


About the Book

This book is about my own personal favourite puzzles

and conundrums in science, all of which have

famously been referred to as paradoxes, but which

turn out not to be paradoxes at all when considered

carefully and viewed from the right angle.

A true paradox is a statement that leads to a circular and

self-contradictory argument, or one that describes a

logically impossible situation. Our subject is ‘perceived

paradoxes’ – thought experiments or questions that on first

encounter seem impossible to answer, but which science

has been able to solve.

Our tour of these mind-expanding puzzles will take us

through some of the greatest hits of science – from

Einstein’s theories about space and time to the latest ideas

of how the quantum world works. Some of our paradoxes

may be familiar, such as that of Schrödinger’s famous cat,

which is seemingly alive and dead at the same time; or the

Grandfather Paradox – if you travelled back in time and

killed your grandfather you would not have been born and

would not therefore have killed your grandfather. Other

paradoxes will be new to you but no less bizarre and

fascinating.

We will ask such questions as: how does the fact that it gets

dark at night prove the Universe must have started with a

big bang? Where are all the aliens? And why does the

length of a piece of string vary depending on how fast it is

moving?



In resolving our paradoxes we will have to travel to the

furthest reaches of the Universe and explore the very

essence of space and time. Hold on tight.
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Preface

PARADOXES COME IN all shapes and sizes. Some are

straightforward paradoxes of logic with little potential for

investigation, while others sit atop icebergs of entire

scientific disciplines. Many can be resolved by careful

consideration of their underlying assumptions, one or more

of which may be faulty. These, strictly speaking, should not

be referred to as paradoxes at all, since once a puzzle is

solved it ceases to be a paradox.

A true paradox is a statement that leads to a circular

and self-contradictory argument, or describes a situation

that is logically impossible. But the word ‘paradox’ does

tend to be used more broadly to include what I prefer to

call ‘perceived paradoxes’. For such puzzles there is a way

out. It may be that the paradox has hidden within it a trick

or sleight of hand that deliberately misleads the listener or

reader. Once the trick is uncovered, the contradiction or

logical absurdity disappears. Another type of perceived

paradox is one in which the statement and the conclusions,

while initially sounding absurd or at the very least

counterintuitive, turn out on more careful consideration not

to be so, even if the result remains somewhat surprising.

And then there is the category of paradoxes in physics.

All of these – well, nearly all – can be resolved with a little

bit of fundamental scientific knowledge; and these are the

ones that I focus on in this book.



So let us first take a brief look at a true logical paradox,

just so that it is clear what I am not going to be talking

about. This is a statement that is constructed in such a way

that there really is no way out of the loop.

Take the simple assertion: ‘This statement is a lie.’ On

first reading, I imagine the words themselves will seem

straightforward enough. Think about their meaning,

however, and the logical paradox will become evident as

you work carefully through the statement’s implications.

Can five simple words really give you a headache? If so, I

would argue that it is a fun sort of headache, which is

perhaps itself a paradox, and one that you will no doubt

feel sadistically obliged to pass on to family and friends.

You see, ‘This statement is a lie’ is telling you that in

announcing itself to be a lie it must itself be a lie, and so it

is not a lie – in which case it is true, which is to say that it

really is a lie, which means it is not a lie, and so on in an

infinite loop.

There are many such paradoxes. This book is not about

them.

This book is instead about my own personal favourite

puzzles and conundrums in science, all of which have

famously been referred to as paradoxes, but which turn out

not to be when considered carefully and viewed from the

right angle. While powerfully counterintuitive when first

described, they always turn out to be missing some subtle

consideration of the physics which, when taken into

account, knocks out one of the pillars on which the paradox

is built and brings the whole edifice toppling down. Despite

having been resolved, many of them continue to be referred

to as paradoxes, partly owing to the notoriety they gained

when first articulated (before we had figured out where we

were going wrong) and partly because, so presented, they

are useful tools in helping scientists get their heads round

some rather complex concepts. Oh, and because they are

such delicious fun to explore.



Many of the puzzles we will look at do indeed seem at

first to be true paradoxes rather than just perceived ones.

That is the point. Take a simple version of the famous time

travel paradox: what if you were to go back into the past

using a time machine and kill your younger self? What

happens to the killer you? Do you pop out of existence

because you stopped yourself from growing older? If so,

and you never did reach the age at which you became a

murderous time traveller, then who killed the younger you?

The older you has the perfect alibi: you never even existed!

So if you did not survive to travel back in time and kill your

younger self, then you do not kill your younger self and so

you do survive to grow older and travel back in time and

kill yourself, so you do that, so you don’t survive, and so on.

This appears to be the perfect logical paradox. And yet

physicists have not yet ruled out the possibility, certainly in

theory, of time travel. So how can we extricate ourselves

from this paradoxical loop? I will discuss this particular

paradox in Chapter 7.

Not all perceived paradoxes require a scientific

background to make sense of them. To demonstrate this, I

have given over the first chapter to a handful of such

perceived paradoxes that can be resolved with

commonsense logic. What do I mean by this? Well, consider

a simple statistical paradox in which it is quite possible to

draw the wrong conclusion from a basic correlation: it is

known that towns with larger numbers of churches

generally have higher crime rates. This is somewhat

paradoxical, unless you believe that churches are breeding

grounds for lawlessness and crime – which, whatever your

religious and moral views, seems pretty unlikely. But the

resolution is straightforward. Both a higher number of

churches and a higher absolute level of crime are the

natural results of a larger population. Just because A leads

to B and A leads to C does not mean that B leads to C or

vice versa.



Here is another example of a simple brainteaser that

sounds paradoxical when first stated, but whose

paradoxical nature dissolves away once it has been

explained. It was recounted to me a few years ago by a

Scottish professor of physics who is a colleague and close

friend of mine. He claims that ‘every Scotsman who travels

south to England raises the average IQ of both countries’.

The point is this: since all Scotsmen claim to be smarter

than all Englishmen, then any one of them would enhance

the average IQ of England by living there; however, to

leave Scotland is such a foolish act that only those less

intelligent among them would do so, leaving the average IQ

of those remaining slightly higher. So you see, at first

glance it sounds like a paradoxical statement, yet with

simple logical reasoning it can be resolved beautifully – if

not convincingly for the English, of course.

Once we have had some fun in Chapter 1 with a few

well-known paradoxes that can be resolved without any

science, we will move on to my nine chosen paradoxes in

physics. After stating each one, I will lay it bare and explain

how it evaporates away to reveal the underlying logic that

shows its fallacy, or why it is not really an issue at all. They

are all fun because they have some intellectual meat, and

because there is a way out. You just need to know where to

look, where to find the Achilles heel that can be exploited

with careful prodding and a better understanding of the

science, until the paradox is a paradox no more.

The names of some of these paradoxes will be familiar.

Take the Paradox of Schrödinger’s Cat, for instance, in

which an unfortunate feline is locked into a sealed box and

is simultaneously both dead and alive until we open the

box. Less familiar, perhaps, but still known to some, is

Maxwell’s demon, the mythical entity that presides over

another sealed box and which is seemingly able to violate

that most sacred of commandments in science, the Second

Law of Thermodynamics – forcing the contents of the box to



un-mix and become ordered. To understand such

paradoxes, and their resolution, it is necessary to grasp

some background science; and so I have set myself the

challenge of getting these scientific concepts across with as

little fuss as possible, so that you can appreciate and enjoy

the implications without any in-depth knowledge of

calculus, thermodynamics or quantum mechanics.

I have plucked several of the other paradoxes in this

book from the undergraduate course on relativity that I

have taught for the past fourteen years. Einstein’s ideas on

space and time, for instance, provide fertile ground for

logical brainteasers such as the Pole in the Barn Paradox,

the Paradox of the Twins and the Grandfather Paradox.

Others, such as those involving the cat and the demon,

have, in the eyes of some, yet to be satisfactorily laid to

rest.

When choosing my greatest enigmas in physics, I have

not homed in on the biggest unsolved problems – for

example, what dark matter and dark energy, which

between them make up 95 per cent of the contents of our

universe, are made of, or what, if anything, was there

before the Big Bang. These are incredibly difficult and

profound questions to which science has yet to find

answers. Some, like the nature of dark matter, that

mysterious stuff that makes up most of the mass of

galaxies, may well be answered in the near future if

particle accelerators like the Large Hadron Collider in

Geneva continue to make new and exciting discoveries;

others, like an accurate description of a time before the Big

Bang, may remain unanswered for ever.

What I have aimed to do is make a sensible and broad

selection. All the paradoxes I discuss in the following

chapters deal with deep questions about the nature of time

and space and the properties of the Universe on the very

largest and smallest of scales. Some are predictions of

theories that sound very strange on first encounter, but



which become intelligible once the ideas behind the theory

are explored carefully. Let’s see if we can’t lay them all to

rest, and along the way give you, dear reader, some mind-

expanding fun.



ONE

The Game Show Paradox

Simple probabilities that can really blow your

mind

BEFORE I GET stuck into the physics, I thought I would lead

you in gently with a few simple, entertaining and

frustrating puzzles as a warm-up. In common with the rest

of the collection in this book, none of these are real

paradoxes at all; they just need to be unpicked carefully.

But unlike those coming later, which will require an

understanding of the underlying physics, the paradoxes in

this chapter are a collection of logical brainteasers that can

be resolved without any scientific background at all. The

last and most delicious of the group, known as the Monty

Hall Paradox, is so utterly baffling that I will invest

considerable effort in analysing it in several different ways

so you can choose which particular solution you prefer.

All the puzzles in this chapter fall into one of two

categories with the exotic-sounding names of ‘veridical’

and ‘falsidical’ paradoxes. A veridical paradox is one

leading to a conclusion that is counterintuitive because it

goes against common sense, and yet can be shown to be

true using careful, often deceptively simple, logic. In fact,

with these the fun lies in trying to find the most convincing

way of demonstrating that it is true, despite that lingering



uncomfortable feeling that there has to be a catch

somewhere. Both the Birthday Paradox, which I will discuss

shortly, and the Monty Hall Paradox are in this category.

A falsidical paradox, on the other hand, starts off

perfectly sensibly, yet somehow ends up with an absurd

result. However, in this case the apparently absurd result is

indeed false, thanks to some subtly misleading or

erroneous step in the proof.

Examples of falsidical paradoxes are the mathematical

tricks that, by following a few steps of algebra, ‘prove’

something like 2 = 1. No amount of logic or philosophizing

should convince you that this can be true. I won’t go into

any of these here, mainly since I don’t really want to be

hitting you with algebra just in case you don’t love it as

much as I do. Suffice it to say that the calculation leading

to the ‘solution’ usually involves a step in which a quantity

is divided by zero – something any self-respecting

mathematician knows to avoid at all costs. Instead, I will

focus on a few problems that you can appreciate with only

the bare minimum of mathematical ability. I’ll begin with

two great falsidical paradoxes: the Riddle of the Missing

Dollar and Bertrand’s Box Paradox.

The Riddle of the Missing Dollar

This is a brilliant puzzle that I used a few years ago when I

was a guest on a TV quiz show called Mind Games – not

that I am claiming to have been the first to come up with it,

of course. The premise of the show was that each week the

guests would compete against each other to solve puzzles

set by the host of the show, the mathematician Marcus du

Sautoy. In addition, each was expected to bring along their

favourite brainteasers to try to bamboozle the other team.

Here is how it goes:



Three travellers check into a hotel for the night. The

young man at the reception desk charges them $30 for a

room with three beds in it. They agree to split the price of

the room equally, each of them paying $10. They take the

key and head up to the room to settle in. After a few

minutes the receptionist realizes he has made a mistake.

The hotel has a special offer on all week and he should only

have charged them $25 for the room. So as not to get into

trouble with his manager, he quickly takes five dollar bills

from the till and rushes up to rectify his error. On the way

to the room he realizes that he cannot split the five dollars

equally between the three men, so he decides to give each

of them one dollar and keep two for himself. That way, he

argues, everyone is happy. Here, then, is the problem we

are left with: each of the three friends will have contributed

$9 towards the room. That makes $27 that the hotel has

made, and the receptionist has a further $2, which makes

$29. What has happened to the last dollar out of the

original $30?

You may be able to see the solution to this straight away;

I certainly didn’t when I first heard it. So I will let you think

about it a little before you read on.

Have you worked it out? You see, this puzzle only sounds

paradoxical because of the misleading way it is stated. The

error in the reasoning is that I added the $27 dollars to the

$2 taken by the receptionist – and there is no reason to do

that, because there is no longer a total of $30 that needs to

be accounted for. The receptionist’s $2 should be

subtracted from the $27 paid by the friends, leaving $25,

which is the amount in the till.

Bertrand’s Box Paradox



My second example of a falsidical paradox is credited to the

nineteenth-century French mathematician Joseph Bertrand.

(It is not his most famous paradox, which is rather more

mathematically technical.)

You have three boxes, each containing two coins; each

box is divided into two halves by a partition, with a coin in

each half. Each side can be opened separately to see the

coin inside (that is, without allowing you to see the other

coin). One box contains two gold coins (we will call this one

GG), the second (which we will call SS) contains two silver

coins and the third (GS) contains one of each. What is the

probability of picking the box with the gold and silver coins

in it? The answer is simple, of course: one in three. That is

not the puzzle.

 

Figure 1.1. Bertrand’s boxes



Now, pick a box at random. What if you open one of its

lids and find a gold coin inside? What now are the chances

of this box being the GS one? Well, since in finding a gold

coin you know this cannot be the SS box, you must rule that

option out and be left with two choices: either it is the GG

box or it is the GS box. Hence the probability of its being

the GS box is one in two, right?

Had you opened the lid to find a silver coin instead, then

you could now rule out the GG option; so you are left with

SS or GS, so the probability that this is the GS box is still

one in two.

Since you must find either a gold or a silver coin when

you open the lid of the chosen box, and since there are

three coins of each kind in total, giving you an equal

chance of finding either, there is therefore a one in two

probability that you have found the GS box whatever coin

you find. Thus, after taking a peek inside one half of your

chosen box the overall probability that it is the GS box must

change from one in three, as it was at the start, to one in

two. But how can seeing one of the coins change the

probability like this? If you choose a box at random and,

before opening one of its lids, you know that there is a one

in three chance that it is the GS one, then how, by seeing

one of the coins inside, and gaining no information at all

from this, since you know you are certain to find either a

gold or a silver coin anyway, does the probability switch

from one in three to one in two? Where are we going

wrong?

The answer is that the probability is always one in three

and never one in two, whether you see one of the coins in

the box or not. Consider the case when you find a gold coin

inside your box. There are three gold coins in total – let us

call them G1, G2 and G3, and let us say that the GG box

contains coins G1 and G2, while G3 is the gold coin in the

GS box. If you open one of the boxes and find a gold coin

inside, there is a two in three chance of your having picked



the GG box, since the coin you are looking at could be

either G1 or G2. There is only a one in three chance that it

is the G3 coin and therefore that the box you have picked is

the GS one.

The Birthday Paradox

This is one of the best-known veridical paradoxes. Unlike

the last two examples, there is no trick here, no error in the

reasoning or sleight-of-hand in the telling. Whether you are

convinced by the solution or not, I must stress that it is

perfectly correct and consistent, both mathematically and

logically. In a way, this frustration makes the paradox all

the more fun.

Here is how it is stated:

How many people would you say there would have to

be in a room for the chances of any two of them

sharing a birthday to be better than fifty-fifty – that

is, for it to be more likely than not that any two share

a birthday?

Let us first apply a little naïve common sense (which of

course is going to turn out to be wrong). Since there are

365 days in a year, imagine there is a lecture hall with 365

empty seats. One hundred students enter the hall and each

of them takes a seat at random. Some friends may wish to

sit next to each other, a few prefer the anonymity of the

back row so they can fall asleep undetected, while the more

studious prefer to be closer to the front. But it does not

matter how they distribute themselves; the fact remains

that more than two-thirds of the seats will remain empty. Of

course, no student will sit on a seat already occupied, but

we sort of feel that the chance of any two students wanting



the same seat is pretty slim, given how much space they

have to spread out in.

If we now apply this commonsense approach to the

birthday problem, we might think that the chance of any of

the hundred students sharing a birthday is equally slim,

given that there are as many days to choose from as there

are seats. Of course, there may well be some birthday

buddies, but intuitively we would think that this is less

likely than not.

Naturally, with a group of 366 people (leaving leap years

aside), it needs no explaining how we can be certain that at

least two will share a birthday. But things get interesting

when we reduce the number of people.

In fact, incredible as it may seem, you need only fifty-

seven people in the room for the probability of any two

sharing a birthday to be as high as 99 per cent. That is,

with only fifty-seven people, it’s almost certain that two of

them will share a birthday! This in itself sounds hard

enough to believe. But as for the answer to the puzzle, the

number above which it is ‘more likely than not’ that two

share a birthday (that is, for the probability to be more

than one-half) is considerably lower than fifty-seven. In

fact, it is just twenty-three people!

Most people find this result very startling the first time

they hear it, and continue to feel uneasy about it even when

assured it’s correct – because it is intuitively so difficult to

believe. So let’s go through the maths, which I will try to do

as clearly as possible.

First, we keep the problem as simple as we can by

assuming we are not dealing with a leap year, that all days

in the year are equally probable for birthdays and that

there are no twins in the room.

The mistake many people make is to think it is to do

with comparing two numbers: the number of people in the

room and the number of days in a year. Thus, since the

twenty-three people have a choice of 365 days to have



birthdays on, it seems far more likely than not that they will

all avoid each other. But this way of looking at the problem

is misleading. You see, for people to share birthdays we

require pairs of people, not individuals, and we must

consider the number of different pairs available. Let’s start

with the simplest case: with just three people there are

three pairs: A–B, A–C and B–C. But with four people there

are six pairs: A–B, A–C, A–D, B–C, B–D, C–D. With twenty-

three people we find that there are 253 different pairs.1 You

see how much easier it becomes to believe that one of

these 253 pairs of people will share a birthday from a

choice of 365 days.

The way to work out the probability correctly is to start

with one pair, keep adding people and see how the

probability of birthday sharing changes. This is done by

working out not the probability of sharing, but rather the

probability of each new person avoiding all other birthdays

so far. Thus, the probability of the second person avoiding

the birthday of the first is 364 ÷ 365, because he has all

but one of the days in the year to pick from. The probability

of the third person avoiding the birthdays of the first and

second is then 363 ÷ 365. But we cannot forget about the

first two people still having to avoid each other’s birthdays

too (the 364 ÷ 365 number). In probability theory, when we

want to work out the chances of two different things

happening at the same time, we must multiply the

probability of the first and the probability of the second

together. So the probability of the second person avoiding

the birthday of the first, and of the third avoiding those of

the first and second, is: 364/365 × 363/365 = 0.9918.

Finally, if this is the probability of all three avoiding each

other’s birthdays, the probability of any two of the three

sharing a birthday is 1 – 0.9918 = 0.0082. So the

probability of sharing between just three people is pretty

tiny, as you might expect.



We now carry on with this process – adding people one

by one and building up the chain of multiplied fractions to

work out the probability of everyone avoiding everyone else

– until the answer we get drops below 0.5, i.e. 50 per cent.

This is, of course, the point at which the probability of any

pair sharing a birthday rises above 50 per cent. We find we

need twenty-three fractions, hence twenty-three people:

And so the probability of any two of the twenty-three

people in the room sharing a birthday is:

1 – 0.4927 = 0.5073 = 50.73%.

This puzzle has required some probability theory to

solve it. The next one is, in a way, more straightforward.

This I think makes it all the more incredible. It is my

favourite veridical paradox because it is so easy to state, so

easy to explain, and yet so hard to fathom.

The Monty Hall Paradox

This puzzle has its origins in Bertrand’s Box Paradox and is

an example of the power of what mathematicians call

‘conditional probability’. It is based on an earlier puzzle

called the Three Prisoners Problem, described by the

American mathematician Martin Gardner in his

‘Mathematical Games’ column of the magazine Scientific

American in 1959. But the Monty Hall Paradox is, I believe,

a superior and much clearer adaptation. It is so called

because it was first cast in the form of a scenario from the



long-running US television game show Let’s Make a Deal,

presented by the charismatic Canadian, Monte Hall, who,

on entering into show business, altered the spelling of his

first name to Monty.

Steve Selvin is an American statistician and professor at

the University of California in Berkeley. He is a renowned

educator who has won awards for his teaching and

mentoring. As an academic, he has applied his

mathematical expertise to medicine, specifically in the field

of biostatistics. However, he owes his worldwide fame not

to these considerable achievements but to an amusing

article he wrote on the Monty Hall Paradox. It was

published in the February 1975 edition of an academic

journal called The American Statistician and took up just

half a single page.

Selvin could never have anticipated that his short article

would have such a huge impact – after all, The American

Statistician was a specialist journal read mainly by

academics and educators – and indeed, fifteen years would

pass before the problem he posed and solved burst into the

popular consciousness. In September 1990 a reader of

Parade magazine, a weekly publication boasting a US

circulation in the tens of millions, submitted a puzzle to its

‘Ask Marilyn’ column, in which Marilyn vos Savant

responds to readers’ questions and solves their

mathematical puzzles, brainteasers and logical

conundrums. Vos Savant first rose to fame in the mid-1980s

when she made it into The Guinness Book of Records for

having the world’s highest IQ (measured to be 185). The

writer of this particular ‘Ask Marilyn’ entry was Craig F.

Whitaker, and he essentially put to vos Savant a revised

version of Selvin’s Monty Hall Paradox. What followed was

nothing short of remarkable.

The publication of the problem in Parade and Marilyn

vos Savant’s response brought it to nationwide, then

worldwide, attention. Her answer, though completely



counterintuitive, was, like Selvin’s original solution, utterly

correct. But it immediately spawned a host of letters to the

magazine from incensed mathematicians eager to declare

her wrong. Here are some extracts from three of them:

As a professional mathematician, I’m very concerned

with the general public’s lack of mathematical skills.

Please help by confessing your error and in the future

being more careful.

You blew it, and you blew it big! You seem to have

difficulty grasping the basic principle at work here …

There is enough mathematical illiteracy in this

country, and we don’t need the world’s highest IQ

propagating more. Shame!

May I suggest that you obtain and refer to a standard

textbook on probability before you try to answer a

question of this type again?

I am in shock that after being corrected by at least

three mathematicians, you still do not see your

mistake.

Maybe women look at math problems differently than

men.

Well, what a lot of angry people. And what a lot of

subsequent egg on faces. Savant revisited the problem in a

later issue and held her ground, arguing her case clearly

and conclusively – as you might expect from someone with

an IQ of 185. The story eventually made it on to the front

page of the New York Times – and yet still the debate raged

on (as you can see if you care to search for it online).

It may be starting to sound to you as though this

paradox is so difficult to resolve that only a genius can



really get their head round it. Not so. In fact, there are

many simple ways of explaining it, and the internet is full of

articles, blogs – even YouTube videos – that do so.

Anyway, enough of the teasing and historical rambling –

let me get straight to the problem. I think it only fair to

begin by quoting Steve Selvin’s amusing original 1975

version in The American Statistician.

A PROBLEM IN PROBABILITY

It is ‘Let’s Make a Deal’ – a famous TV show starring

Monty Hall.

Monty Hall: One of the three boxes labelled A, B, and

C contains the keys to that new 1975 Lincoln

Continental. The other two are empty. If you choose

the box containing the keys, you win the car.

Contestant: Gasp!

Monty Hall: Select one of these boxes.

Contestant: I’ll take box B.

Monty Hall: Now box A and box C are on the table

and here is box B (contestant grips box B tightly). It

is possible the car keys are in that box! I’ll give you

$100 for the box.

Contestant: No, thank you.

Monty Hall: How about $200?

Contestant: No!

Audience: No!!



Monty Hall: Remember that the probability of your

box containing the keys to the car is 1 in 3 and the

probability of your box being empty is 2 in 3. I’ll give

you $500.

Audience: No!!

Contestant: No, I think I’ll keep this box.

Monty Hall: I’ll do you a favour and open one of the

remaining boxes on the table (he opens box A). It’s

empty! (Audience: applause). Now either box C or

your box B contains the car keys. Since there are two

boxes left, the probability of your box containing the

keys is now 1 in 2. I’ll give you $1000 cash for your

box.

WAIT!!!!

Is Monty right? The contestant knows that at least

one of the boxes on the table is empty. He now knows

it was box A. Does this knowledge change his

probability of having the box containing the keys

from 1 in 3 to 1 in 2? One of the boxes on the table

has to be empty. Has Monty done the contestant a

favour by showing him which of the two boxes was

empty? Is the probability of winning the car 1 in 2 or

1 in 3?

Contestant: I’ll trade you my box B for the box C on

the table.

Monty Hall: That’s weird!!

HINT: The contestant knows what he is doing!


