and

Privacy

Ensuring Secure Development

Summary

Chapter 17 Writing Secure BlackBerry Applications

Securing BlackBerry OS 7.x and Earlier Legacy Java

Applications

Securing BlackBerry 10 Native Applications

Securing BlackBerry 10 Cascades Applications

Securing BlackBerry 10 HTML5 and JavaScript

(WebWorks) Applications

Securing Android Applications on BlackBerry 10

Summary

Chapter 18 Cross-Platform Mobile Applications

Introduction to Cross-Platform Mobile Applications

Bridging Native Functionality

Exploring PhoneGap and Apache Cordova

Summary



Title page

Copyright

Dedication

About the Authors

About the Technical Editor

Credits

Acknowledgments

EULA

List of Tables

Chapter 2

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Chapter 6

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Chapter 7

Table 7.1



Table 7.2

Chapter 9

Table 9.1

List of Illustrations

Chapter 1

Figure 1.1 The incidence of some common mobile

application vulnerabilities recently tested by the

authors

Figure 1.2 OWASP Top 10 Mobile Risks

Chapter 2

Figure 2.1 The secure boot chain

Figure 2.2 The user sees this privacy prompt when

an application tries to access the address book.

Figure 2.3 Users can access Privacy settings if they

want to grant access to a resource.

Figure 2.4 The data protection key hierarchy

Figure 2.5 The Mach-O file format

Chapter 3

Figure 3.1 Configuring Burp Suite to listen on all

interfaces

Figure 3.2 Configuring your device to use a proxy

Figure 3.3 Capturing cipher suites using Wireshark

Figure 3.4 Installing the Burp certificate on your

device

Figure 3.5 Install profile view

Figure 3.6 Snoop-it filesystem monitoring



Figure 3.7 Jailbreak check in sample application

Figure 3.8 Hopper disassembler

Figure 3.9 Locating strings in Hopper

Figure 3.10 Finding references to strings in Hopper

Figure 3.11 Disassembly of the viewDidLoad

delegate

Figure 3.12 Pseudo-code view in Hopper

Figure 3.13 Pseudo-code view of

clickedButtonAtIndex in Hopper

Figure 3.14 Pseudo-code view of sub_b1fc function

in Hopper

Figure 3.15 Modifying an instruction in Hopper

Figure 3.16 Running the example application after

bypassing the jailbreak detection

Figure 3.17 A breakdown of an Objective-C interface

Figure 3.18 A breakdown of Swift class

Figure 3.19 Bypassing the Password Manager lock

screen

Figure 3.20 Pivoting to internal networks in Kaseya

BYOD

Figure 3.21 View of the Snoop-it application

Figure 3.22 The Snoop-it Objective-C classes view

Figure 3.23 Registering a URL scheme in Xcode

Figure 3.24 An app extension can indirectly

communicate and share resources with the

containing app.

Chapter 4



Figure 4.1 Accessing application snapshots with

iExplorer

Figure 4.2 A snapshot can capture a registration

page.

Chapter 6

Figure 6.1 From this Android SDK Manager

interface you can install SDK platforms and tools.

Figure 6.2 You can customize your emulator

configuration. Here is just one example.

Figure 6.3 The main activity of the drozer agent

displaying the embedded server toggle.

Figure 6.4 The main activity of the clock application

Figure 6.5 A list of running services on a device and

the applications they belong to

Figure 6.6 A simple manifest file showing the

general structure

Figure 6.7 The runtime selection activity available

on Android 4.4

Figure 6.8 The simplified structure of a zip file

containing a single file entry.

Figure 6.9 The required permissions displayed when

looking at the permission details on the Twitter

application.

Figure 6.10 The prompt displayed by SuperSU to

allow an application access to root context.

Figure 6.11 The options available on Cydia Impactor

to make use of code-signing bugs to obtain system

and root.

Figure 6.12 Graph view showing the disassembly of

a DEX file in IDA.



Figure 6.13 Viewing decompiled application code in

JD-GUI

Figure 6.14 Viewing decompiled application code in

JEB

Figure 6.15 Viewing decompiled application code in

Jadx-gui

Chapter 7

Figure 7.1 A high-level overview of various testing

perspectives of an Android application

Figure 7.2 The vulnerable Sieve password manager

application

Figure 7.3 Exported activity that leads to the

disclosure of all accounts within Sieve

Figure 7.4 Device lock screen requiring a password

and then this being removed after the exploit is run

Figure 7.5 An illustration of how a toast could be

used to perform unintended actions on underlying

activities

Figure 7.6 The recent applications being shown on a

device

Figure 7.7 Fragment loaded inside the Settings

activity that allows the PIN to be changed without

providing the existing one

Figure 7.8 Sieve allows the Settings activity to be

opened without logging in

Figure 7.9 Finding SQL injection using drozer’s

WebContentResolver web interface

Figure 7.10 Call initiated from exploiting a

broadcast receiver in com.android.phone



Figure 7.11 Activity started by entering

*#*#4636#*#* in the dialer

Figure 7.12 SuperSU prompt requesting permission

to run droidwall.sh as root

Figure 7.13 An error in Wireshark when you try to

open the generated capture file

Figure 7.14 Loading libencrypt.so into IDA

Figure 7.15 The application backup activity

Figure 7.16 Root Checker displaying that the device

is rooted

Figure 7.17 Root Checker now displaying that the

device is not rooted

Figure 7.18 The main activity of Cydia Substrate

running on an Android device

Figure 7.19 Burp is able to proxy Twitter API traffic

after loading Android SSL TrustKiller

Figure 7.20 The configuration available in Introspy

Chapter 8

Figure 8.1 The prompt shown to the user when a

device with USB debugging is connected to his

computer

Figure 8.2 A screenshot of a Sony Xperia Z2 before

and after having the password lock screen removed

Figure 8.3 Showing the Forgot pattern? button and

the resulting screen by pressing it

Figure 8.4 The Android Device Manager Lock

functionality and the resulting screen of the locked

device



Figure 8.5 A Samsung Galaxy S3 device visiting the

exploit page and receiving the exploit files

Figure 8.6 Setting up the drozer MitM helper

extension for JavaScript injection

Figure 8.7 Burp extension showing that an injection

has taken place

Figure 8.8 Setting up the drozer MitM helper

extension to replace APKs and then invoke them

Figure 8.9 The prompt shown to the user after a

valid response is obtained from the server

Figure 8.10 The configuration of the Custom URI

Handler Injection section of the drozer Burp plug-in

Figure 8.11 The drozer exploit page attempting to

perform social engineering to get the user to click the

reload button

Figure 8.12 A screen recording of capturing the

user's lock screen pattern

Chapter 10

Figure 10.1 Windows Phone 8.x chamber

architecture

Figure 10.2 Stack frame with cookies

Figure 10.3: SEH chain

Figure 10.4 Unzipped non-Store XAP package

Figure 10.5 Splash screen for a Samsung Windows

Phone 8 device

Figure 10.6 Creating a new WP8 project

Figure 10.7 Application Deployment tool

Figure 10.8 Developer Registration tool



Figure 10.9 Sideloading the Interop Unlock helper

app

Figure 10.10 Setting the MaxUnsignedApp registry

key

Figure 10.11 Setting the PortalUrlProd registry key

Figure 10.12 Applying the Full Filesystem access

hack using SamWP8 tools

Figure 10.13 Browsing the filesystem

Figure 10.14 Home Screen with Spavlin’s MBN

Applied

Figure 10.15 Configuration of checkboxes and radio

buttons

Figure 10.16 Browsing an app’s Install directory in

Explorer

Figure 10.17 Opening a .NET assembly from a

device’s filesystem

Chapter 11

Figure 11.1 Viewing XAML files in .NET reflector

Figure 11.2 The proxy settings disabled

Figure 11.3 Proxy settings configured

Figure 11.4 Burp Suite captures web traffic from a

Windows Phone device

Figure 11.5 Exporting Burp Suite CA Certificate

Figure 11.6 Installing the certificate onto the device

Figure 11.7 .NET reflector showing XAML pages in a

Windows Phone 8 application

Figure 11.8 .NET reflector showing an XAML page’s

OnNavigatedTo() implementation



Figure 11.9 The Native Toast Notification Launcher

sending a toast message

Figure 11.10 The XAML screen launched after you

tap the toast notification

Figure 11.11 Names parsed out from the XML

document

Figure 11.12 Out-of-memory exception reported by

Visual Studio due to a “billion laughs” attack

Figure 11.13 Result of external entity resolution of

the “secret file” in a message box

Figure 11.14 SQLite syntax error

Figure 11.15 EncryptAndSaveData() in .NET

reflector

Figure 11.16 Reversed CIL code in .NET reflector

and Reflexil

Figure 11.17 Deleting an instruction in Reflexil

Figure 11.18 Modified CIL code after deleting

instructions

Figure 11.19 New disassembly for

SaveAndEncryptData() after patching the method

Figure 11.20 Editing an existing instruction in

Reflexil

Figure 11.21 Patching a method in C#

Chapter 12

Figure 12.1 Accessing an __ApplicationSettings file

on a device’s filesystem

Figure 12.2 Browsing an app’s INetCookies

directory on a device



Figure 12.3 Original image of the Linux mascot, Tux

the Penguin

Figure 12.4 Recovered image of Tux the Penguin

Chapter 14

Figure 14.1 The Developer Mode menu

Figure 14.2 Elcomsoft cracking the BlackBerry

backup encryption

Figure 14.3 Sachesi helps you access BAR files

Figure 14.4 Splitting the firmware image using

Sachesi

Figure 14.5 Extracting the application using Sachesi

Figure 14.6 The extracted application

Figure 14.7 Rename the original BAR file

Figure 14.8 Result of extracting the BAR file

Figure 14.9 Example MANIFEST.MF file

Figure 14.10 BAR root directory

Figure 14.11 Contents of the native directory

Figure 14.12 The bar-descriptor.xml file

Figure 14.13 The Assets subdirectory

Figure 14.14 Example QML file

Figure 14.15 The MANIFEST.MF file for a

WebWorks application

Figure 14.16 The entry point for a WebWorks

application

Figure 14.17 The BARs native subdirectory

Figure 14.18 The jnext directory

Chapter 15



Figure 15.1 Container separation in BlackBerry

Balance

Figure 15.2 An example file browser application

Chapter 16

Figure 16.1 Disassembly of vulnerable function in

IDA Pro



Introduction

Mobile computing has changed the game. Your personal

data is no longer just stored on your desktop in the

sanctuary of your office or home. You now carry personally

identifiable information, financial data, personal and

corporate email, and much more in your pocket, wherever

you go. The smartphone is quickly becoming ubiquitous,

and with at least 40 applications installed on the average

smartphone the attack surface is significant.

Smartphones have become commonplace not only in the

consumer markets but also now in the enterprise.

Enterprise mobile applications extend the corporate

environment beyond the workplace, introducing new

security concerns and exposing organizations to new types

of threats. Enterprises embracing “Bring Your Own Device”

(BYOD) strategies should be particularly mindful of the

array of applications that the smartphone may have

installed and run within the corporate network.

This book is a practical guide to reviewing the security of

mobile applications on the most widely adopted mobile

operating systems: Apple iOS, Google Android, BlackBerry,

and Windows Mobile. It focuses solely on the client-side,

examining mobile applications in the context of these

devices as opposed to server-side applications, where

security is much more mature and better understood.

Overview of This Book

The focus of this book is highly practical. Although we

provide some background theory for you to understand the



fundamentals of mobile application vulnerabilities, our

primary concern is documenting the techniques you need

to master to attack and exploit them. Where applicable, we

include real-world examples derived from our many years

of experience and from publically documented

vulnerabilities.

In addition to describing mobile application security

vulnerabilities and attack techniques, we describe in detail

the defense-in-depth strategies and countermeasures that

application developers can use to effectively defend their

applications. This information enables penetration testers,

security consultants, and developers alike to provide high-

quality remediation advice to application owners.

In short, this book is intended to act as an all-encompassing

single point of reference for mobile application security,

bringing together the publicly available knowledge on the

attack and defense of mobile applications and combining it

with the blended experience of the authors.



How This Book Is Organized

This book is roughly split into the topics covered for each of

the mobile device platforms, you can think of it as four

books in one! For each of the mobile platforms; we provide

a pragmatic approach to performing a mobile application

security assessment. First detailing the necessary

background information on how to analyze the application

itself, followed by detailed information on how to attack the

application and the categories of vulnerability that affect

the relevant platform, finally providing remedial action that

can be implemented to develop secure mobile applications.

If you are new to mobile application security, it is

recommended that you read the book from start to finish,

acquiring the knowledge and understanding to tackle later

chapters. This can be applied to the relevant chapters for

each mobile platform, or the entirety of the book. If you're

only interested in one specific platform or only a specific

area of a platform, you can jump straight into the

subsection that interests you. Where applicable, we have

included cross-references to other chapters, which can be

used to fill any gaps in your understanding.

Chapter 1, “Mobile Application (In) Security,” describes

the current state of security in mobile applications

today. As an area that has seen explosive and rapid

growth over the past few years, security has been

frequently overlooked or misunderstood in the fast

evolving software lifecycles. As a consequence, mobile

application vulnerabilities are rife and commonplace in

the application ecosystem. This chapter examines the

key attack surfaces for mobile applications, how mobile

security has evolved and what standards and

frameworks exist that can be used to categorize mobile

application vulnerabilities. It then provides an overview

of some mobile security resources that may prove useful



in developing your assessment skills. Finally, it provides

an insight into how mobile application security is, in our

opinion, likely to evolve in the future.

Chapter 2, “Analyzing iOS Applications,” is the first

chapter to focus on iOS application assessment. It starts

off by describing some foundational knowledge on the

security features of the iOS platform and briefly touches

on how they have been circumvented in the past through

jailbreaking. Although jailbreaking weakens the security

controls of the device, it provides the opportunity to gain

interactive access to the operating system, which is

essential to thoroughly assess the security of an iOS

application. This chapter describes how to access the

device, and the file system as well as important concepts

such as the Data Protection API and Keychain. This

chapter also describes a range of further interesting

topics, including App Store encryption, reverse

engineering of iOS binaries, generic exploit, and

mitigation features.

Chapter 3, “Attacking iOS Applications,” describes in

detail the offensive techniques that can be used to

attack iOS applications. It provides a brief introduction

to Objective-C and Swift, the languages in which iOS

applications are developed, and then outlines how the

Swift and Objective-C runtimes can be manipulated to

access and control the internals of an application. We

then go on to describe the various types of client-side

injection attacks that iOS applications can be

susceptible to, including SQL injection, XML injection,

and XML External Entity injection. It also dives into how

data can be transmitted between applications on the

same device through Inter Process Communication and

how insecurities can arise that leave an application at

risk of attack.



Chapter 4, “Identifying iOS Implementation Issues,”

contains information related to how implementation

issues specific to the iOS platform can leave applications

at risk. This chapter describes how iOS applications can

be audited for vulnerabilities arising from improper use

of the device's address book, geolocation frameworks,

and logging system. We also examine iOS specific

peculiarities that can leave residual data on a device and

may expose sensitive content, including caching of

snapshots, web view data, and pasteboards. Finally, the

chapter concludes with an overview of the memory

corruption issues that affect iOS applications and how

and to what extent these can be exploited.

Chapter 5, “Writing Secure iOS Applications,”

transitions from the attacker’s perspective to that of the

defender. In this chapter, we examine the techniques

that developers can use in their applications to protect

against manipulation. This chapter also serves as a

reference point for professional security assessors who

need to offer remedial advice following application

assessments. We describe how to securely implement

encryption, erase data from both memory and the file

system, and embed binary protections such as tamper

proofing, jailbreaking, and runtime validation.

Chapter 6, “Analyzing Android Applications,” is the first

section in a series of chapters on the Google Android

platform. It starts by providing the necessary

background on the security features of the platform,

including code signing, sandboxing and a detailed

description of the permission model. With the basics

covered, we go on to examine how Android devices can

be rooted to provide interactive super user access to the

device. We also examine how Android applications are

packaged, loaded onto devices, and some of the tools

that can be used to build a test environment. The



chapter concludes by describing the different ways

packages are compiled and how security assessments

can be conducted by decompiling and examining the

application packages.

Chapter 7, “Attacking Android Applications,” provides a

detailed description of the common areas of

vulnerability in Android applications, along with the

techniques to attack and exploit them. This chapter

delves into many Android-specific attack categories,

including exploitation of insecure services, content

providers, broadcasts, intents, and activities. The

chapter also examines how the Android runtime can be

manipulated, exploring the various frameworks that can

be used to implement function hooking in the Java

Virtual Machine with sample use cases and practical

examples. We also address perhaps two of the most

important areas in mobile security, file system storage,

and network communications. We explore how file and

folder permissions can be exploited to leak sensitive

information, how poor cryptographic practices can

undermine secure storage, and how poorly implemented

network access can be exploited from public or insecure

networks. Finally, this chapter concludes with an insight

into JavaScript interfaces, an area that has come under

close scrutiny in 2014, and one that has exposed a

significant number of Android devices to remote

compromise.

Chapter 8, “Identifying Android Implementation Issues,”

teaches you how to become an Android hacker. It

provides practical advice on how to identify

vulnerabilities in OEM device applications, how to find

and exploit powerful packages, and how to leverage

privilege escalations to compromise other applications

or, in some circumstances, the device itself. We also

examine how to exploit applications from the network,



with insecurities in URI handlers, JavaScript bridges,

handling of SSL certificates, and custom update

mechanisms. This chapter also explores how to use

Drozer, the Android attack tool, to gain access to a

device, including chaining of remote and local exploits

and the post exploitation activities that can be

performed.

Chapter 9, “Writing Secure Android Applications,”

concludes the series of Android chapters and, similarly

to the iOS counterpart, provides a basis for which

defensive advice can be offered. We provide security

professionals and developers detailed instructions on

how to correctly implement encryption, perform root

detection, and protect intellectual property by

obfuscating code. At the end of the chapter, an

application checklist is provided that can be used as a

reference point when auditing an Android application.

Chapter 10, “Analyzing Windows Phone Applications,”

details the essential “need to know” knowledge for the

Windows Phone (WP8) platform and application

ecosystem. In this section, we examine the fundamental

security protections that are employed by the platform,

including exploit mitigation features and application

capabilities. We then explain the inner workings of WP8

applications, how to develop, build, compile, and run

them along with the essential toolkit needed to set up a

test environment. We conclude with an analysis of the

Windows Data Protection API (DPAPI) and how

misconfigurations in the protection flags can leave

application content at risk.

Chapter 11, “Attacking Windows Phone Applications,”

provides an in-depth analysis of the common insecurities

that occur with WP8 applications. It covers perhaps the

most important and relevant topics that you will need to



learn in order to hack a Windows Phone application.

This chapter examines and explains transport security in

WP8 applications, how to intercept network

communications, and how to bypass protection

mechanisms such as certificate pinning. We also delve

into reverse engineering of WP8 applications, including

both native and managed code components and how

information gained from this allows you to manipulate

application behavior by patching application code. An

important skill for professional security assessors

reviewing mobile applications is the ability to identify

the key data entry points in an application. This chapter

explains how to analyze WP8 applications to identify

data entry points, and how when tainted data enters an

application it can lead to serious security vulnerabilities.

Having identified the various entry points that can exist,

we explore and examine the various injection attacks

that can be exploited, including SQL injection, injection

into web browser controls, XML-based injection, and

injection into file handling routines.

Chapter 12, “Identifying Windows Phone

Implementation Issues,” deals with the common issues

that arise through insecurely implemented WP8

applications. In particular, we focus on insecurities that

arise through handling of log data, lack of protections on

the clipboard, caching in keyboard and web browser

controls, and geo-location leakages. This chapter

provides security professionals and developers with the

required knowledge to audit WP8 applications for not

only the misuse of the platform APIs but also how to

identify memory corruption issues. We examine the

various types of memory corruption that can occur in

WP8 applications, including the implications of

traditional corruption bugs, read access violations,



information leaks, and issues that arise in managed c#

code.

Chapter 13, “Writing Secure Windows Phone

Applications,” like its counterparts on iOS and Android,

details the necessary information about to develop

secure WP8 applications. It covers the fundamental

practices that application developers should be

including in WP8 applications. If you're only looking for

remediation and hardening advice, feel free to jump

straight into this chapter. This chapter also examines

how to securely implement encryption, securely erase

data from both memory and the file system, and how to

implement binary protections. We provide in-depth

analysis on anti-tamper implementations, available

compiler protections, and WP8 application obfuscation,

none of which are widely documented in the public

domain.

Chapter 14, “Analyzing BlackBerry Applications,” is the

backbone of the BlackBerry section, and provides the

foundational knowledge needed to understand the

different types of BlackBerry applications that exist and

how they are developed and distributed. We also

examine the BlackBerry platform itself, providing an in-

depth evaluation of the core platform security features,

including sandboxing, data-at-rest encryption, and

process-level sandboxing. This chapter also details how

to build a test environment using the simulator and

developer mode, with some analysis of the Dingleberry

jailbreak exploit. We explain how to access the device,

where content can be found and the various files and file

types that you will encounter when exploring your

BlackBerry. We then conclude by discussing the Security

Builder API, how and when transport insecurities occur,

how certificate pinning works, and some of the

strategies that can be used to bypass it.



Chapter 15, “Attacking BlackBerry Applications,”

provides some much needed insight into the world of

BlackBerry application security. In this chapter we

discuss how the application runtime functions, including

important subjects such as the System API and the

various programming frameworks that BlackBerry

applications take advantage of. We then examine the

Inter-Process Communication (IPC) mechanisms that

exist, how BlackBerry 10 applications differ from

previous implementations, and detail how insecurely

implemented IPC can be exploited by other applications

on the device.

Chapter 16, “Identifying BlackBerry Application

Implementation Issues,” discuses the common issues

that arise in BlackBerry applications due to misuse of

BlackBerry APIs. This chapter may be of particular

interest to developers, and investigates the various

types of information leakages that an application can be

susceptible to with a particular focus on Personally

Identifiable Information. Topics that are also explored

are system logging and a brief review of memory

corruption vulnerabilities that affect BB10 applications.

Chapter 17, “Writing Secure BlackBerry Applications,”

is of particular relevance to application developers. This

chapter pulls together some of the techniques that can

be used to improve the security of BlackBerry

applications. We discuss strategies for performing

secure deletion of data, both in memory and from the

filesystem, and how to securely implement encryption.

Where applicable, we provide practical examples using

both built-in APIs and custom developed functions.

Chapter 18, “Cross Platform Applications,” examines a

growing trend in mobile development and cross-platform

mobile applications. We explore the various



implementations that currently exist, and provide a

breakdown of the functionality that they offer. We then

detail the various vulnerability categories that affect

cross-platform applications, with practical examples on

how to exploit these to perform malicious actions in

Apache Cordova.

Who Should Read This Book

This book's primary audience is anyone who has a personal

or professional interest in attacking mobile applications. It

also caters to anyone responsible for the development of

mobile applications. This book not only provides a detailed

analysis of how to attack and secure iOS, Android,

BlackBerry, and Windows Phone applications, but also

serves as a reference point for generic mobile application

security regardless of operating platform.

In the course of illustrating many categories of security

flaws, we provide code extracts showing how applications

can be vulnerable. These examples are simple enough that

you can understand them without any prior knowledge of

the language in question. But they are most useful if you

have some basic experience with reading or writing code.

Tools You Will Need

This book is strongly geared toward hands-on practical

techniques that you can use to attack mobile applications.

After reading this book you will understand the different

types of vulnerabilities that affect mobile applications and

have the practical knowledge to attack and exploit them.

The emphasis of the book is on practical and human-driven

exploitation as opposed to running automated tools on the

target application.



That said, you will find several tools useful, and sometimes

indispensable, when performing the tasks and techniques

we describe. All of these are available on the Internet. We

recommend that you download and experiment with each

tool as you read about it.

While in most cases it is possible to follow the practical

examples in a simulated or emulated environment, there is

no substitute for running an application on a physical

device. Therefore, we would recommend that, where

possible, the examples be followed on a real device.

What's on the Website

The companion website for this book at

www.mobileapphacker.com, which you can also link to from

www.wiley.com/go/mobileapplicationhackers, contains several

resources that you will find useful in the course of

mastering the techniques we describe and using them to

attack actual applications. In particular, the website

contains access to the following:

Source code for some of the scripts we present in the

book

A list of current links to all the tools and other resources

discussed in the book

A handy checklist of the tasks involved in attacking a

typical application

Answers to the questions posed at the end of each

chapter

http://www.mobileapphacker.com/
http://www.wiley.com/go/mobileapplicationhackers


CHAPTER 1

Mobile Application (In)security

There is little doubt that mobile computing has changed the

world; in particular, the way you work, interact, and

socialize will never be the same again. It has brought

infinite possibilities to your fingertips, available all the

time. The ability to do your online banking, check your e-

mail, play the stock market and much, much more are just

a swipe away. Indeed, application development is now so

popular that Apple’s trademark, “There’s an app for that” is

bordering on reality.

This chapter takes a look how mobile applications have

evolved and the benefits that they provide. It presents some

metrics about the fundamental vulnerabilities that affect

mobile applications, drawn directly from our experience,

demonstrating that the vast majority of mobile applications

are far from secure. We then examine a means to

categorize these vulnerabilities based on the Open Web

Application Security Project (OWASP) Top 10 mobile

security risks. We also provide a high-level overview of

some of the open source mobile security tools endorsed by

OWASP, how you can use them to identify some of the

issues detailed in the project, and where to find them.

Finally, we describe the latest trends in mobile application

security and how we expect this area to develop in the

future.

The Evolution of Mobile Applications

The first mobile phone applications were developed by

handset manufacturers; documentation was sparse, and

little information existed in the public domain on the


