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About the Book

* Roger Penrose’s groundbreaking and bestselling The

Road to Reality provided a comprehensive yet readable

guide to our present understanding of the laws that are

currently believed to govern our universe. In Cycles of

Time, he moves far beyond this to develop a completely

new perspective on cosmology, providing a quite

unexpected answer to the often-asked question, ‘What

came before the Big Bang?’

* The two key ideas underlying this novel proposal are a

penetrating analysis of the Second Law of

thermodynamics – according to which the ‘randomness’

of our world is continually increasing – and a thorough

examination of the light-cone geometry of space-time.

Penrose is able to combine these two central themes to

show how the expected ultimate fate of our accelerating,

expanding universe can actually be reinterpreted as the

‘Big Bang’ of a new one.

* On the way, many other basic ingredients are presented,

and their roles discussed in detail, though without any

complex mathematical formulae (these all being banished

to the appendices). Various standard and non-standard

cosmological models are presented, as is the fundamental

and ubiquitous role of the cosmic microwave background.

Also crucial to the discussion are the huge black holes lying

in galactic centres, and their eventual disappearance via

the mysterious process of Hawking evaporation.
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Preface

ONE of the deepest mysteries of our universe is the puzzle

of whence it came.

When I entered Cambridge University as a mathematics

graduate student, in the early 1950s, a fascinating

cosmological theory was in the ascendant, known as the

steady-state model. According to this scheme, the universe

had no beginning, and it remained more-or-less the same,

overall, for all time. The steady-state universe was able to

achieve this, despite its expansion, because the continual

depletion of material arising from the universe’s expansion

is taken to be compensated by the continual creation of

new material, in the form of an extremely diffuse hydrogen

gas. My friend and mentor at Cambridge, the cosmologist

Dennis Sciama, from whom I learnt the thrill of so much

new physics, was at that time a strong proponent of steady-

state cosmology, and he impressed upon me the beauty and

power of that remarkable scheme of things.

Yet this theory has not stood the test of time. About 10

years after I had first entered Cambridge, and had become

well acquainted with the theory, Arno Penzias and Robert

Wilson discovered, to their own surprise, an all-pervading

electromagnetic radiation, coming in from all directions,

now referred to as the cosmic microwave background or

CMB. This was soon identified, by Robert Dicke, as a

predicted implication of the ‘flash’ of a Big-Bang origin to

the universe, now presumed to have taken place some 14

thousand million years ago—an event that had been first

seriously envisaged by Monsignor Georges Lemaître in

1927, as an implication of his work on Einstein’s 1915



equations of general relativity and early observational

indications of an expansion of the universe. With great

courage and scientific honesty (when the CMB data became

better established), Dennis Sciama publicly repudiated his

earlier views and strongly supported the idea of the Big

Bang origin to the universe from then on.

Since that time, cosmology has matured from a

speculative pursuit into an exact science, and intense

analysis of the CMB—coming from highly detailed data,

generated by numerous superb experiments—has formed a

major part of this revolution. However, many mysteries

remain, and much speculation continues to be part of this

endeavour. In this book, I provide descriptions not only of

the main models of classical relativistic cosmology but also

of various developments and puzzling issues that have

arisen since then. Most particularly, there is a profound

oddness underlying the Second Law of thermodynamics

and the very nature of the Big Bang. In relation to this, I

am putting forward a body of speculation of my own, which

brings together many strands of different aspects of the

universe we know.

My own unorthodox approach dates from the summer of

2005, though much of the detail is more recent. This

account goes seriously into some of the geometry, but I

have refrained from including, in the main body of the text,

anything serious in the way of equations or other

technicalities, all these being banished to the Appendices.

The experts, only, are referred to those parts of the book.

The scheme that I am now arguing for here is indeed

unorthodox, yet it is based on geometrical and physical

ideas which are very soundly based. Although something

entirely different, this proposal turns out to have strong

echoes of the old steady-state model!

I wonder what Dennis Sciama would have made of it.



Prologue

WITH his eyelids half closed, as the rain pelted down on him

and the spray from the river stung his eyes, Tom peered

into the swirling torrents as the water rushed down the

mountainside. ‘Wow’, he said to his Aunt Priscilla, an

astrophysics professor from the University of Cambridge,

who had taken him to this wonderful old mill, preserved in

excellent working order, ‘is it always like this? No wonder

all that old machinery can be kept buzzing around at such

great speed.’

‘I don’t think it’s always this energetic’, said Priscilla,

standing next to him behind the railing at the side of the

river, and raising her voice somewhat, so as to be heard

over the noise of the rushing water. ‘The water’s much

more violent than usual, today, because of all this wet

weather. You can see down there that a good portion of the

water has had to be diverted away from the mill. Usually

they would not do this, because they would have to make

the most of a much more sedate flow. But now there’s far

more energy in the flow than is needed for the mill.’

Tom stared for some minutes into the wildly tumbling

water and admired the patterns it made as it was flung into

the air in sprays and convoluted surfaces. ‘I can see there’s

a lot of power in that water, and I know that a couple of

centuries ago the people were clever enough to see how all

this energy could be used to drive these machines—doing

the work of many human beings and making all that great

woollen cloth. But where did the energy come from that got

all that water high up on the mountain in the first place?’



‘The heat of the Sun caused the water in the oceans to

evaporate and rise up into the air, so it would eventually

come back down again in all this rain. So a good proportion

of the rain would be deposited up high into the mountains’,

replied Priscilla. ‘It’s really the energy from the Sun that is

being harnessed to run the mill.’

Tom felt a little puzzled by this. He was often puzzled by

the things that Priscilla told him, and was by nature often

quite sceptical. He could not really see how just heat could

lift water up into the air. And if there was all that heat

around, why did he feel so cold now? ‘It was rather hot

yesterday’, he grudgingly agreed. Though, still uneasy, he

commented, ‘but I didn’t feel the Sun trying to lift me up

into the air then, any more than I do now.’

Aunt Priscilla laughed. ‘No. it’s not really like that. It’s

the tiny little molecules in the water in the oceans that the

Sun’s heat causes to be more energetic. So these molecules

then rush randomly around faster than they would

otherwise, and a few of these “hot” molecules will move so

fast that they break loose from the surface of the water and

are flung into the air. And although there are only a

relatively few molecules flung out at one time, the oceans

are so vast that there would really be a lot of water flung

up into the air altogether. These molecules go to make the

clouds and eventually the water molecules fall down again

as rain, a lot of which falls high in the mountains.’

Tom was still rather troubled, but at least the rain had

now tapered off somewhat. ‘But this rain doesn’t feel at all

hot to me.’

‘Think of the Sun’s heat energy first getting converted

into the energy of rapid random motion of the water

molecules. Then think of this rapid motion resulting in a

small proportion of the molecules going so fast that they

are flung high in the air in the form of water vapour. The

energy of these molecules gets converted into what’s called

gravitational potential energy. Think of throwing a ball up



into the air. The more energetically you throw it the higher

it goes. But when it reaches its maximum height, it stops

moving upwards. At that point its energy of motion has all

been converted into this gravitational potential energy in

its height above the ground. It’s the same with the water

molecules. Their energy of motion—the energy that they

got from the Sun’s heat—is converted into this gravitational

potential energy, now at the top of the mountain, and when

it runs down, this is converted back again into the energy

in its motion, which is used to run the mill.’

‘So the water isn’t hot at all when it’s up there?’ asked

Tom.

‘Exactly, my dear. By the time that these molecules get

very high in the sky, they slow down and often actually get

frozen into tiny ice crystals—that’s what most clouds are

made of—so the energy goes into their height above the

ground rather than into their heat motion. Accordingly, the

rain won’t be hot at all up there, and it’s still quite cold

even when it finally works its way down again, slowed

down by the resistance of the air.’

‘That’s amazing!’

‘Yes, indeed’, and encouraged by the boy’s interest, Aunt

Priscilla eagerly took advantage of the opportunity to say

more. ‘You know, it’s a curious fact that even in the cold

water in this river there is still much more heat energy in

the motion of the individual molecules running around

randomly at great speed than there is in the swirling

currents of water rushing down the mountainside!’

‘Goodness. I’m supposed to believe that, am I?’

Tom thought for a few minutes, somewhat confused at

first, but then rather attracted by what Priscilla said,

remarked excitedly: ‘Now you’ve given me a great idea!

Why don’t we build a special kind of mill that just directly

uses all that energy of the motion of water molecules in

some ordinary lake? It could use lots of tiny little windmill

things, maybe like those things that spin in the wind, with



little cups on the ends so that they twirl round in the wind

no matter which direction the wind is coming from. Only

they’d be very tiny and in the water, so that the speed of

the water molecules would spin them around, and you

could use these to convert the energy in the motion in the

water molecules to drive all sorts of machinery.’

‘What a wonderful idea, Tom darling, only unfortunately

it wouldn’t work! That’s because of a fundamental physical

principle known as the Second Law of thermodynamics,

which more or less says that things just get more and more

disorganized as time goes on. More to the point, it tells you

that you can’t get useful energy out of the random motions

of a hot—or cold—body, just like that. I’m afraid what

you’re suggesting is what they call a “Maxwell’s demon”.’

‘Don’t you start doing that! You know that Grandpa

always used to call me a “little demon” whenever I had a

good idea, and I didn’t like it. And, that Second Law thing’s

not a very nice kind of law’, Tom complained grumpily.

Then his natural scepticism returned: ‘And I’m not sure I

can really believe in it anyway.’ Then he continued ‘I think

laws like that just need clever ideas to get around them. In

any case, I thought you said that it’s the heat of the Sun

that’s responsible for heating the oceans and that it’s that

random energy of motion that flings it to the top of the

mountain, and that’s what’s running the mill.’

‘Yes, you’re right. So the Second Law tells us that

actually the heat of the Sun all by itself wouldn’t work. In

order to work, we also need the colder upper atmosphere,

so that the water vapour can condense up above the

mountain. In fact, the Earth as a whole doesn’t get energy

from the Sun overall.’

Tom looked at his aunt with a quizzical expression.

‘What does the cold upper atmosphere have to do with it?

Doesn’t “cold” mean not so much energy as “hot”? How

does a bit of “not-so-much energy” help? I don’t get what

you are saying at all. Anyway, I think you are contradicting



yourself’, said Tom, gaining confidence in himself. ‘First

you tell me that the Sun’s energy runs the mill, and now

you tell me that the Sun doesn’t give energy to the Earth

after all!’

‘Well, it doesn’t. If it did, then the Earth would just keep

on getting hotter and hotter as it gained energy. The

energy that the Earth gets from the Sun in the daytime has

all to go back into space eventually, which it does because

of the cold night sky—except, I suppose, that with global

warming, a little part of it does get held back by the Earth.

It’s because the Sun is a very hot spot in an otherwise cold

dark sky …’

Tom began to lose the thread of what she was saying

and his mind began to wander. But he heard her say, ‘… so

it’s the manifest organization in the Sun’s energy that

enables us to keep the Second Law at bay.’

Tom looked at Aunt Priscilla, almost totally bemused. ‘I

don’t think I really understand all that,’ he said, ‘and I don’t

see why I need to believe that “Second Law” thing in any

case. Anyway, where does all that organization in the Sun

come from? Your Second Law should be telling us that the

Sun’s getting more disorganized as time goes on, so it

would have to have been enormously organized when it

was first formed, since all the time it’s sending out

organization. Your “Second Law” thing tells us that its

organization keeps getting lost.’

‘It has to do with the Sun being such a hot spot in a dark

sky. This extreme temperature imbalance provided the

needed organization.’

Tom stared at Aunt Priscilla, with little comprehension,

and now not really properly believing anything she was

telling him. ‘You tell me that counts as organization; well, I

don’t see why it should. All right, let’s pretend it somehow

does—but then you still haven’t told me where that funny

kind of organization comes from.’



‘From the fact that the gas that the Sun condensed from

was previously spread uniformly, so that gravity could

cause it to form clumps which condensed gravitationally

into stars. A very long time ago, the Sun did just this; it

condensed from this initially spread-out gas, getting hotter

and hotter in the process.’

‘You’ll keep telling me one thing after another, going

way back in time, but where does this thing you call

“organization”, whatever it is, originally come from?’

‘Ultimately it comes from the Big Bang, which was what

started the whole universe off with an utterly stupendous

explosion.’

‘A thing like a big walloping explosion doesn’t sound like

something organized. I don’t get it at all.’

‘You aren’t the only one! You’re in good company not to

get it. Nobody really gets it. It’s one of the biggest puzzles

of cosmology where the organization comes from, and in

what way the Big Bang really represents organization in

any case.’

‘Maybe there was something more organized before the

Big Bang? That might do it.’

‘People have actually tried suggesting things like that

for some while. There are theories in which our presently

expanding universe had a previous collapsing phase which

“bounced” to become our Big Bang. And there are other

theories where little bits of a previous phase of the

universe collapsed into things we call black holes, and

these bits “bounced”, to become the seeds of lots and lots

of new expanding universes, and there are others where

new universes sprang out of things called “false

vacuums”…’

‘That all sounds pretty crazy to me,’ Tom said.

‘And, oh yes, there’s another theory that I heard about

recently …’



Part 1

The Second Law and its

underlying mystery

1.1 The relentless march of randomness

1.2 Entropy, as state counting

1.3 Phase space, and Boltzmann’s definition of

entropy

1.4 The robustness of the entropy concept

1.5 The inexorable increase of entropy into the future

1.6 Why is the past different?



1.1 The relentless march of

randomness

THE SECOND LAW of thermodynamics—what law is this? What

is its central role in physical behaviour? And in what way

does it present us with a genuinely deep mystery? In the

later sections of this book, we shall try to understand the

puzzling nature of this mystery and why we may be driven

to extraordinary lengths in order to resolve it. This will lead

us into unexplored areas of cosmology, and to issues which

I believe may be resolved only by a very radical new

perspective on the history of our universe. But these are

matters that will be our concern later. For the moment let

us restrict our attention to the task of coming to terms with

what is involved in this ubiquitous law.

Usually when we think of a ‘law of physics’ we think of

some assertion of equality between two different things.

Newton’s second law of motion, for example, equates the

rate of change of momentum of a particle (momentum

being mass times velocity) with the total force acting upon

it. As another example, the law of conservation of energy

asserts that the total energy of an isolated system at one

time is equal to its total energy at any other time. Likewise,

the law of conservation of electric charge, of momentum,

and of angular momentum, each asserts a corresponding

equality for the total electric charge, for the total

momentum, and for total angular momentum. Einstein’s

famous law E=mc2 asserts that the energy of a system is

always equal to its mass multiplied by the square of the

speed of light. As yet another example, Newton’s third law



asserts that the force exerted by a body A on a body B, at

any one time, is always equal and opposite to the force

acting on A due to B. And so it is for many of the other laws

of physics.

These are all equalities—and this applies also to what is

called the First Law of thermodynamics, which is really just

the law of conservation of energy again, but now in a

thermodynamic context. We say ‘thermodynamic’ because

the energy of the thermal motions is now being taken into

account, i.e. of the random motions of individual

constituent particles. This energy is the heat energy of a

system, and we define the system’s temperature to be this

energy per degree of freedom (as we shall be considering

again later). For example, when the friction of air

resistance slows down a projectile, this does not violate the

full conservation law of energy (i.e. the First Law of

thermodynamics)—despite the loss of kinetic energy, due to

the projectile’s slowing—because the air molecules, and

those in the projectile, become slightly more energetic in

their random motions, from heating due to the friction.

However, the Second Law of thermodynamics is not an

equality, but an inequality, asserting merely that a certain

quantity referred to as the entropy of an isolated system—

which is a measure of the system’s disorder, or

‘randomness’—is greater (or at least not smaller) at later

times than it was at earlier times. Going along with this

apparent weakness of statement, we shall find that there is

also certain vagueness or subjectivity about the very

definition of the entropy of a general system. Moreover, in

most formulations, we are led to conclude that there are

occasional or exceptional moments at which the entropy

must be regarded as actually (though temporarily)

reducing with time (in a fluctuation) despite the general

trend being that the entropy increases.

Yet, set against this seeming imprecision inherent in the

Second Law (as I shall henceforth abbreviate it), this law



has a universality that goes far beyond any particular

system of dynamical rules that one might be concerned

with. It applies equally well, for example, to relativity

theory as it does to Newtonian theory, and also to the

continuous fields of Maxwell’s theory of electromagnetism

(that we shall be coming to briefly in §2.6, §3.1 and §3.2,

and rather more explicitly in Appendix A1) just as well as it

does to theories involving only discrete particles. It applies

also to hypothetical dynamical theories that we have no

good reason to believe have relevance to the actual

universe that we inhabit, although it is most pertinent

when applied to realistic dynamical schemes, such as

Newtonian mechanics, which have a deterministic

evolution and are reversible in time, so that for any allowed

evolution into the future, reversing the time direction gives

us another equally allowable evolution according to the

dynamical scheme.

To put things in familiar terms, if we have a moving-

picture film depicting some action that is in accordance

with dynamical laws—such as Newton’s—that are

reversible in time, then the situation depicted when the

film is run in reverse will also be in accordance with these

dynamical laws. The reader might well be puzzled by this,

for whereas a film depicting an egg rolling off a table,

falling to the ground, and smashing would represent an

allowable dynamical process, the time-reversed film—

depicting the smashed egg, originally as a mess on the

floor, miraculously assembling itself from the broken pieces

of shell, with the yolk and albumen separately joining up to

become surrounded by the self-assembling shell, and then

jumping up on to the table—is not an occurrence that we

expect ever to see in an actual physical process (Fig. 1.1).

Yet the full Newtonian dynamics of each individual particle,

with its accelerated response (in accordance with Newton’s

second law) to all forces acting upon it, and the elastic

reactions involved in any collision between constituent



particles, is completely reversible in time. This also would

be the case for the refined behaviour of relativistic and

quantum-mechanical particles, according to the standard

procedures of modern physics—although there are some

subtleties arising from the black-hole physics of general

relativity, and also with regard to quantum mechanics, that

I do not wish to get embroiled in just yet. Some of these

subtleties will actually be crucially important for us later,

and will be considered particularly in §3.4. But for the

moment, an entirely Newtonian picture of things will

suffice.

Fig. 1.1 An egg rolling off a table, falling to the ground and smashing

according to time-reversible dynamical laws.

We have to accustom ourselves to the fact that the

situations that are depicted by both directions of film-

running are consistent with Newtonian dynamics, but the

one showing the self-assembling egg depicts an occurrence

that is inconsistent with the Second Law, and would be

such an enormously improbable sequence of events that we

can simply reject it as a realistic possibility. What the

Second Law indeed states, roughly speaking, is that things

are getting more ‘random’ all the time. So if we set up a

particular situation, and then let the dynamics evolve it into

the future, the system will evolve into a more random-

looking state as time progresses. Strictly, we should not say



that it will evolve into a more random-looking state but

that, in accordance with what has been said above, it is

(something like) overwhelmingly likely to evolve into such a

more random state. In practice, we must expect that,

according to the Second Law, things are indeed getting

progressively more and more random with time, but that

this represents merely an overwhelming probability, not

quite an absolute certainty.

Nevertheless we can assert, with a considerable amount

of confidence, that what we shall experience will be an

entropy increase—in other words an increase in

randomness. Stated that way, the Second Law sounds

perhaps like a council of despair, for it tells us that things

are just getting more and more disorganized as time

progresses. This does not sound like any kind of a mystery,

however, as the title of Part 1 seems to be suggesting that

it should. It’s just an obvious feature of the way things

would behave if left entirely to themselves. The Second

Law appears to be just expressing an inevitable and

perhaps depressing feature of everyday existence. Indeed,

from this point of view, the Second Law of thermodynamics

is one of the most natural things imaginable, and certainly

something that reflects a completely commonplace

experience.

Some might worry that the emergence of life on this

Earth, with its seemingly unbelievable sophistication,

represents a contradiction with this increase of disorder

that the Second Law demands. I shall be explaining later

(see §2.2) why there is in fact no contradiction. Biology is,

as far as we know, entirely consistent with the overall

entropy increase that the Second Law demands. The

mystery referred to in the title of Part 1 is a mystery of

physics of an entirely different order of scale. Although it

has some definite relation to that mysterious and puzzling

organization that we are continually being presented with



through biology, we have good reason to expect that the

latter presents no paradox with regard to the Second Law.

One thing should be made clear, however, with regard to

the Second Law’s physical status: it represents a separate

principle that must be adjoined to the dynamical laws (e.g.

to Newton’s laws), and is not to be regarded as a deduction

from them. The actual definition of the entropy of a system

at any one moment is, however, symmetrical with regard to

the direction of time (so we get the same entropy

definition, for our filmed falling egg, at any one moment,

irrespective of the direction in which the film is shown),

and if the dynamical laws are also symmetrical in time (as

is indeed the case with Newtonian dynamics), the entropy

of a system being not always constant in time (as is clearly

so with the smashing egg), then the Second Law cannot be

a deduction from these dynamical laws. For if the entropy

is increasing in a particular situation (e.g. egg smashing),

this being in accordance with the Second Law, then the

entropy must be decreasing in the reversed situation (egg

miraculously assembling), which is in gross violation of the

Second Law. Since both processes are nevertheless

consistent with the (Newtonian) dynamics, we conclude

that the Second Law cannot simply be a consequence of the

dynamical laws.



1.2 Entropy, as state counting

BUT HOW DOES the physicist’s notion of ‘entropy’, as it

appears in the Second Law, actually quantify this

‘randomness’, so that the self-assembling egg can indeed

be seen to be overwhelmingly improbable, and thereby

rejected as a serious possibility? In order to be a bit more

explicit about what the entropy concept actually is, so that

we can make a better description of what the Second Law

actually asserts, let us consider a physically rather simpler

example than the breaking egg. The Second Law tells us,

for example, that if we pour some red paint into a pot and

then some blue paint into the same pot and give the

mixture a good stir, then after a short period of such

stirring the different regions of red and of blue will lose

their individuality, and ultimately the entire contents of the

pot will appear to have the colour of a uniform purple. It

seems that no amount of further stirring will convert the

purple colour back to the original separated regions of red

and blue, despite the time-reversibility of the

submicroscopic physical processes underlying the mixing.

Indeed, the purple colour should eventually come about

spontaneously, even without the stirring, especially if we

were to warm the paint up a little. But with stirring, the

purple state is reached much more quickly. In terms of

entropy, we find that the original state, in which there are

distinctly separated regions of red and blue paint, will have

a relatively low entropy, but that the pot of entirely purple

paint that we end up with will have a considerably larger

entropy. Indeed, the whole stirring procedure provides us

with a situation that is not only consistent with the Second



Law, but which begins to give us a feeling of what the

Second Law is all about.

Let us try to be more precise about the entropy concept,

so that we can be more explicit about what is happening

here. What actually is the entropy of a system? Basically,

the notion is a fairly elementary one, although involving

some distinctly subtle insights, due mainly to the great

Austrian physicist Ludwig Boltzmann, and it has to do just

with counting the different possibilities. To make things

simple, let us idealize our pot of paint example so that

there is just a (very large) finite number of different

possibilities for the locations of each molecule of red paint

or of blue paint. Let us think of these molecules as red balls

or blue balls, these being allowed to occupy only discrete

positions, centred within N3 cubical compartments, where

we are thinking of our paint pot as an enormously

subdivided N×N×N cubical crate composed of these

compartments (see Fig. 1.2), where I am assuming that

every compartment is occupied by exactly one ball, either

red or blue (represented as white and black, respectively, in

the figure).

Fig. 1.2 N×N×N cubical crate, each compartment containing a red or blue

ball.



To judge the colour of the paint at some place in the pot,

we make some sort of average of the relative density of red

balls to blue balls in the neighbourhood of the location

under consideration. Let us do this by containing that

location within a cubical box that is much smaller than the

entire crate, yet very large as compared with the individual

cubical compartments just considered. I shall suppose that

this box contains a large number of the compartments just

considered, and belongs to a cubical array of such boxes,

filling the whole crate in a way that is less refined than that

of the original compartments (Fig. 1.3). Let us suppose that

each box has a side length that is n times as great as that

of the original compartments, so that there are n×n×n = n3

compartments in each box. Here n, though still very large,

is to be taken to be far smaller than N:

N » n » 1.

To keep things neat, I suppose that N is an exact multiple

of n, so that

N = kn

where k is a whole number, giving the number of boxes that

span the crate along each side. There will now be k×k×k =

k3 of these intermediate-sized boxes in the entire crate.



Fig. 1.3 The compartments are grouped together into k
3
 boxes, each of size

n×n×n.

The idea will be to use these intermediate boxes to

provide us with a measure of the ‘colour’ that we see at the

location of that box, where the balls themselves are

considered to be too small to be seen individually. There

will be an average colour, or hue that can be assigned to

each box, given by ‘averaging’ the colours of the red and

blue balls within that box. Thus, if r is the number of red

balls in the box under consideration, and b the number of

blue balls in it (so r+b = n3), then the hue at that location is

taken to be defined by the ratio of r to b. Accordingly, we

consider that we get a redder hue if r/b is larger than 1 and

a bluer hue if r/b is smaller than 1.

Let us suppose that the mixture looks to be a uniform

purple to us if every one of these boxes of n×n×n

compartments has a value of r/b that is between 0.999 and

1.001 (so that r and b are the same, to an accuracy of one

tenth of a per cent). This may seem, at first consideration,

to be a rather stringent requirement (having to apply to

every individual n×n×n compartment). But when n gets

very large, we find that the vast majority of the ball

arrangements do satisfy this condition! We should also bear



in mind that when considering molecules in a can of paint,

the number of them will be staggeringly large, by ordinary

standards. For example, there could well be something like

1024 molecules in an ordinary can of paint, so taking N=108

would not be at all unreasonable. Also, as will be clear

when we consider that colours look perfectly good in

digitally displayed photographs with a pixel size of only

10−2 cm, taking a value of k=103 is also very reasonable, in

this model. From this, we find that, with these numbers

(N=108 and k=103, so n=105) there are around 1023 570000

000000 000000 000000 different arrangements of the entire

collection of ½N3 red balls and ½N3 blue balls that give the

appearance of a uniform purple. There are only a mere 1046

500000 000000 different arrangements which give the original

configuration in which the blue is entirely at the top and

the red entirely at the bottom. Thus, for balls distributed

entirely at random, the probability of finding uniform

purple is a virtual certainty, whereas the probability of

finding all the blue ones at the top is something like 10−23

570000 000000 000000 000000 (and this figure is not substantially

changed if we do not require ‘all’ the blue balls to be

initially at the top but, say, only 99.9% of them to be at the

top).

We are to think of the ‘entropy’ to be something like a

measure of these probabilities or, rather, of these different

numbers of arrangements that give the same ‘overall

appearance’. Actually, to use these numbers directly would

give an exceedingly unruly measure, owing to their vast

differences in size. It is fortunate, therefore, that there are

good theoretical reasons for taking the (natural) logarithm

of these numbers as a more appropriate ‘entropy’ measure.

For those readers who are not very familiar with the notion

of a logarithm (especially a ‘natural’ logarithm), let us

phrase things in terms of the logarithm taken to the base

10—referred to here as ‘log
10

’ (rather than the natural



logarithm, used later, which I refer to simply as ‘log’). To

understand log
10

, the basic thing to remember is that

log
10

 1=0, log
10

 10=1, log
10

 100=2, log
10

 1000=3,

log
10

 10000=4, etc.

That is, to obtain the log
10

 of a power of 10, we simply

count the number of 0s. For a (positive) whole number that

is not a power of 10, we can generalize this to say that the

integral part (i.e. the number before the decimal point) of

its log
10

 is obtained by counting the total number of digits

and subtracting 1, e.g. (with the integral part printed in

bold type)

etc., so in each case the number in bold type is just one less

than the number of digits in the number whose log
10

 is

being taken. The most important property of log
10

 (or of

log) is that it converts multiplication to addition; that is:

log
10

 (ab) = log
10

 a + log
10

 b.

(In the case when a and b are both powers of 10, this is

obvious from the above, since multiplying a=10A by b=10B

gives us ab=10A+B.)

The significance of the above displayed relation to the

use of the logarithm in the notion of entropy is that we

want the entropy of a system which consists of two

separate and completely independent components to be

what we get by simply adding the entropies of the

individual parts. We say that, in this sense, the entropy



concept is additive. Indeed, if the first component can come

about in P different ways and the second component in Q

different ways, then there will be the product PQ of

different ways in which the entire system—consisting of

both components together—can come about (since to each

of the P arrangements giving the first component there will

be exactly Q arrangements giving the second). Thus, by

defining the entropy of the state of any system to be

proportional to the logarithm of the number of different

ways that that state can come about, we ensure that this

additivity property, for independent systems, will indeed be

satisfied.

I have, however, been a bit vague, as yet, about what I

mean by this ‘number of ways in which the state of a

system can come about’. In the first place, when we model

the locations of molecules (in a can of paint, say), we would

normally not consider it realistic to have discrete

compartments, since in Newtonian theory there would, in

full detail, be an infinite number of different possible

locations for each molecule rather than just a finite

number. In addition, each individual molecule might be of

some asymmetrical shape, so that it could be oriented in

space in different ways. Or it might have other kinds of

internal degrees of freedom, such as distortions of its

shape, which would have to be correspondingly taken into

account. Each such orientation or distortion would have to

count as a different configuration of the system. We can

deal with all these points by considering what is known as

the configuration space of a system, which I next describe.

For a system of d degrees of freedom, the configuration

space would be a d-dimensional space. For example, if the

system consisted of q point particles p
1
,p

2
,… ,p

q
 (each

without any internal degrees of freedom), then the

configuration space would have 3q dimensions. This is

because each individual particle requires just three



coordinates to determine its position, so there are 3q

coordinates overall, whereby a single point P of

configuration space defines the locations of all of p
1
,p

2
,…

,p
q
 together (see Fig. 1.4). In more complicated situations,

where there are internal degrees of freedom as above, we

would have more degrees of freedom for each such

particle, but the general idea is the same. Of course, I am

not expecting the reader to be able to ‘visualize’ what is

going on in a space of such a high number of dimensions.

This will not be necessary. We shall get a good enough idea

if we just imagine things going on in a space of just 2

dimensions (such as a region drawn on a piece of paper) or

of some region in ordinary 3-dimensional space, provided

that we always bear in mind that such visualizations will

inevitably be limited in certain ways, some of which we

shall be coming to shortly. And of course we should always

keep in mind that such spaces are purely abstract

mathematical ones which should not be confused with the

3-dimensional physical space or 4-dimensional physical

space-time of our ordinary experiences.


