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About the Book

What can maths tell us about art and design?

Professor John D. Barrow has all the answers. In 100

Essential Things You Didn’t Know You Didn’t Know About

Maths and the Arts, he shows us that mathematics and the

arts are not so far removed from each other. He takes us on

a 100-step tour, guiding us through art forms as various as

sculpture, literature, architecture and dance, and reveals

what maths can tell us about the mysteries of the worlds of

art and design.

We find out why diamonds sparkle, how many words

Shakespeare knew and why the shower is the best place to

sing. We discover why an egg is egg-shaped, why Charles

Dickens crusaded against maths and how a soprano can

shatter a wine glass without touching it ...

Enlivening the everyday with a new way of looking at the

world, this book will enrich your understanding of the maths

and art that surround us in our day-to-day lives.
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Preface

Maths is all around us, underpinning situations that are not

commonly thought of as ‘mathematical’ at all. This is a

collection of mathematical bits and pieces – unusual

applications of mathematics to our usual surroundings. The

situations are taken from the world of ‘the arts’, a broadly

defined discipline encompassing the large subcontinents of

design and the humanities from which I have chosen a

hundred examples across a wide landscape of possibilities.

The selection can be read in any order: some chapters

interconnect with others, but most stand alone and offer a

new way of thinking about an aspect of the arts, including

sculpture, the design of coins and stamps, pop music,

auction strategies, forgery, doodling, diamond cutting,

abstract art, printing, archaeology, the layout of medieval

manuscripts and textual criticism. This is not a traditional

‘maths and art’ book, covering the same old ground of

symmetries and perspective, but an invitation to rethink

how you see the world around you.

The diverse spectrum of links between mathematics and

all the arts is not unexpected. Mathematics is the catalogue

of all possible patterns – this explains its utility and its

ubiquity. I hope that this collection of examples looking at

patterns in space and time will broaden your appreciation of

how simple mathematics can shed new light on different

aspects of human creativity.

I would like to thank many people who encouraged me to

write this book, or helped to gather illustrative material and

bring it into its final form. In particular, I would like to thank

Katherine Ailes, Will Sulkin and his successor Stuart Williams



at Bodley Head. Thanks for their contributions are also due

to Richard Bright, Owen Byrne, Pino Donghi, Ross Duffin,

Ludovico Einaudi, Marianne Freiberger, Geoffrey Grimmett,

Tony Hooley, Scott Kim, Nick Mee, Yutaka Nishiyama,

Richard Taylor, Rachel Thomas, and Roger Walker. I would

also like to thank Elizabeth and our growing family

generations for noticing occasionally that this book was in

progress. I just hope they notice when it comes out.

John D Barrow

Cambridge
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The Art of Mathematics

WHY ARE MATHS and art so often linked? We don’t find books

and exhibitions about art and rheology or art and

entomology, but art and maths are frequent bedfellows.

There is a simple reason that we can trace back to the very

definition of mathematics.

Whereas historians, engineers and geographers will have

little difficulty telling what their subjects are,

mathematicians may not be so sure. There have long been

two different views of what mathematics is. Some believe it

is discovered, while others maintain that it is invented. The

first opinion sees mathematics as a set of eternal truths that

already ‘exist’ in some real sense and are found by

mathematicians. This view is sometimes called

mathematical Platonism. The second contrasting view sees

mathematics as an infinitely large game with rules, like

chess, which we invent and whose consequences we then

pursue. Often, we set the rules after seeing patterns in

Nature or in order to solve some practical problem. In any

case, it is claimed, mathematics is just the outworking of

these sets of rules: it has no meaning, only possible

applications. It is a human invention.

These alternative philosophies of discovery or invention

are not unique to the nature of mathematics. They are a

pair of alternatives that go back to the dawn of philosophical



thinking in early Greece. We can imagine exactly the same

dichotomy applied to music, or art, or the laws of physics.

The odd thing about mathematics is that almost all

mathematicians act as though they are Platonists, exploring

and discovering things in a mentally accessible world of

mathematical truths. However, very few of them would

defend this view of mathematics if pressed for an opinion

about its ultimate nature.

The situation is muddied somewhat by those, like me, who

question the sharpness of the distinction between the two

views. After all, if some mathematics is discovered, why

can’t you use it to invent some more mathematics? Why

does everything we call ‘mathematics’ have to be either

invented or discovered?

There is another view of mathematics which is weaker in

some sense, in that it includes other activities like knitting

or music within its definition, but I think it is more helpful for

non-mathematicians. It also clarifies why we find

mathematics to be so useful in understanding the physical

world. On this third view mathematics is the catalogue of all

possible patterns. This catalogue is infinite. Some of the

patterns exist in space and decorate our floors and walls;

others are sequences in time, symmetries, or patterns of

logic or of cause and effect. Some are appealing and

interesting to us but others are not. The former we study

further, the latter we don’t.

The utility of mathematics, that surprises many people, is

on this view not a mystery. Patterns must exist in the

universe or no form of conscious life could exist.

Mathematics is just the study of those patterns. This is why

it seems to be so ubiquitous in our study of the natural

world. Yet there remains a mystery: why have such a small

number of simple patterns revealed so much about the

structure of the universe and all that it contains? It might

also be noted that mathematics is remarkably effective in

the simpler physical sciences but surprisingly ineffective



when it comes to understanding many of the complex

sciences of human behaviour.

This view of mathematics as the collection of all possible

patterns also shows why art and mathematics so often

come together. There can always be an identification of

patterns in artworks. In sculpture there will be patterns in

space; in drama there will also be patterns in time. All these

patterns can be described by the language of mathematics.

However, despite this possibility, there is no guarantee that

the mathematical description will be interesting or fruitful,

in the sense of leading to new patterns or deeper

understanding. We can label human emotions by numbers

or letters, and we can list them, but that does not mean that

they will obey the patterns followed by numbers or by

English grammar. Other, subtle patterns, like those found in

music, clearly fall within this structural view of mathematics.

This doesn’t mean that the purpose or meaning of music is

mathematical, just that its symmetries and patterns

comprise a little part of the great catalogue of possibilities

that mathematics seeks to explore.
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How Many Guards Does an Art Gallery

Need?

IMAGINE YOU ARE head of security at a large art gallery. You

have many valuable paintings covering the gallery walls.

They are hung quite low so that they can be viewed at eye

level and therefore they are also vulnerable to theft or

vandalism. The gallery is a collection of rooms of different

shapes and sizes. How are you going to make sure that each

one of the pictures is being watched by your attendants all

of the time? The solution is simple if you have unlimited

money: just have one guard standing next to every picture.

But art galleries are rarely awash with money and wealthy

donors don’t tend to earmark their gifts for the provision of

guards and their chairs. So, in practice, you have a problem,

a mathematical problem: what is the smallest number of

guards that you need to hire and how should you position

them so that all the walls of the gallery are visible at eye

level?

We need to know the minimum number of guards (or

surveillance cameras) required to watch all of the walls. We

will assume that the walls are straight and that a guard at a

corner where two walls meet will be able to see everything

on both those walls. We will also assume that a guard’s view

is never obstructed and can swivel around 360 degrees. A

triangular gallery can obviously be watched by just one

guard placed anywhere inside it. In fact, if the gallery floor is



shaped like any polygon with straight walls whose corners

all point outwards (a ‘convex’ polygon, like any triangle, for

example) then one guard will always suffice.

Things get more interesting when the corners don’t all

point outwards. Here is a gallery like that with eight walls

which can still be watched by just one guard located at the

corner O (although not if the guard is moved to the top or

bottom left-hand corner):

So, this is still a rather economical gallery to run. Here is

another ‘kinkier’ twelve-walled gallery that is not so

efficient. It needs four guards to keep an eye on all the

walls:

To solve the problem in general we just look at how we

can divide the gallery up into triangles that don’t overlap.1

This can always be done. Since a triangle is one of those

convex polygons (the three-sided one) that only need a

single guard, we know that if the gallery can be completely

covered by, say, T non-overlapping triangles then it can

always be watched by T guards. It might, of course, be

watched by fewer. For instance, we can always divide a



square into two triangles by joining opposite diagonals but

we don’t need two guards to watch all the walls – one will

do. In general, the maximum number of guards that might

be necessary to guard a gallery with W walls is the whole

number part2 of W/3. For our twelve-sided comb-shaped

gallery this maximum is 12/3 = 4, whereas for an eight-

sided gallery it is two.

Unfortunately, determining whether you need to use the

maximum is not so easy and is a so-called ‘hard’ computer

problem for which the computing time can double each time

you add another wall to the problem.3 In practice, this will

only be a worry if W is a very large number.

Most of the galleries you visit today will not have kinky,

jagged wall-plans like these examples. They will have walls

which are all at right angles like this:

If there are many corners in a right-angled gallery like this,

then it can be divided up into rectangles each of which

requires no more than one guard to watch its walls.4 Now,

the number of guards located at the corners that might be

necessary and is always sufficient to guard the gallery is the

whole number part of ¼ × Number of Corners: for the

fourteen-cornered gallery shown here this is three. Clearly,

it is much more economical on wages (or cameras) to have

a gallery design like this, especially when it grows large. If

you have a hundred and fifty walls then the non-right-

angled design might need fifty guards; the right-angled set-

up will need at most thirty-seven.



Another traditional type of right-angled gallery will be

divided into rooms. Here is a ten-roomed example:

In these cases you can always divide the gallery up into a

collection of non-overlapping rectangles. This is expedient

because if you place a guard at the opening connecting two

different rooms then both are watched at the same time. Yet

no guard can watch three or more rooms at once. So now

the number of guards that is sufficient, and occasionally

necessary, to keep a complete watch on the gallery is the

next whole number bigger than or equal to ½ × Number of

Rooms, or five for the ten-roomed gallery drawn here. This is

a more economical use of resources. All manner of more

realistic scenarios have been studied by mathematicians,

some in which the guards move, others in which they have

limited fields of view or where there are mirrors to help

them see around corners. There are also studies of the

optimum routes for art thieves to take through a gallery

watched by cameras or moving guards so as to avoid all of

them! Next time you plan to steal the Mona Lisa you will

have a head start.
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Aspects of Aspect Ratios

AN ALARMINGLY LARGE fraction of the population spends a good

deal of the waking day watching a TV or a computer screen.

In fifty years’ time there will no doubt be articles in learned

journals that reveal effects on our eyesight over the period

of the computer revolution that ‘health and safety’ was blind

to.

The screens used in the computer industry have evolved

towards particular shapes and sizes over the past twenty

years. The ‘size’, as we had from the start with TV screens,

is labelled by the length of the diagonal between opposite

top and bottom corners of the monitor screen. The shape is

defined by an ‘aspect ratio’ which gives the ratio of the

width to the height of the screen. There have been three or

four common aspect ratios used in the computer industry.

Before 2003, most computer monitors had an aspect ratio of

4 to 3. So, if they were 4 units wide and 3 units high, then

Pythagoras’ theorem tells us that the length of the diagonal

squared would be 4-squared (16) plus 3-squared (9), which

equals 25, or 5-squared, and so the diagonal would be of

length 5 units. Screens of this almost-square shape became

the old TV-industry standard for desktop computers.

Occasionally, you would see a monitor with a 5 to 4 aspect

but 4 to 3 was the most common until 2003.

From 2003 until 2006 the industry moved towards an

office standard of 16 to 10, that was less square and more



‘landscape’ in dimension. This ratio is almost equal to the

famous ‘golden ratio’ of 1.618, which is presumably no

accident. It has often been claimed by architects and artists

to be aesthetically pleasing to the eye and has been widely

incorporated into art and design for hundreds of years.

Mathematicians have been aware of its special status since

the days of Euclid. We shall meet it again in later chapters

but for now we just need to know that two quantities, A and

B, are said to be in the golden ratio, R, if:

A/B = (A + B)/A = R.

Multiplying across, we see that R = 1 + B/A = 1 + 1/R, so:

R2 – R – 1 = 0.

The solution of this quadratic equation is the irrational

number R = ½ (1 + √5) = 1.618.

The golden ratio aspect ratio, R, was used for the first-

generation laptops, and then for stand-alone monitors that

could be attached to any desktop. However, by 2010, things

had undergone another evolutionary change, or perhaps it

was just an arbitrary change, to a ratio of 16 to 9 aspect.

These numbers – the squares of 4 and 3 – have a nice

Pythagorean air to them and a screen that is 16 units wide

and 9 high would have a diagonal whose length is the

square root of 256 + 81 = 337, which is approximately

18.36 – not quite so round a number. Between 2008 and

2010 computer screens were almost all in the ratio 16 to 10

or 16 to 9 but by 2010 most had moved away from the

golden ratio to the 16 to 9 standard, which is the best

compromise for watching movies on computer screens.

However, the user seems to be a loser again, because if you

take two screens with the same diagonal size, then the old 4

to 3 aspect ratio results in a larger screen area than the

newer 16 to 9 ratio: a 4 to 3 aspect 28-inch screen has a



viewing area of 250 sq. inches, whereas its 16 to 9 aspect

28-inch counterpart has only 226 sq. inches of display.1 Of

course, the manufacturers and retailers who are seeking

constantly to get you to upgrade your screen size will not

tell you these things. An upgrade could well be a

downgrade.



4

Vickrey Auctions

AUCTIONS OF WORKS of art or houses are open in the sense that

participants hear the bids being made by their fellow

bidders or their agents. The sale is made to the highest

bidder, at the price of the top bid. This is a ‘pay what you

bid’ auction.

The sellers of small items like stamps, coins or documents

have made extensive use of another type of auction which

can be operated by post or Internet as a ‘mail sale’ and is

cheaper to operate because it doesn’t need to be run by a

licensed auctioneer. Participants send in sealed bids for a

sale item by a specified date. The highest bidder wins the

auction but pays the price bid by the second-highest bidder.

This type of sealed-bid auction is called a Vickrey auction

after the American economist, William Vickrey, who in 1961

studied its dynamics, along with those of other types of

auction.1 Vickrey certainly didn’t invent this style of auction.

It was first used to sell postage stamps to collectors and

dealers in 1893 when auctions began to attract interest

from bidders on both sides of the Atlantic and it was not

practical for them to travel to the auction in person.

Nowadays it is how Internet auctions like eBay work

(although eBay requires the next bid to beat the previous

highest by a minimum amount).

The usual ‘pay what you bid’ style of sealed-bid auction

that is so popular with house sales has problems. If



everyone putting in a sealed bid thinks that only he or she

knows the real value of the item being sold, then each bid is

likely to be less than the item’s true value and the seller will

be sold short. A buyer bidding for something like a house,

whose value is less well defined, feels driven to overbid and

can end up paying far more than should have been

necessary to win in an open sale. Some buyers also feel

nervous about putting in high bids to a sealed-bid

auctioneer because they are giving information to the seller.

If you see one item in a mixed auction lot that is very

valuable, then by bidding high for it you signal something to

the seller who may suddenly realise what you have seen

and withdraw the item from sale.

Overall, the ‘pay what you bid’ sealed-bid style of auction

seems to discourage people from buying and selling items

for what they are worth. The Vickrey auction does much

better. The optimal strategy to adopt in a Vickrey auction is

to bid what you think the value of the item is. To see why,

imagine that your bid is B and you judge the item’s value to

be V, while the largest bid from all the other bidders is L. If L

is bigger than V then you should make your bid less than or

equal to V so that you don’t end up buying it for more than

it is worth. However, if L is smaller than V then you should

bid an amount equal to V. If you bid less you won’t get the

item more cheaply (it will still cost you L, the price of the

second-highest bid) and you may lose it to another bidder.

Your optimal strategy is therefore to bid an amount equal to

the item’s value, V.
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How to Sing in Tune

THE PERFECT PITCH and note-hitting of pop singers often sounds

suspicious, particularly when they are amateur competitors

in talent shows. Listen to old music shows and there is

nowhere near the same degree of perfection. Our suspicions

are justified. Some mathematical tricks are being played

which clean up and enhance a singer’s performance so that

out-of-tune voices sound precise and pitch perfect.

In 1996, Andy Hildebrand was using his signal processing

skills to prospect for oil. He would study the rebounds of

seismic signals sent below the earth to map out the

underground distribution of rock and (he hoped) oil. Next, he

decided to use his acoustic expertise to study correlations

between different musical sounds and devise an automatic

intervention system to remove or correct sounds that were

off-key or in some other way discordant. Apparently it all

started when he decided to retire from his oil prospecting

and wondered what to do next. A dinner guest challenged

him to find a way to make her sing in tune. He did.

Hildebrand’s Auto-Tune program was first used by only a

few studios but gradually became an industry standard that

can in effect be attached to a singer’s microphone for

instantaneous recognition and correction of wrong notes

and poor pitch. It automatically retunes the output to sound

perfect regardless of the quality of the input. Hildebrand

was very surprised by these developments. He expected his



program to be used to fix occasional discordant notes, not

to process entire productions. Singers have come to expect

that their recordings will be processed through the Auto-

Tune box. Of course, this has a homogenising effect on

recordings, particularly those of the same song by different

artists. At first this software was expensive, but cheap

versions soon became available for home use or karaoke

performers, and its influence has now become all-pervasive.

The first that most listeners not involved with the music

business heard about all this was when a fuss blew up

because contestants were having their voices improved by

Auto-Tune when singing on the popular X Factor TV talent

show. Following an outcry, the use of this device was

banned on the show and the singers now found it far more

challenging to sing live.

The Auto-Tune program doesn’t just correct frequencies of

the notes sung by the singer to the nearest semitone (keys

on a piano keyboard). The frequency of a sound wave

equals its speed divided by its wavelength so a frequency

change would alter its speed and duration. This would make

the music sound as if it was being continually slowed down

or speeded up. Hildebrand’s trick was to digitise the music

into discontinuous sequences of sound signals and change

the wave durations so as to keep it sounding right after the

frequencies are corrected and the cleaned musical signal is

reconstructed.

The process is complicated and relies on the

mathematical method know as Fourier analysis. This shows

how to split up any signal into the sum of different

sinusoidal waves. It is as if these simple waves are the basic

building blocks out of which any complicated signal can be

constructed. The split of the complex musical signal into a

sum of building-block waves with different frequencies and

amplitudes enables the pitch correction and timing

compensation to be effected very quickly, so that the

listener doesn’t even know it’s being done. That is, of



course, unless he or she suspects that the singer’s output is

a little too perfect.
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The Grand Jeté

BALLERINAS CAN SEEM to defy gravity and ‘hang’ in the air when

they jump. They can’t actually defy gravity, of course, so is

all this talk of ‘hanging in the air’ mere hyperbole, created

by overenthusiastic fans and commentators?

The sceptic points out that when a projectile, in this case

the human body, is launched from the ground (and air

resistance can be neglected) then its centre of mass1 will

follow a parabolic trajectory: nothing the projectile can do

will change that. However, there is some fine print to the

laws of mechanics: it is only the centre of mass of the

projectile that must follow a parabolic trajectory. If you

move your arms around, or tuck your knees into your chest,

you can change the location of parts of your body relative to

your centre of mass. Throw an asymmetrical object, like a

tennis racket, through the air and you will see that one end

of the racket may follow a rather complicated backward

looping path through the air. The centre of mass of the

racket, nevertheless, still follows a parabolic trajectory.

Now we can begin to see what the expert ballerina can do.

Her centre of mass follows a parabolic trajectory but her

head doesn’t need to. She can change her body shape so

that the trajectory followed by her head stays at one height

for a noticeable period. When we see her jumping we only

notice what her head is doing and don’t watch the centre of

mass. The ballerina’s head really does follow a horizontal


