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CHAPTER 1

First-Order Differential

Equations



Section 1.1
This first section is simply to introduce you to differential

equations: what they look like, some ideas as to how they

arise in applications, and some important definitions. We

see that the complete problem might be not just the

differential equation, but also one or more "initial

conditions." If such conditions are prescribed, the problem is

called an initial value problem, or IVP. For instance, (6)

[that is, equation (6) in the text] is an IVP because in

addition to the DE (differential equation) there are two initial

conditions, given by (6b), so that the solution of the IVP

must satisfy not only the DE (6a), but also those two initial

conditions.

Chapter 1 is about first-order equations; that is, equations

in which the highest derivative is of first order. In that case,

hence all through Chapter 1, there will be only one initial

condition. In later chapters we will find that the

"appropriate" number of initial conditions for a DE is the

same as the order of the equation. For instance, (6a) is of

second order and, sure enough, there are two initial

conditions in (6b).

The distinction between linear and nonlinear differential

equations will be of great importance, so it is necessary to

be able to tell if a given equation is linear or nonlinear.

Later, we will find that the key is whether or not a certain

linearity property is satisfied, but for now it will suffice not

to know about that property, but simply to say that an nth-

order equation is linear if it is in, or can be put into, the form

(14). What is the form of (14)? First, put all occurrences of

the unknown, that is, the dependent variable such as y in

(14), on the LHS (left-hand side of the equation); anything

else goes on the right. If the LHS is a linear combination of



y, y',…, y(n), then the DE is linear. Actually, the "constants"

that multiply y, y',…, y(n) in (14) are permitted to be

functions of x; the point is that they don't depend on y or its

derivatives.

EXAMPLES

Example 1. (Definitions) State the order of the

whether it is linear or nonlinear, homogeneous or

nonhomogeneous, and determine whether or not the given

functions are solutions, that is, whether or not they "satisfy"

the DE:

SOLUTION. The equation is of second order because the

highest derivative present is of second order; it is linear

because it is of the form (14), with a0(x) = x2, a1(x) = x,

a2(x) = −9, and f(x) = 32x5; and it is nonhomogeneous

because the RHS, 32x5 is not zero. The RHS does happen to

be 0 at x = 0, but the equation is nonhomogeneous because

the RHS is not identically zero on the interval under

consideration. [Actually, we did not specify an x interval.

The default interval is (-∞, ∞). Getting back to this example,

surely x2 is not identically zero on (-∞, ∞).]

Now test y1(x) = ex to see if it is a solution of the DE.

Simply substitute it into the equation and see if the

equation is there by reduced to an identity, such as 6x + 3

sin x = 6x + 3 sin x. Inserting y1(x), gives x2(4e2x) +

x(2e2x) -9e2 = 32x5, or (4x2 + 2x -9) e2x = 32x5. Surely,

the latter is not identically true. How do we know that?



Hopefully, we can just look at it and see that there is "no

way" a quadratic in x times an exponential function of x can

equal a multiple of a power of x. At the least we can use

"brute force" and check the values of the LHS and RHS at

one or more x's. For instance, a convenient point to use is x

= 0, and there the LHS is -9 whereas the RHS is 0. Thus,

y1(x) is not a solution of the DE.

Now test y2(x) = 4x3 + 2x5 
. This time, putting the latter

into the DE gives, after some canceling of terms, 32x5 =

32x5 which is an identity. Thus, y2(x) is indeed a solution of

the DE.

Now suppose we append to the DE these initial conditions

at x = 0 : y(0) = 0, y'(0) = 0. y2(x) does satisfy these

conditions, so it is a solution of the IVP consisting of the DE

and the two given initial conditions. If the initial conditions

were y(0) = 0 and y'(0) = 3, say, instead, then y2(x) would

not be a solution of the IVP, because although it satisfies the

first initial condition, it does not satisfy the second.

Let's also bring Maple usage along, as we proceed. Here,

let's use it to see if y1 and y2 are solutions of ("satisfy") the

DE.

MAPLE:

y1 := exp(2·x) :

#(The # permits us to enter a "comment".) The foregoing

line simply defines the function y1(x). x2·diff(y1, x, x) +

x·diff(y1, x) -9·y1(x)

(1) 

The latter is not equal to 32x5 so y1(x) is not a solution of

the DE. Now try y2(x).

y2 := 4·x3 + 2·x5 :



x2·diff(y2, x, x) + x·diff(y2,x) -9·y2

(2) 

simplify(%)

(3) 

Thus, y2(x) is a solution.

Example 2. (Is it a solution?) Is y(x) = 

in which A is any constant, a solution of the DE

SOLUTION. It is not surprising to find integrals within

solutions to DEs; after all, integration is the inverse

operation of the differentiations present in the DE. In most

cases that occur in this book, such integrals can be

evaluated in terms of the familiar elementary functions, but

this integral cannot. Actually, it can be evaluated in terms of

"nonelementary" functions, but let's not get into that; let's

just leave it as it is. To see if the given y(x) is a solution,

differentiate it to obtain y':

and if we put that, and y(x) into the DE we obtain

which is seen, after cancelations, to be an identity. Thus, the

given y(x) is indeed a solution, for any value of the constant

A. Of course, we could have used Maple, as we did in

Example 1.

NOTE: To differentiate  we used chain differentiation:



with f(g) = eg, and g(x) = −x2. And to differentiate the

integral we used the calculus formula

Example 3. (Classification) Classify the DE

SOLUTION. It is a linear second-order equation because it

can be re-arranged as y" −2 = x(y' + 3), or y"- xy' = 3x +2.

That is, it is of the form (14), with n = 2, a0(x) =1, a1(x) =-

x, a2(x) =0, and f(x) = 3x +2. And it is nonhomogeneous

because f(x) is not identically zero.

Example 4. Is the DE

linear or nonlinear?

SOLUTION. It is nonlinear, because when we try to rearrange

it in the form (14) the best we can do is y"- xyy ' - 3 xy = 2.

The presence of the product yy' makes the equation

nonlinear.

Example 5. (Seeking exponential solutions) A powerful

and simple solution method that we will develop is that of

seeking a solution in a certain form. For instance, see

whether you can find any solutions of

in the exponential form y(x) = erx, in which r is a yet-to-be-

determined constant.



SOLUTION. Just put the latter into the DE and see if any r 's

can be found so that erx is a solution. That step gives r2erx

+4rerx = (r 2 +4r)erx = 0. Now, erx is not zero for any

values of x. In fact, even if it were zero for certain values of

x that wouldn't suffice, for we need substitution to reduce

the DE to an identity, that is, for all x. Thus, we can cancel

the erx and obtain r2 +4r = 0. That is merely a quadratic

equation for r, and it gives the two values r = 0 and r =-4.

Thus, we have been successful in finding solutions of the DE

in the assumed exponential form, namely, both y(x) = e0x=

1 and y(x) =e−4x. These solutions are readily verified by

substitution into the DE.

Are these the only solutions of the DE? If not, what are the

others? We cannot answer these important questions yet,

but we will in Chapter 2.



Section 1.2
As one begins with y = mx + b when studying functions,

the analogous starting point in solving differential equations

is the first-order linear equation

in which p(x) and q(x) are known and y(x) is the unknown.

We see in this section that there is actually an infinite

number of solutions of the latter since the "general

solution," the "all-encompassing" solution, contains an

arbitrary constant, usually called A (or C). Each different

choice of A gives a solution.

EXAMPLES

Example 1. (Homogeneous equations) Find the

particular solution of the IVP

and give its interval of existence.

SOLUTION. The DE is of the form (6), with p(x) = -6x2, so its

general solution is given by (8) as

Then, the initial condition gives y(3) = 1 =Ae54, so A = e-

54. Thus the desired solution is

For its interval of existence, we can use Theorem 1.2.1:

p(x) = -6x2 is continuous on -∞ < x < ∞, so the theorem

assures us that the foregoing solution exists on -∞ < x <

∞.In this example we used the off-the-shelf solution formula

(8). More generally, in working the text exercises you

can use whatever formulas are available in the text-



unless the problem statement or your instructor asks

for a specific line of approach.

Example 2. (This time using separation of variable to

get the general solution) Derive the general solution of

this time not by using the solution formula (8), but by using

the method of separation of variables.

SOLUTION. Divide by x and y, assuming that y ≠ 0, to

separate the variables, then integrate:

 (A)

Now, - ∞ < A < ∞, so C= + eA is arbitrary, but nonzero

(because eA is nonzero for all A). Now check the possibility y

= 0 that we disallowed when we divided the DE by y: We

see that y(x) = 0 does happen to satisfy the DE, because its

substitution gives 0 = 0, so we can bring that solution under

the umbrella of (A) by now allowing C to be zero as well.

Thus, the general solution of xy'+ 3y = 0 is y(x) =C/x3, with

Can arbitrary constant.

Example 3. (Nonhomogeneous equations) Find the

general solution of the DE

Then find the particular solution corresponding to the

initial condition y(2) = 0.

SOLUTION. The simplest way to get these solutions is to use

(27) and (37), respectively, but, instead, let's begin by using

the integrating factor method to find the general solution:

Multiply the DE by a yet-to-be-determined function σ(x), so



σ x2y' + 3σ xy = 4σ, and require that  that

is, 3σ x=2xσ +x2σ'. The latter is separable, giving 

Integrating (and not bothering to include an integration

constant because all we need is an integrating factor, not

the most general one), we obtain ln σ = ln x, so σ = x. Thus,

our DE becomes x3y' + 3x2y = 4x. Now the coefficient of y

is indeed the derivative of the coefficient of y', 

 which can be solved merely by integrating.

That step gives x3y = 2x2 + A, so the general solution of

the DE is

in which A is an arbitrary constant. To evaluate A, apply the

initial condition: y(2) = 0 = 1 +A/8, which gives A =-8. Thus,

the particular solution satisfying y(2) = 1 is

(A) 

It is simpler to use (27) for the general solution, or (37) if

we want the particular solution (but less helpful in achieving

understanding):

General solution by (27): First, write the DE in the standard

form as y' + (3/x)y = 4/x2 so p(x) = 3/x and q(x) = 4/x2.

Then, (25) gives σ(x)  and (27)

gives as found

above. Having that general solution in hand, we can find the

particular solution by applying the initial condition to that

general solution, to find C. Instead, let's suppose we don't



have the general solution, and let us get the desired

particular solution directly from (37), with a chosen as the

initial point, 2, and b = 0: Evaluating  as

above, then (37) gives

as

found above.

What is the interval of existence of the solution (A)? It is

well-behaved (that is, continuous and even differentiable)

on the two separate intervals (- ∞, 0) and (0, ∞). Of these,

we must choose the latter since it is the one that contains

the initial point x = 2. Thus, the interval of existence of (A)

is (0, ∞).

Example 4. (Interchange of variables) Solve

SOLUTION. This DE cannot be put into first-order linear form

(try it), so it is nonlinear. Hence, the methods of this section

don't apply. However, try interchanging the roles of the

independent and dependent variables, now letting x, y be

the dependent and independent variables, respectively, so

we seek x(y). Setting the y' equal to  the DE

becomes or  Then, 

so the DE becomes yx' + x = 4y,

or  Thus, We

could write the latter as 2y2 - xy +A= 0, then solve the



latter by the quadratic formula for y, and then apply the

initial condition to find A, but it is much simpler to apply the

initial condition to the solution in the form yx =2y2 +A,

given above: That is, set x = 2 and y = 1, so 2 = 2 +A, so A

= 0. Thus, yx=2y2, so  is the desired solution to the

IVP.

Example 5. (Direction field and straight-line solution)

(a) Find any straight-line solutions of the DE

(b) Then, obtain the direction field for that DE, on the box

-1 < x < 6, -15 < y < 15.

(c) Obtain the direction field again, but this time including

the solution curves through the initial points (x, y) = (2, 1)

[that is, y(2) = 1] and (0,-1).

SOLUTION.

(a) That is, seek y(x) in the form y = mx +b. Putting the

latter into the DE gives

m + 3 (mx + b) = 9x. The latter is of the form ax + b =

cx+ d, where a, b, c, d are constants. For the latter to be an

identity we must "match coefficients": a = c, b = d. Thus,

3m = 9 and m + 3b = 0, which give m = 3, b = -1, so we do

find one straight-line solution, namely y = 3x - 1.

(b) Using Maple, with the arrows = line option, for

instance:

with (DEtools) :

dfieldplot(diff(y(x), x) + 3· y(x) = 9·x, y(x), x =-1 ..6, y

=-15 ..15, arrows = line)



(c) To include solution curves we cannot use dfieldplot;

instead use phaseportrait:

phaseportrait(diff(y(x),x) +3·y(x) = 9·x,y(x), x = -1 ..6,

[[y(2) = 1], [y(0) =-1]], stepsize = 0.05, y =-15..15, linecolor

= black, thickness= 1)

Note that the initial point y(0) = -1 gives the straight-line

solution that we found in part (a).



Example 6. (Working backwards) If possible, find a first-

order linear DE that hasy y1(x) =1 and y2(x) = x among its

solutions.

SOLUTION. We'll just give a hint. Putting each of the two

given solutions into y' + p(x)y = q(x) will give equations that

can be solved for p(x) and q(x).

Example 7. (Bernoulli's equation.) Bernoulli's equation

will be covered in Section 1.8.1, so it will be simplest to refer

you to that section and to Example 1 given therein.



Section 1.3
As its title indicates, this is an applications section. The

only new mathematics is the material in Section 1.3.4 on

the phase line, equilibrium points, and stability (of those

equilibrium points), for autonomous equations. That

subsection is a prerequisite for Chapter 7, which covers the

phase plane for systems of two autonomous differential

equations.

EXAMPLES

Example 1. (Exponential popnlation model) If a

population governed by the exponential model has 4500

members after five years and 6230 after ten years, what is

its growth rate? Its initial population?

SOLUTION. N(t) = N(0)ekt, so 4500 = N(0)e5k and 6230 =

N(0) e10k. Dividing the latter two equations gives e5k =

1.384, so the growth rate is k = (In 1.384)/ 5 = 0.065.

Putting that result into 6230 = N(0)e10k gives the initial

population N(0) = 6230 e-10(0.065) = 3250.

Example 2. (Exponential popnlation model) The world

population is increasing at approximately 1.3% per year. If

that growth rate remains constant, how many years will it

take for its population to triple?

SOLUTION. It follows from (3) and the problem statement

that k = 0.013, so N(t) = N(0)e0.013t. For it to triple after T

years, N(T) =3N(0) =N(0)e0.013T· Canceling N(0)'s and

solving gives T= (In 3)/0.013 = 84.5 years.

Example 3. (E. coli population) A colony of E. coli is

grown in a culture having a growth rate k = 0.2 per hour.

(From N' = kN it follows that k has dimensions of 1/time.) At



the end of 5 hours the culture conditions are modified by

increasing the nutrient concentration in the medium, such

that the new growth rate is k = 0.5 per hour. If the initial

population is N(0) = 500, evaluate N(20), that is, after 20

hours.

SOLUTION. For 0 ≤ t ≤ 5, N(t) = N(0)e 0.2t = 500e 0.2t so

N(5) = 500e0·2(5) = 500e. Letting this time, t = 5, be the

new initial time, we obtain N(15) = (500 e)e0.5(15) = 2,

457, 000 as the population at the end of 20 hours.

Example 4. (Radioactive decay) (a) A seashell contains

90% as much C-14 as a living shell of the same size (that is,

ofthe same weight). How old is it? NOTE: The half-life of C-

14 is 5,570 years. (b) How many years did it take for its C-

14 content to diminish from its initial value to 99% of that

value?

SOLUTION. (a) It is more convenient to use (12) than (11)

because we know T in (12), but would first need to evaluate

k in (11) (from the known half-life): m(t) =m0 2-t/T gives

0.9m0 = m02-t/5570, solution of which gives t = 847 years.

(b) 0.99m0 = m0 2-t/5570 gives t = 81 years.

Example 5. (Radioactive decay) If 20% of a radioactive

substance disappears in 70 days, what is its half-life?

SOLUTION. m(t) = m0e-kt, so 0.8m0 = m0e-70k, which

gives -70k = ln 0.8 and k = 0.00319. Thus T = (ln 2)/k =

217 days.

Example 6. (Mixing tank) For the mixing tank shown in

the text Fig.3, let the initial concentration be c(0) = 0. At

time T, the inflow concentration is changed from ci to 0.

(a) Solve for c(t), both for t < T and for t > T.

(b) Taking ci = Q = v = T = 1, for simplicity, sketch the

graph of c(t).



SOLUTION. (a) The problem is this, c' + (Q/v)c = ci Q/v for t

< T, and c' + (Q/v)c = 0 for t > T or,

In Chapter 5 we will learn how to treat this as a single

problem, using the Laplace transform, but here we will

proceed by breaking the problem into two sequential

problems. The first is c' + (Q/v)c = ci Q/v, with c(0) = 0, the

solution of which is

(A) 

Use the final value from the first time interval, c(T), as the

initial value for the second time interval. Thus, for the

second time interval the problem is c' + (Q/v)c = 0 with

initial condition c(T) = ci(1-e-QT/v). Its solution is

 (B)

Don't let ci, Q, v, T confuse you; they are simply

constants.

(b) Setting ci = Q = v = T = 1, the solution is

The graph looks like the solid curve



Example 7. (Phase line) Develop the phase line for the

autonomous DE x' = x 2 - x, identify any equilibrium points,

and classify each as stable or unstable.

SOLUTION. Sketch the graph of f(x) =x2 - x versus x. It is a

parabola with a minimum at x = 1/2 and is zero at x = 0, 1,

which are the two equilibrium points. Now draw the phase

line, which is the x axis: f > 0 for x < 0, so for x < 0 the flow

arrow is to the right; similarly for x > 1 the flow arrow is to

the right; and f < 0 for 0 < x < 1, so there the flow is to the

left. Since the flow approaches the equilibrium point at x =

0, that equilibrium point is stable; and since the flow is away

from the equilibrium point at x = 1, that one is unstable.

Example 8. (Light extinction; Lambert's law) Consider

window glass subjected to light rays normal to its surface,

and let x be a coordinate normal to that surface, with x = 0

at the incident face. It is found that the light intensity I in

the glass is not a constant, but diminishes with x according

to Lambert's law, which says that  If 80% of the

light penetrates a 1-inch-thick slab of this glass, how thin

must the glass be to let 95% penetrate?

SOLUTION. The solution of the DE, with initial condition I(0)

= I0, is I(x) = I0e-kx. From the data given, 0.8 I0 = I0e-k (1)
,

which yields k = 0.223. Thus, I(x) = I0e-0.223 x. Then, 0.95

I0 = I0e-0.223 x gives x = 0.230 inches as the thickness of

the slab.

Example 9. (Cooling of coffee) Newton's law of cooling

states that a body that is hotter than its environment will

cool at a rate that is proportional to the difference of the

temperatures u(t) of the body, and U of the environment, so

that

(A) 



in which k is the constant of proportionality - which can be

determined empirically. The equation (A) is a linear equation

u' + ku = kU, with general solution

(B) 

in which A is an arbitrary constant. Here is the problem: A

cup of coffee in a room that is at 70° F is at 200°F when it is

poured. After 10 minutes it has cooled to 180°F.

(a) How long will it take to cool to 100°F?

(b) What will be its temperature three hours after it was

poured?

SOLUTION. If we take into account that the coffee

temperature is not spatially uniform within the cup then the

problem is MUCH more difficult, so let us assume that it is

indeed spatially uniform, and hence a function only of t,

which seems not such a bad assumption since the cooling

process is so slow that the temperature within the cup has

the opportunity to remain spatially equilibrated.

(a) Now,U = 70, so (A) becomes u(t)=70+Ae-kt, Next, u(0)

= 200 =70+Ae0 gives A = 130, so u(t) = 70 + 130e-kt.

Next, the data that u(10) = 180 enables us to evaluate k:

180 = 70 + 130e-10k, which gives k = 0.01671, so u(t) = 70

+ 130e-0.016711t. Finally, u(T) = 100 = 70 + 130 e-

0.01671T gives T = 87.8 minutes.

(b) And after 3 hours (180 minutes), u(180) = 70 + 130e-

0.01671(180) = 76.4°F.



Section 1.4
First-order linear equations y' + p(x)y =q (x) are an "open

and shut case," in the sense that the general solution is

known, and we even know that the particular solution

satisfying any initial value y(a) =b exists, and is unique on

the broadest open x interval, containing the initial point a,

on which both p(x) and q(x) are continuous. As we tum now

to equations y' = f(x,y) that are nonlinear, we find that we

can obtain solutions only in special cases, by methods that

are specialized to those cases. Further, even when we do

find a solution, it may be in the less convenient implicit,

rather than explicit, form. In this section we begin with the

first of those cases, the very important case in which the

equation happens to be separable: that is, in which f(x,y)

can be factored as a function ofxtimes a function of y. As

Section 1.3 covers applications of first-order linear

equations, Section 1.6 will cover applications of nonlinear

equations.

EXAMPLES

In Examples 1 and 2, the given IVP is solvable by separation

of variables. Solve, use computer software to get a graph of

the solution, and state its interval of existence. In Examples

3 - 6 the solution will be in implicit form, and we will need to

deal with that extra "wrinkle." I think these examples will be

challenging in terms of the graphs, especially for the cases

in which the solution is obtained only in implicit form, so you

are urged to pay special attention to that aspect. In some

cases one can look at the functions and successfully

develop a hand sketch of the relevant graph, but in general

you will probably need some computer graphics support;

we'll use Maple, but you may use any other CAS that you



prefer. Also, we might add that there is certainly a pattern to

the solutions that follow, but you will need to think your way

through the steps, rather than following a step-by step

"procedure."

Example 1. (Solution by separation of variables) Solve

the IVP

SOLUTION. Divide by e-y (or, multiply by ey), multiply by

dx, and integrate:  ey - x3 = C. Rather

than solve the latter for y(x) and then applying the initial

condition, to evaluate C, it is more convenient to apply the

initial condition first: e 0-0 = C, which gives C = 1. Thus, ey

=x3 + 1. The latter is the desired solution, but in implicit

form. We happen to be able to solve for y, and we obtain the

solution in explicit form as

(A) 

Remember that ln x tends to -∞ as x → 0 (from the right),

is 0 at x = 1, and then increases monotonely without bound

asx increases. Including the Maple plot command, here is

the graph of ln x, to keep in mind:

with (plots):

plot(ln(x), x = 0.1..4, tickmarks= [[1], [-1, 0, 1]])

Thus, the point(s) to watch out for, in (A), are those at

which the argument x 3 + 1 = 0, namely, at x = -1. The



graph of the solution (A) is this:

plot(In(x3 + 1), x =-.95..4, y =-3..5, tickmarh = [[1],

default])

Note the approach to -∞ as x → -1, that we expected. The

interval of existence of the solution (A) is (-1, ∞).

NOTE: The plot command doesn't give us the option of

putting a heavy dot at the initial point [(0,0) in this case].

Ifwe really want to to that, we can do two plots: One would

be a point plot, just plotting that single point, and the

second would be the plot given above, and then we would

use the display command to plot them together. We won't

do that here, but that sequence is discussed in the Maple

tutorial section.

Example 2. (Separation of variables) Solve

subject to each ofthese initial conditions: y(0) = -3, y(0) =

-1, y(0) = 3.

SOLUTION. First, Apply

each initial condition, in turn.  gives

 so  Which gives


