


Table of Contents

Part I: Introduction and Deployment

Chapter 1: Background on IIS and New

Features in IIS 8.0

IIS Versions 1.0 to 4.0

IIS 5.0 and 5.1

IIS 6.0

IIS 7.0 and 7.5

Windows Server 2012 Features

IIS 8.0 Features

Chapter 2: IIS 8.0 Architecture

IIS Architecture Basics

IIS 7.0 and Later Architecture

IIS 8.0 Architecture

Windows Server 2012 Architecture

Chapter 3: Planning Your Deployment

Windows 2012 Server Deployment Planning

IIS 8.0 Deployment Planning

Application Deployment Planning

Automation and Deployment Tools

Capacity Planning

Chapter 4: Installing IIS 8.0

Windows Server 2012 Server Manager



The Default IIS 8.0 Installation

Installing IIS 8.0's Features

Installing IIS 8.0 Using PowerShell

Upgrading from IIS 7.0 to IIS 8.0

Installing IIS 8.0 on Windows 8

Installing IIS 8.0 on Windows 7

Automated Installation and Configuration

Hosting Service Recommendations

Part II: Administration

Chapter 5: Administration Tools

Key Characteristics

IIS Manager

IIS Manager Extensibility

Remote Connections

Configuration Settings

Command-Line Management

Chapter 6: Website Administration

Websites, Applications, and Virtual Directories

Creating a New Website

Configuring Logging

Configuring Host Headers

Administering Applications

Administering Virtual Directories

Authentication

Configuring Compression

Configuring Default Document Settings



Configuring MIME Settings

Basic Administration Tasks

Chapter 7: Web Application Administration

Application Administration

ASP Configuration

ASP.NET Configuration

ISAPI Configuration

CGI Configuration

FastCGI Configuration

Windows Process Activation Service

Application Initialization

Chapter 8: Web Application Pool

Administration

A Background of Website Separation

Defining Applications

Comparing Virtual Directories to Applications

Understanding the w3wp.exe Process

Working with Application Pools

Application Pool Security

Noteworthy Advanced Settings

Application Pool Users

Chapter 9: Delegating Remote

Administration

Introducing the Main Characters

IIS Manager Remote Access

Delegation Settings



Chapter 10: Configuring Other Services

Installing and Configuring an FTP Server

Installing and Configuring an FTP Server

Configuring Existing FTP Sites

Configuring FTP User Security

Administering FTP with Configuration Files

The FTP Command-Line Client

Installing and Configuring an SMTP Server

Installing and Using LogParser

Part III: Advanced Administration

Chapter 11: Core Server

Background

Core Server and Modules

Server Workload Customization

ASP.NET and the IIS Pipeline

Legacy ISAPI Support

Chapter 12: Core Server Extensibility

Extensibility Overview

IIS Module Concepts

An Example Native Module

Managed Code Modules

An Example Managed Module

Event Tracing from Modules

Extending IIS Configuration

Extending the IIS Administration Tool



Chapter 13: Securing the Server

What Is Security?

Types of Attacks

Securing Your Environment

Securing Your IIS 8.0 Server

Chapter 14: Authentication and

Authorization

Authentication in IIS 8.0

Configuring Anonymous Authentication

Configuring Basic Authentication

Configuring Digest Authentication

Configuring Integrated Windows Authentication

Configuring NTLM Authentication

Configuring UNC Authentication

Configuring Client Certificate Authentication

Configuring Forms-Based Authentication

Configuring Delegation

Configuring Protocol Transition

Configuring Authorization

Understanding IIS 8.0 User Accounts

Chapter 15: SSL and TLS

Securing a Website with TLS

Securing an SMTP Virtual Server with TLS

Securing an FTP Site with TLS

Chapter 16: IIS Scalability I: Building an IIS

Web Farm



IIS 8.0 and Web Farms

Content Configuration

Content Replication

Other Considerations

Chapter 17: IIS Scalability II: Load

Balancing and ARR

Load-Balancing Concepts

Application Request Routing

Network Load Balancing

Frameworks

Chapter 18: Programmatic Configuration

and Management

Configuration Optimization

Direct Configuration

Programmatic Configuration

Configuration Editor

Command-Line Management

IIS PowerShell Management

Chapter 19: URL Rewrite

URL Rewrite Concepts

Obtaining and Installing URL Rewrite

Getting Started Walk-Through

Managing URL Rewrite

Applying URL Rewrite Rules

Rule Templates

Input Variables



Wildcards Pattern Matches

Regular Expressions

Back-References

Setting Server Variables

Special Considerations

Rewrite Maps

Common Rules

Outbound Rules

Troubleshooting URL Rewrite

Chapter 20: Configuring Publishing

Options

Web Platform Installer

Web Deployment Tool

FTP Publishing

WebDAV Publishing

Visual Studio Publishing

Part IV: Managing and Operating IIS

8.0

Chapter 21: IIS and Operations

Management

Management Approaches

Operational Tasks

Chapter 22: Monitoring and Performance

Tuning



Monitoring Websites

Performance Tuning

Chapter 23: Diagnostics and

Troubleshooting

Types of Issues

Runtime Status and Control API

IIS 8.0 Error Pages

Failed Request Tracing

Logging

ASP.NET Tracing

Troubleshooting Tips

Additional Built-In Tools

Installable Tools

Introduction

Who This Book Is For

How This Book Is Structured

What You Need to Use This Book

Conventions

Source Code

Errata

p2p.wrox.com

Advertisement



Part I

Introduction and Deployment

Chapter 1: Background on IIS and New Features in IIS

8.0

Chapter 2: IIS 8.0 Architecture

Chapter 3: Planning Your Deployment

Chapter 4: Installing IIS 8.0



Chapter 1

Background on IIS and New

Features in IIS 8.0

What's in this chapter?

A background of IIS

Windows Server 2012 features

New features in IIS 8.0

Microsoft's Internet Information Services (IIS) has been

around for more than 15 years, from its first incarnation in

Windows NT 3.51 to the current release of IIS 8.0 on the

Windows Server 2012 and Windows 8 platforms. It has

evolved from providing basic service as an HTTP server, as

well as additional Internet services such as Gopher and

WAIS, to a fully configurable application services platform

integrated with the operating system.

IIS 8.0 is not as dramatic a change as IIS 7.0 was, but IIS

8.0 benefits from the improvements in the Windows Server

2012 operating system. These benefits make IIS 8.0 far

more scalable, more appropriate for cloud and virtual

systems, and more integral to Microsoft's application and

programming environment.

This chapter provides an overview of the changes in IIS 8.0

as well as a sampling of some of the new technologies. If

you are familiar with IIS 7.0, you will want to skim through

this chapter for changes before digging into future chapters

for specifics. If you are new to IIS, this chapter will provide

an introduction to the features in IIS 8.0 and provide you

with a basis for understanding future chapters. And if you're



the kind of reader who just wants to skip to the part that

applies to your immediate needs, this chapter can help you

figure out in what area those needs lie.

IIS Versions 1.0 to 4.0
IIS was released with Service Pack 3 for Windows NT 3.51,

as a set of services providing HTTP, Gopher, and WAIS

functionality. Although the functions were there, most users

chose alternatives from third-party vendors, such as

O'Reilly's website or Netscape's server. Although these

services had been available for years with the various

flavors of UNIX operating systems, native Internet services

for Windows were mostly an afterthought, with little

integration with the Windows operating system.

With the advent of Windows NT 4.0, IIS also matured in

version 2.0. The most notable improvement in IIS version

2.0 was closer integration with the Windows NT operating

system, taking advantage of Windows security accounts and

providing integrated administration through a management

console similar to many other Windows services. IIS 2.0

introduced support for HTTP Host headers, which allowed

multiple sites to run on a single IP address, and aligned

Microsoft's IIS development with National Computer Security

Association (NCSA) standards, providing for NCSA common

log formats and NCSA-style map files. IIS 2.0 also introduced

a web browser interface for management and content

indexing through Microsoft's Index Server.

IIS version 3.0 was introduced with Windows NT Service

Pack 3 and introduced the world to ASP (Active Server

Pages) and Microsoft's concept of an application server. A

precursor to the ASP.NET environment, ASP (now referred to

as classic ASP) is a server-side scripting environment for the

creation of dynamic web pages. Using VBScript, JScript, or

any other active scripting engine, programmers finally had a



viable competitor to Common Gateway Interface (CGI) and

scripting technologies available on non-Microsoft platforms,

such as Perl.

IIS 4.0, available in the NT Option Pack, introduced ASP

2.0, an object-based version of ASP that included six built-in

objects to provide standardized functionality in ASP pages.

IIS 4.0 was the last version of IIS that coumld be

downloaded and installed outside of the operating system.

IIS 5.0 and 5.1
With the release of Windows 2000, IIS became integrated

with the operating system. Version numbers reflected the

operating system, and there were no upgrades to IIS

available without upgrading the operating system. IIS 5.0

shipped with Windows 2000 Server versions and Windows

2000 Professional, and IIS version 5.1 shipped with Windows

XP Professional, but not Windows XP Home Edition. For all

essential functions, IIS 5.0 and IIS 5.1 are identical, differing

only slightly as needed by the changes to the operating

system.

With Windows 2000 and IIS 5.0, IIS became a service of

the operating system, meant to be the base for other

applications, especially for ASP applications. The IIS 5.0

architecture served static content, Internet Server

Application Programming Interface (ISAPI) functions, or ASP

scripts, with ASP script processing handed off to a script

engine based on the file extension. Using file extensions to

determine the program that handles the file has always

been a common part of Windows functionality, and in the

case of ASP processing, the speed of serving pages was

increased by the automatic handoff of ASP scripts directly to

the ASP engine, bypassing the static content handler. This

architecture has endured in IIS to the current version.



IIS 6.0
IIS 6.0 shipped with Windows Server 2003 editions and

Windows XP Professional 64-Bit Edition, which was built on

the Windows Server 2003 Service Pack 1 code base. IIS 6.0

was identical among operating system versions, but there

were restrictions or expansions depending on the version of

Server 2003 under which IIS was running. For example,

Server 2003 Web Edition would only run IIS and a few

ancillary services; it could not be used to run Microsoft SQL

Server. On the other end of the spectrum, only the

Enterprise and Data Center versions of Server 2003

included clustering technology.

Operating system changes also expanded the capabilities

of IIS as an application server. Native XML Web Services

appeared in Server 2003. Process-independent session

states made web farms easier to configure and manage,

allowing session states to be stored outside of the

application for redundancy and failover. Web farms also

became easier with Server 2003's improved Network load-

balancing features, such as the NLB Manager, which

provided a single management point for NLB functions.

Secure by Default

Windows Server 2003 and IIS 6.0 shipped in a secure state,

with IIS no longer installed by default. Even when IIS was

installed, the default installation would serve only static

HTML pages; all dynamic content was locked down.

Managed through web service extensions, applications such

as ASP and ASP.NET had to be specifically enabled,

minimizing default security holes with unknown services

open to the world.

IIS 6.0 also ran user code under a low-privilege account,

Network Service, which had few privileges on the server



outside of the IIS processes and the website hierarchy.

Designed to reduce the damage exposure from rogue code,

access to virtual directories and other resources had to be

specifically enabled by the administrator for the Network

Service account.

IIS 6.0 also allowed delegation for the authentication

process; thus, administrators and programmers could

further restrict account access. Passport authentication was

also included with IIS 6.0, although in real-world use, it

never found widespread favor among administrators.

Kerberos authentication, on the other hand, allowed secure

communication within an Active Directory domain and

solved many remote resource permission issues.

IIS 6.0 also would serve only specific file requests, by

default not allowing execution of command-line code or

even the transfer of executable files. Unless the

administrator assigned a specific MIME (Multipurpose

Internet Mail Extensions) type to be served, IIS would return

a 404 error to the request, reporting the file not found.

Earlier versions of IIS included a wildcard mapping and

would serve any file type.

Request Processing

IIS 6.0 changed the way IIS processed requests, eliminating

what had been a major performance hurdle in scaling prior

IIS versions to serve multiple sites. IIS 6.0 used the Http.sys

listener to receive requests and then handed them off to

worker processes to be addressed. These worker processes

were isolated to application pools, and the administrator

could assign application pools to specific sites and

applications. This meant that many more requests could be

handled simultaneously, and it also provided for an isolated

architecture in cases of error. If a worker process failed, the

effects would not be seen outside of the application pool,

providing stability across the server's sites. In addition,



worker processes could be assigned a processor affinity,

allowing multiprocessor systems to split the workload.

Additional Features

As did its predecessors, IIS 6.0 included additional features

and functionality. Some internal features, such as HTTP

compression and kernel mode caching, increased

performance of the web server and applications served from

it. Other features affected configuration, such as the move

to an XML metabase, or stability, such as being able to

configure individual application pools and isolate potential

application failures. Still others added or expanded utility

and ancillary functions, such as the improved FTP services

or the addition of POP services to the existing SMTP service.

Application Pools

IIS 6.0 changed the way applications behaved in memory,

isolating applications into memory pools. Administrators

could configure separate memory pools for separate

applications, thus preventing a faulty application from

crashing other applications outside of its memory pool. This

is particularly important in any shared web server

environment, especially with ASP.NET applications.

FTP Service

The FTP service grew up in IIS 6.0, providing for greater

security and separation of accounts through a new isolation

mode using either Active Directory or local Windows

accounts. Using Windows accounts or Active Directory

accounts, users could be restricted to their own available

FTP locations without resorting to naming the home

directories the same as the FTP accounts. In addition, users

were prevented from traversing above their home

directories and seeing what other accounts may exist on the



server. Even without NT File System (NTFS) permissions to

the content, security in FTP before IIS 6.0 was still

compromised because a user could discover other valid user

accounts on the system.

SMTP and POP Services

The SMTP service in Windows Server 2003 didn't change

much from previous versions, allowing for greater flexibility

and security but not altering the core SMTP functions. Most

administrators would not use the SMTP service in IIS for

anything other than outbound mail, instead relying on third-

party servers or Microsoft's Exchange Server for receiving

and distributing mail. But the addition of a POP3 service in

Server 2003 allowed a rudimentary mail server

configuration, useful for testing or small mail domains.

Although SMTP can be used to transfer mail, most mail

clients such as Microsoft Outlook rely on the POP3 or IMAP

protocols to retrieve mail, which was unavailable without

additional products until Windows Server 2003 and IIS 6.0.

IIS 7.0 and 7.5
IIS 7.0 was a complete rewrite of the base code from IIS 6.0

and earlier. Available on Windows Vista and Windows Server

2008, IIS 7.0 adapted to several operating systems,

including the new Windows Core Edition and the Windows

Web Server edition. IIS 7.5, introduced with Windows 7,

consisted of IIS 7.0 plus all the inline updates that had been

made to IIS 7.0 since its introduction. Users could essentially

update IIS 7.0 to the functionality of IIS 7.5 by installing the

appropriate updates and modules.

IIS 7.0 was a ground-up rewrite of IIS 6.0, designed as an

integrated web application platform. Integration with the

ASP.NET framework combined with fully exposed application



programming interfaces (APIs) for complete extensibility of

the platform and management interfaces made IIS 7.0 a

programmer's dream. Security that included delegation of

configuration and a complete diagnostic suite with request

tracing and advanced logging satisfied several of the

administrator's desires.

Although the most substantial change in IIS 7.0 may have

been the integration of ASP.NET into the request pipeline,

the extensibility of IIS 7.0, configuration delegation and the

use of XML configuration files, request tracing and

diagnostics, and the new administration tools were all

welcome changes from previous versions of IIS.

Unlike previous versions of IIS, the modular design of IIS

7.0 allowed for easy implementation of custom modules and

additional functionality. This increased functionality came

from in-house development, third-party sources, or even

Microsoft. Because these modules and additional programs

could be plugged into IIS at any time, without changing core

operating system functions, the Microsoft IIS development

team shipped additional supported and unsupported

modules outside of Microsoft's standard Service Pack

process. IIS 7.5 included most of these inline updates and

modules, such as FTP 7.5, that did not originally exist for IIS

7.0. Microsoft's website at www.iis.net is the source for

these additional downloads, for the IIS 7.0 and 7.5 versions,

as well as for future add-on modules and updates for IIS 8.0.

ASP.NET Integration

One of the most radical changes in IIS 7.0 was its close

integration with ASP.NET and the ASP.NET processes. There

was a unified event pipeline in IIS 7.0 that merged the

previously separate IIS and ASP.NET pipelines from IIS 6.0

and earlier. ASP.NET HTTP modules that previously only

listened for events within the ASP.NET pipeline could be

used for any request in IIS 7.0. For backward compatibility,

http://www.iis.net/


IIS 7.0 maintained a Classic pipeline mode, which emulated

the separate IIS and ASP.NET pipeline model from IIS 6.0.

IIS 7.0 also changed IIS configuration to match the process

used for configuring ASP.NET applications. This greatly

improved and simplified the implementation of IIS into the

ASP.NET programming environment and allowed for better

configurability and easier deployment of both sites and

applications. It also made deployment across multiple

systems in web farms more straightforward and allowed for

extensibility of the configurations. IIS 7.0 introduced the

concept of shared configuration, wherein multiple web

servers can point to the same physical file for configuration,

making deploying configuration changes to web farms

nearly instantaneous.

IIS 7.0 introduced the applicationHost.config file for storing

settings and added configuration options for individual

websites or web applications to the web.config files,

alongside ASP.NET settings, in a new system.webServer

section.

Extensibility

IIS 7.0 greatly increased the extensibility of IIS as a web

application platform. Because of the changes to the request-

processing pipeline, the core server itself was now

extensible, using both native and managed code. Instead of

having to work with ISAPI filters to modify the request

process, developers could now inject their own components

directly into the processing pipeline. These components

could represent the developers' own code, third-party

utilities and components, and existing Microsoft core

components. This meant that if you didn't like Microsoft's

Windows authentication process, you could not only choose

to use forms authentication on all files, but also choose to

bypass all built-in authentication and roll your own. In

addition, if you didn't need to process classic ASP files, you



could simply not load that component. Unlike in previous

versions, in which components were loaded into memory in

a single DLL, IIS 7.0 reduced the memory footprint by not

loading unnecessary modules or code.

Security

Componentization also increased the already strong security

that existed in IIS 6.0. A perennial complaint against

Microsoft had always been that IIS installed by default and

that all services were active by default. IIS 6.0 and Server

2003 reversed that course—almost nothing was installed by

default, and even when you did install it, the majority of

components were disabled by default. To enable ASP.NET,

you had to choose to allow ASP.NET as a web service

extension. Classic ASP had to be enabled separately, as did

third-party CGI application processors such as Perl or PHP.

With the exception of third-party software, however, IIS 6.0

still loaded all the services into memory—it just loaded them

as disabled. For example, if you didn't want to use Windows

authentication, as would be the case if you were using your

own authentication scheme, you could choose not to enable

it, but the code still resided in memory. Similarly, default IIS

6.0 installations were locked down to processing static HTML

files, a good choice from a security standpoint. But what if

you were never going to use static HTML files in your

application or site? In IIS 7.0, you had the option of never

loading the code in the first place.

Minimal Installation

IIS 7.0 continued the tradition of its predecessor with

minimal installation the default. IIS was not installed with

the default operating system installation, and a basic install

only selected those options needed for serving static HTML

files. The installation graphical user interface (GUI) for IIS



6.0 allowed a choice of eight different options, including

installing FTP, whereas IIS 7.0's setup allowed for more than

40 options. This granularity of setup reduced the memory

footprint of IIS 7.0, but more importantly, it reduced the

security footprint as well.

Management Delegation

Management of IIS in previous versions meant either

granting local administrator privileges to the user or

working through Windows Management Instrumentation

(WMI) and Active Directory Services Interfaces (ADSI)

options to manage the site configurations directly. The only

other option was for developers to work through the IIS

administrators to change configurations—an option that

could often be frustrating for both administrators and

programmers. IIS 7.0 changed this through delegation of

administration permissions at the server, site, and

application levels.

Unified Authentication and

Authorization

In IIS 7.0, the authentication and authorization process

merged the traditional IIS authentication options with

ASP.NET options. This allowed administrators and

developers to use ASP.NET authentication across all files,

folders, and applications in a site.

In IIS 6.0 and previous versions, controlling access to an

Adobe Acrobat (PDF) file was difficult through ASP.NET

authentication schemes. You would need to enable Windows

authentication or basic authentication on the website,

folder, or file and create a Windows account to have access

to the file. Then you would need to require the user to

provide valid credentials for that Windows account, even if

he or she already had logged into your ASP.NET application,



to be able to access that PDF file. The alternative was to use

impersonation in ASP.NET to access the file using the

ASP.NET process account—all to prevent someone from

opening the PDF file by pasting the direct URL into their

browser. Options involving streaming the content from a

protected location were just as cumbersome, and

redirecting files to be processed by the ASP.NET DLL was

even more problematic.

In IIS 7.0, using ASP.NET authentication no longer required

the file to be processed as an ASPX extension; thus, file

extensions of all types could be secured with Forms

authentication or any other ASP.NET method. This reduced

the requirement for Windows Client Access Licenses (CALs)

to provide access control, which was prohibitive in an

Internet environment.

Remote Management

Although IIS could be remotely managed in previous

versions using the IIS Manager over RPC, this wasn't

firewall-friendly. An HTML-based management option also

existed; however, this didn't allow management of all IIS

features. In both cases, users were required to be in the

local Administrators group on the machine.

IIS 7.0 introduced a new remote Management Service that

permitted the IIS Manager tool to administer remote IIS 7.0

installations over HTTPS. By using the new delegation

features in IIS 7.0, remote users could be given access to

the entire server, a single website, or even just a single web

application. Additionally, features that have not been

delegated will not be visible to the end user when

connecting remotely.

The Remote Management service also introduced the

concept of IIS Users. These user accounts do not exist

outside of IIS. An administrator can choose to permit either



Windows users or IIS Users access to administer IIS

remotely. IIS Users do not consume Windows CALs, nor do

they have any permissions outside of IIS itself; thus, they

are a cheaper and more secure option for permitting

external IIS administration.

IIS Manager

IIS 7.0 introduced a new, unified IIS Manager that combined

all management functions for both IIS and ASP.NET in one

location. Developers could now manage individual sites and

applications without needing local administrator access to

the server. The IIS Manager is also extensible through the

addition of modules.

AppCmd.exe Command-Line

Utility

IIS 7.0 introduced a new command-line utility, AppCmd.exe,

which replaced the functionality provided by the various

VBScript command-line utilities included with previous

versions. AppCmd.exe also expanded command-line control to

all IIS configuration functions. For example, to create a

virtual directory using AppCmd.exe, you would enter at a

command prompt:

C:\Windows\System32\inetsrv\appcmd add vdir 

/app.name: "Default Web Site/" / /path: /VirtualDiretory1 

/physicalPath: C:\InetPub\VirtualDirectory1 

PowerShell Integration

IIS 7.0 saw the integration of PowerShell commands into IIS

management and deployment scenarios with the IIS

PowerShell Snap-In. PowerShell has become the scripting

tool of choice for Windows administrators, and integration



with IIS through cmdlets and specific functions has made

enterprise management of IIS servers simpler.

In PowerShell, creating a virtual directory would look

something like the following:

PS IIS:\> New-Item 'IIS:\Sites\Default Web 

Site\VirtualDirectory1' 

-type VirtualDirectory -physicalPath 

C:\InetPub\VirtualDirectory1 

Diagnostics

IIS 7.0 made diagnostic tracing and server state

management simple for both administrators and

developers. The new Request Tracing module allowed for

tracing any request through the pipeline to the point of exit

or failure, and provides a logging function for those traces.

Using the Request Tracing module, you could configure

logging and tracing of any type of content or result code.

Like most IIS settings, request tracing can be configured at

the server, site, or application level.

Windows Server 2012

Features
Because IIS is integrated into the Windows operating

system, many of the changes to IIS 8.0 have to do with

changes to the Windows operating system itself. Windows

Server 2012 has many new features that affect and enhance

IIS 8.0.

Server Versions

Windows Server 2008 came in multiple versions, including

Standard, Enterprise, and Datacenter, primarily

differentiated by the amount of memory and number of



processors accessible. Each was targeted, and licensed, for

specific deployment types, and changing the version

required a full reinstall.

Windows Server 2008 also had several special editions

available. Windows Server 2008 Web Edition was designed

to run a web server but could not run applications such as

Microsoft Exchange or be used as an Active Directory server.

The HPC Edition was designed for high-performance

computing, using computing clusters and expandable into a

Microsoft Azure data center for cost-effective high-

performance tasks. Windows Server 2008 was also available

for Itanium processors and also in a Foundation version for

the low-cost and low-performance server needs of small

companies.

Windows Server 2012 will not support 32-bit or Itanium

processors. There is no longer a Web Edition or Foundation

version, and the features of the HPC version have been

incorporated into the standard operating system. In short,

you can buy Windows Server 2012 in only one edition and

install it for any system configuration you need, physical or

virtual.

Windows Server 2008 and Windows Server 2008 R2 may

be directly upgraded to Windows Server 2012, providing

that the system meets hardware requirements, but Windows

Server 2008 will not be upgradable to future versions of

Windows.

The New User Interface

One of the most obvious changes for Windows Server 2012

is the availability of the new graphical user interface.

Microsoft designed this interface to unify all forms of

Windows, from servers to desktops to tablets to phones, and

everything else imaginable. Although seemingly targeted

toward the consumers and end user, the new graphical



interface (shown in Figure 1.1) also expands the abilities of

the server administrator with a new Server Manager

interface as well. Live Tiles displays a real-time view of the

server and provides a dashboard with live statistics for the

administrator.

Figure 1.1

Windows Server 2012 does not default to the new

interface, termed Server with a GUI. There are, in fact, three

separate interfaces available for Windows Server 2012: the

standard Server with a GUI interface used on the desktop; a

command-line interface similar to the Server Core

installation available in Windows Server 2008; and a new

hybrid version, Minimal Server Interface, that allows you to

run the graphical Server Manager and Microsoft

Management Console (MMC) without adding the burden of



the browser and interface graphics. Administrators can

switch between these versions without having to reinstall

Windows, unlike in Windows Server 2008. A simple

PowerShell cmdlet allows the change, switching to the

Server with a GUI interface from the command-line

interface:

PS> Install-WindowsFeature Server-Gui-Mgmt-Infra,Server-Gui-

Shell —Restart 

Reversing this and reverting to the Server Core interface is

simple:

PS> Uninstall-WindowsFeature Server-Gui-Mgmt-Infra,Server-

Gui-Shell —Restart 

Most administrators will rarely see the Server with a GUI

interface and instead will primarily use the new Minimal

Server Interface and the Server Manager (as shown in Figure

1.2) to manage all servers in the enterprise, virtual or

physical, whether or not they are based in the cloud.

Figure 1.2



The new Server Manager allows multiple servers to be

administered, even from a Windows 8 workstation. New in

Windows Server 2012 is the ability to manage multiple

servers with credentials differing from the user's default

credentials. These servers can be virtual or physical and

may be located in the cloud. Server Manager in Windows

Server 2012 will even aggregate server information by

server role and other groupings.

Note

When you are adding or installing a feature, the requisite source files

need to be available. If they are not available as part of the Windows

installation, they will be downloaded from the Windows Update

website; optionally, the administrator can specify a local Windows

Imaging (WIM) file as an installation source. For more information, see

http://technet.microsoft.com/en-us/library/hh831786.aspx.

http://technet.microsoft.com/en-us/library/hh831786.aspx


Virtualization and Private Cloud

Windows Server 2008 supported virtualization and

Microsoft's Hyper-V technology, but in Windows Server 2012

virtualization and cloud deployment are the driving force in

many of the operating system's architecture changes.

Active Directory's changes to accommodate rapid cloud

deployment and the virtualization of Active Directory

servers make for a seamless management interface. Virtual

images and physical servers are treated identically in

Windows Server 2012 and can be managed through the

same Server Manager interface.

Windows Server 2012 supports both public and private

clouds, as well as hybrid clouds, but the private cloud is

where the operating system really shines. Management of

virtual environments and resources, especially in

conjunction with Microsoft System Center 2012, is fully

integrated into all levels of the operating system. Hyper-V

v.3, Microsoft's latest version of its hypervisor technology,

fully integrates PowerShell for local and remote

management of all virtual systems. This eases the burden of

virtual management by allowing fully scripted and

automated solutions.

Windows Server 2012 with Hyper-V also expands the

ability to access resources, without the limits on physical

versus virtual process imposed in Windows Server 2008.

This means that the only limit to virtual machines is the

limits of the hardware. Storage management has also

become easier in Windows Server 2012 with scalable virtual

disks and a new virtual disk format, VHDX. With VHDX,

Hyper-V can use virtual fiber channel connections to SMB

storage devices. VHDX also allows virtual disks to be

merged in real time without taking the system down.

Hyper-V Clustering and Replication



Hyper-V replication is simple in Windows Server 2012,

requiring only that a snapshot be sent to the remote site

and then enabling replication. Asynchronous replication can

support active—passive failover scenarios as well as active

—active options between sites. Failover is automatic, with

fully integrated updating of IP addressing to the backup

virtual machine, allowing for near real-time disaster

recovery. Migration of virtual machines can also be done in

real time now, without the normal associated downtime and

with no shared data between migrating virtual machines.

Clustering in Hyper-V is also greatly enhanced from

Windows Server 2008. Windows Server 2008 R2 allowed

clusters of up to 16 nodes. A Hyper-V failover cluster was

limited to 1,000 virtual machines across all the nodes in the

cluster. Any single node in the cluster was limited to running

a maximum of 384 virtual machines. Windows Server 2012

now supports up to 64 nodes in a cluster and up to 4,000

virtual machines across the cluster. A single node in the

cluster can run a maximum of 1,024 virtual machines. A

cost savings for many organizations is that clustering is now

included in Windows Server 2012 Standard Edition at no

extra charge.

Hyper-V Virtual Networking

Networking in Windows Server 2012 has also been

drastically modified to allow for complete virtual networking.

Isolated virtual networks can now be created with the same

physical infrastructure, a process that could barely be

imitated on Windows Server 2008. Windows Server 2012

introduces functions such as DHCP Guard, which prevents a

virtual server from exposing services to other virtual

networks. This allows for isolating multitenant networks and

controlling bandwidth use on the virtual networks, valuable

to both hosters and those organizations where a single

server farm handles multiple subsidiaries.


