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To my family in partial compensation for taking so much of

my time away from them



Editors’ preface to the

Manchester Physics Series
The Manchester Physics Series is a series of textbooks at

first degree level. It grew out of our experience at the

Department of Physics and Astronomy at Manchester

University, widely shared elsewhere, that many textbooks

contain much more material than can be accommodated in

a typical undergraduate course; and that this material is

only rarely so arranged as to allow the definition of a shorter

self-contained course. In planning these books we have had

two objectives. One was to produce short books: so that

lecturers should find them attractive for undergraduate

courses; so that students should not be frightened off by

their encyclopaedic size or their price. To achieve this, we

have been very selective in the choice of topics, with the

emphasis on the basic physics together with some

instructive, stimulating and useful applications. Our second

objective was to produce books which allow courses of

different lengths and difficulty to be selected, with emphasis

on different applications. To achieve such flexibility we have

encouraged authors to use flow diagrams showing the

logical connections between different chapters and to put

some topics in starred sections. These cover more advanced

and alternative material which is not required for the

understanding of latter parts of each volume.

Although these books were conceived as a series, each of

them is self-contained and can be used independently of the

others. Several of them are suitable for wider use in other

sciences. Each Author's Preface gives details about the

level, prerequisites, etc., of his volume.

The Manchester Physics Series has been very successful

with total sales of more than a quarter of a million copies.



We are extremely grateful to the many students and

colleagues, at Manchester and elsewhere, for helpful

criticisms and stimulating comments. Our particular thanks

go to the authors for all the work they have done, for the

many new ideas they have contributed, and for discussing

patiently, and often accepting, the suggestions of the

editors.

Finally, we would like to thank our publishers, John Wiley &

Sons Ltd, for their enthusiastic and continued commitment

to the Manchester Physics Series.

D. J. Sandiford

F. Mandl

A. C. Phillips

February 1997



Foreword

The story of the creation was told in 200 words. Look it

up if you don't believe me.—Edgar Wallace

When the time came to consider a second edition of Solid

State Physics I felt that I had already said what I had to say

on the subject in the first edition. I also felt that the book

was rather too idiosyncratic for many students. For these

reasons I thought it would be better if the revision and

updating were undertaken by another hand, and the editors

shared this view.

We therefore approached Dr John Hook, a friend and

colleague for many years, and I think the result justifies the

decision. The new edition is, in my opinion, a substantial

improvement on the old one, but it would not have occurred

to me to write it like that.

September 1990

Henry Hall



Author’s preface to second edition

I accepted the invitation of the editors of the Manchester

Physics Series to write a second edition of Solid State

Physics for two main reasons. Firstly I felt that, although the

approach adopted in the first edition had much to commend

it, some re-ordering and simplification of the material was

required to make the book more accessible to

undergraduate students. Secondly there was a need to take

account of some of the important developments that have

occurred in solid state physics since 1973.

To achieve re-ordering and simplification it has been

necessary to rewrite most of the first edition. A major

change has been to introduce the idea of mobile electron

states in solids through the free electron theory of metals

rather than through the formation of energy bands by

overlap of atomic states on neighbouring atoms. The latter

approach was used in the first edition because it could be

applied first to the dilute electron gas in semiconductors

where an independent particle model might be expected to

work. Although this was appealing to the experienced

physicist, it proved difficult to the undergraduate student,

who was forced to assimilate too many new ideas at the

beginning. One feature of the first edition that I have

retained is to delay for as long as possible a formal

discussion of the reciprocal lattice and Brillouin zones in a

three-dimensional crystal. Although these concepts provide

an elegant general framework for describing many of the

properties of crystalline solids, they are, like Maxwell’s

equations in electromagnetism, more likely to be

appreciated by students if they have met some of the ideas

earlier in a simpler context. The use of the formal

framework is avoided in the early chapters by using one-

and two-dimensional geometries whenever necessary.



To take account of recent developments the amount of

material on semiconductor physics and devices has been

substantially increased, a chapter has been added on the

two-dimensional electron gas and quantum Hall effect, and

sections on quasi-crystals, high-Tc superconductors and the

use of electrons to probe surfaces have been included. A

chapter on the electrical properties of insulators has also

been added.

I have tried to conform to the aim of the Manchester

Physics Series by producing a book of reasonable length

(and thus cost), from which it is possible to define self-

contained undergraduate courses of different length and

difficulty. The problem with solid state physics in this

context is that it contains many diverse topics so that many

quite different courses are possible. I have had to be very

selective therefore in my choice of subjects, which has been

strongly influenced by the third year undergraduate solid

state physics courses at Manchester. We currently have a

basic course of 20 lectures, which is given at two levels; the

courses cover material from Chapters 1–5 of this book and

the higher level course also incorporates appropriate

sections of Chapters 11–13. A further course of 20 lectures

on selected topics in solid state physics currently covers

magnetism, superconductivity and ferroelectricity (Chapters

7–10). The flow diagram inside the front cover can be used

as an aid to the design of courses based on this book.

Important subjects that are not covered in this book are

crystal defects and disordered solids. I would have liked to

include a chapter on each of these topics but would have

exceeded the length limit set by the publishers and editors

had I done so.

Like the first edition, this book presupposes a background

knowledge of properties of matter (interatomc potentials

and their relation to binding energies and elastic moduli,

kinetic theory), quantum mechanics (Schrodinger’s equation



and its solution to find energy eigenvalues and

eigenfunctions), electricity and magnetism (Maxwell’s

equations and some familiarity with electric and magnetic

fields in matter) and thermal physics (the Boltzmann factor

and the Fermi and Bose distributions). Books in which this

background information can be found are listed in the

bibliography along with selected general reference books on

solid state physics and some books and articles that provide

further information on specific topics.

This book includes some more advanced and detailed

material, which can be omitted without loss of continuity.

Complete sections in this category are identified by starring

and parts of sections are printed on a grey background.

The use of bold type for a technical term in the text,

normally when the term is first encountered, indicates that a

definition or explanation of the term can be found there.

Italic type is used for emphasis.

I am very grateful to David Sandiford and Henry Hall for

their helpful advice and constructive criticism. I would also

like to thank Manchester undergraduate Colin Lally, who

read the manuscript from the point of view of a prospective

consumer; his reaction reassured me that the level was

appropriate. Ian Callaghan’s draughtmanship and

photography was invaluable in producing many of the

figures, and my son James helped willingly with some of the

more mundane manuscript-preparation tasks.

September 1990

JOHN HOOK
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CHAPTER 1

Crystal structure

Beauty when uncloth’d is clothè d best.—Phineas

Fletcher (1582–1650)

1.1 INTRODUCTION
The aim of solid state physics is to explain the properties of

solid materials as found on Earth. For almost all purposes

the properties are expected to follow from Schrödinger’s

equation for a collection of atomic nuclei and electrons

interacting with electrostatic forces. The fundamental laws

governing the behaviour of solids are therefore known and

well tested. It is nowadays only in cosmology, astrophysics

and high-energy physics that the fundamental laws are still

in doubt.

In this book we shall be concerned almost entirely with

crystalline solids, that is solids with an atomic structure

based on a regular repeated pattern, a sort of three-

dimensional wallpaper. Many important solids are crystalline

in this sense, although this is not always manifest in the

external form of the material. Because calculations are

easier, more progress has been made in understanding the

behaviour of crystalline than of non-crystalline materials.

Many common solids—for example, glass, plastics, wood,

bone—are not so highly ordered on an atomic scale and are

therefore non-crystalline. Only recently has progress been

made in understanding the behaviour of non-crystalline

solids at a fundamental level.†



Even in the restricted field of crystalline solids the most

remarkable thing is the great variety of qualitatively

different behaviour that occurs. We have insulators,

semiconductors, metals and superconductors—all obeying

different macroscopic laws: an electric field causes an

electric dipole moment in an insulator (Chapter 9), a steady

current in a metal or semiconductor (Chapters 3 to 6) and a

steadily accelerated current in a superconductor (Chapter

10). Solids may be transparent or opaque, hard or soft,

brittle or ductile, magnetic or nonmagnetic.

In this chapter we first introduce in Section 1.2 the basic

ideas of crystallography. In Section 1.3 we describe some

important crystal structures and in Section 1.4 we explain

how x-ray diffraction is used to determine crystal structure.

In Section 1.5 we discuss quasi-crystals, ordered solids that

challenge much of the conventional wisdom concerning

crystalline materials. Section 1.6 contains a qualitative

description of the interatomic forces responsible for binding

atoms into solids.

1.2 ELEMENTARY

CRYSTALLOGRAPHY
A basic knowledge of crystallography is essential for solid

state physicists. They must know how to specify completely,

concisely and unambiguously any crystal structure and they

must be aware of the way that structures can be classified

into different types according to the symmetries they

possess; we shall see that the symmetry of a crystal can

have a profound influence on its properties. Fortunately we

will be concerned in this book only with solids with simple

structures and we can therefore avoid the sophisticated

group theoretical methods required to discuss crystal

structures in general.



1.2.1 The crystal lattice

We will use a simple example to illustrate the methods and

nomenclature used by crystallographers to describe the

structure of crystals. Graphite is a crystalline form of carbon

in which hexagonal arrays of atoms are situated on a series

of equally spaced parallel planes. The arrangement of the

atoms on one such plane is shown in Fig. 1.1(a). We choose

graphite for our example because a single two-dimensional

plane of atoms in this structure illustrates most of the

concepts that we need to explain. Solid state physicists

often resort to the device of considering a system of one or

two dimensions when confronted with a new problem; the

physics is often (but not always) the same as in three

dimensions but the mathematics and understanding can be

much easier.

To describe the structure of the two-dimensional graphite

crystal it is necessary to establish a set of coordinate axes

within the crystal. The origin can in principle be anywhere

but it is usual to site it upon one of the atoms. Suppose we

choose the atom labelled O in Fig. 1.1(a) for the origin. The

next step is a very important one; we must proceed to

identify all the positions within the crystal that are identical

in all respects to the origin. To be identical it is necessary

that an observer situated at the position should have

exactly the same view in any direction as an observer

situated at the origin. Clearly for this to be possible we must

imagine that the two-dimensional crystal is infinite in

extent. Readers should convince themselves that the atoms

at A, B, C, D and E (and eight others in the diagram) are

identical to the atom at the origin but that the atoms at F, G

and H are not; compare for example the directions of the

three nearest neighbours of the atom at O with the

directions of the three nearest neighbours of the atom at F.

The set of identical points identified in this way is shown in

Fig. 1.1(b) and is called the crystal lattice; comparison of



Figs. 1.1(a) and (b) illustrates clearly that the lattice is not in

general the same as the structure. Readers should convince

themselves that, apart from an unimportant shift in position,

the lattice is independent of the choice of origin. Having

identified the crystal lattice in this way the coordinate axes

are simply obtained by joining the lattice point at the origin

to two of its neighbours.

Fig. 1.1 Two-dimensional crystal of carbon atoms in

graphite: (a) shows how the atoms are situated at the

corners of regular hexagons; (b) shows the crystal lattice

obtained by identifying all the atoms in (a) that are in

identical positions to that at O. The crystal axes, lattice

vectors and conventional unit cell are shown in both figures

There are many ways of doing this but the conventional

choice for graphite is to take OA and OB for the x and y axes

as shown in Fig. 1.1(b). Note that the coordinate axes for



graphite are not orthogonal. An example of an

unconventional choice of coordinate axes for graphite would

be to take OA for the x axis as before but to take the OD

direction for the y axis. The distances and directions of the

nearest lattice points along the x and y axes are specified

by the lattice vectors a and b respectively (Fig. 1.1.(b)).

The crystal lattice is completely defined by giving the

lengths of a and b and the angle γ between them. For

graphite we have a = b = 2.46 Å, γ = 120° (1 Å = 1

ångstrom = 10−10 m). The conventional choice of axes for

graphite therefore clearly reflects the hexagonal symmetry

of the structure; this is not the case for the unconventional

choice discussed above.

The positions of all the lattice points of the two-

dimensional graphite crystal are reached by drawing all

possible vectors of the form

(1.1) 

from the origin, where u and υ take on all possible integer

values, positive, negative and zero. That the crystal appears

identical when viewed from all the positions given by this

equation is an indication that it possesses the important

property of translational invariance.

The generalization of the above ideas to a three-

dimensional crystal is straightforward. An origin is chosen

and all the points within the crystal that are identical to it

are identified; this set of points constitutes the three-

dimensional crystal lattice. The directions of the crystal

coordinate axes are then defined by joining the lattice point

at the origin to three of its near neighbours (Fig. 1.2). The

choice of neighbours is sometimes obvious but, where this is

not the case, convention usually dictates the choice that

most clearly reflects the symmetry of the lattice. The

distances and directions of the nearest lattice points along

the crystallographic x, y and z axes are specified by the

three lattice vectors a, b and c. The lattice is completely



specified by giving the lengths of a, b and c, and the angles

α, β, and γ between them (Fig. 1.2). The positions of all the

lattice points are reached by drawing all possible vectors of

the form

Fig. 1.2 Crystallographic axes and unit cell for a three-

dimensional crystal lattice

(1.2) 

from the origin. The ability to express the positions of the

points in this way, with a suitable choice of a, b and c, may

be taken as a definition of a lattice in crystallography. A

crystalline material may be defined as a material that

possesses a lattice of this kind; the translational invariance

property of the crystal is that it appears identical from all

positions of the form of Eq. (1.2). Note that the only effect of

a shift in choice of origin on a crystal lattice is a shift in the

lattice as a whole by the same amount.

The lattice vectors also define the unit cell of a crystal.

This concept is most easily explained by returning to the

two-dimensional graphite crystal of Fig. 1.1, for which the

unit cell is the parallelogram OACB defined by the vectors a

and b. It is so called because stacking such cells together

generates the entire crystal lattice, as is indicated by the



broken lines in Fig. 1.1(b). The analogous three-dimensional

object in Fig. 1.2, defined by lattice vectors a, b and c, is

called a parallelopiped and is the unit cell for the three-

dimensional lattice. The unit cell obtained from the

conventional choice of lattice vectors is known as the

conventional unit cell.

The concept of the unit cell as a building block allows us to

understand the remarkable similarities between different

crystals of the same material. In particular we can explain

the law of constancy of angle (first stated by Nicolaus Steno

in 1761) that: In all crystals of the same substance the

angles between corresponding faces have a constant value.

Fig. 1.3 is an illustration from an early book on mineralogy

showing how macroscopically plane faces in various

orientations can be built up by using cubic unit cells as

building blocks. We shall see in Chapter 12 that the surfaces

of crystals are not in fact constructed in the manner

suggested by this illustration.

The reader will have noticed that the two-dimensional

lattice of graphite (Fig. 1.1(b)) possesses symmetry

properties other than the translational invariance indicated

by Eq. (1.1). The lattice is transformed into itself, for

example, by a rotation of 60° about an axis perpendicular to

the xy plane through a lattice point; this axis is the

crystallographic z axis of graphite, which is therefore a

sixfold rotation axis of the lattice. In 1845 Bravais deduced

that any three-dimensional lattice of the form of Eq. (1.2)

could be classified into one of 14 possible types according

to the symmetry that it possessed. The 14 Bravais lattices

contain only one-, two-, three-, four- and six-fold rotation

axes.

We will not describe all 14 Bravais lattices since only a few

will feature in this book, but to illustrate the principle of the

classification of lattices by symmetry we consider the

corresponding two-dimensional problem. A two-dimensional



lattice is specified by a, b and the angle γ between a and b.

A lattice with translational symmetry only is shown in Fig.

1.4(a) with three possible choices of primitive unit cell.

Lattices of higher symmetry are shown in Figs. 1.4(b)-(e).

The rectangular lattice in Fig. 1.4(b) has γ = 90°.

Alternatively with a general value of γ we may have a = b,

giving the rhombic lattice shown in Fig. 1.4(c). This latter

example is interesting in that it shares some symmetries

with the rectangular lattice and it can also be described by

the rectangular unit cell defined by a′ and b′. This

rectangular unit cell has a lattice point at the centre as well

as at the corners and the rhombic lattice may therefore also

be referred to as a centred rectangular lattice. The unit

cell defined by a′ and b′ has an area twice that defined by a

and b. The latter is the smallest possible unit cell of the

lattice and is said therefore to be a primitive unit cell; the

former unit cell is consequently a non-primitive unit cell.

We will encounter examples of both primitive and non-

primitive three-dimensional unit cells in Section 1.3. To

complete our survey of two-dimensional lattices we must

consider the possibility a = b combined with a special value

of γ. Two cases arise: γ = 60° (or 120°) gives the triangular

lattice of Fig. 1.4(d) with each lattice point surrounded by

six neighbours at the corners of a regular hexagon; and γ =

90° gives the square lattice of Fig. 1.4(e). The two-

dimensional graphite lattice of Fig. 1.1(b) is a triangular

lattice.

Fig. 1.3 The way in which the stacking of cubic unit cells can

produce crystal faces of different orientations (Hauy, Traite

de crystallographie)



Fig. 1.4 The five possible types of crystal lattice in two

dimensions, (a) Lattice with translational symmetry only,

showing three possible primitive unit cells, (b) Rectangular

lattice, γ = 90°. (c) Rhombic lattice, a = b, equivalent to a

centred rectangular lattice with the non-primitive unit cell

defined by a′ and b′. (d) Triangular lattice, a = b, γ = 60°.

(e) Square lattice, a = b, γ = 90°


