


Contents

Cover

Half Title page

Title page

Copyright page

Foreword

Series Foreword

Preface

How to read this book

Goals of the book

About the authors

Acknowledgments

Patterns and Pattern Languages

Our Pattern form

Key to the illustrations

Chapter 1: Introduction To

Distributed Systems

Distributed Systems: reasons and challenges

Communication middleware

Remoting styles

file:///tmp/calibre_5.41.0_tmp_90ctmshm/heuxtg5v_pdf_out/OEBPS/cvi.htm


Chapter 2: Pattern Language

Overview

Broker

Overview of the Pattern chapters

Chapter 3: Basic Remoting Patterns

Requestor

Client Proxy

Invoker

Client Request Handler

Server Request Handler

Marshaller

Interface Description

Remoting Error

Interactions among the patterns

Chapter 4: Identification Patterns

Object ID

Absolute Object Reference

Lookup

Interactions among the patterns

Chapter 5: Lifecycle Management

Patterns

Basic lifecycle patterns

Static Instance

Per-Request Instance

Client-Dependent Instance



General resource management patterns

Lazy Acquisition

Pooling

Leasing

Passivation

Interactions among the patterns

Chapter 6: Extension Patterns

Invocation Interceptor

Invocation Context

Protocol Plug-In

Interactions among the patterns

Chapter 7: Extended Infrastructure

Patterns

Lifecycle Manager

Configuration Group

Local Object

QoS Observer

Location Forwarder

Interactions among the patterns

Chapter 8: Invocation Asynchrony

Patterns

Fire and Forget

Sync with Server

Poll Object

Result Callback

Interactions among the patterns



Chapter 9: Technology Projections

Chapter 10: .NET Remoting

Technology Projection

A brief history of .NET Remoting

.NET concepts – a brief introduction

.NET Remoting pattern map

A simple .NET Remoting example

Remoting boundaries

Basic internals of .NET Remoting

Error handling in .NET

Server-activated instances

Client-dependent instances and Leasing

More advanced lifecycle management

Internals of .NET Remoting

Extensibility of .NET Remoting

Asynchronous communication

Outlook for the next generation

Chapter 11: Web Services Technology

Projection

A brief history of Web Services

Web Services pattern map

SOAP messages

Message processing in Axis

Protocol integration in Web Services

Marshaling using SOAP XML encoding

Lifecycle management in Web Services

Client-Side asynchrony



Web Services and QoS

Web Services security

Lookup of Web Services: UDDI

Other Web Services frameworks

Consequences of the pattern variants used in

Web Services

Chapter 12: CORBA Technology

Projection

A brief history of CORBA

CORBA pattern map

An initial example with CORBA

CORBA basics

Messaging in CORBA

Real-Time CORBA

Chapter 13: Related Concepts,

Technologies, and Patterns

Related patterns

Distribution infrastructures

Quality attributes

Aspect-orientation and Remoting

Appendix A: Extending AOP

Frameworks for Remoting

References

Index



Remoting Patterns





Copyright © 2005 John Wiley & Sons Ltd, The Atrium,

Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-

books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or

www.wiley.com

All Rights Reserved. No part of this publication may be

reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical,

photocopying, recording, scanning or otherwise, except

under the terms of the Copyright, Designs and Patents Act

1988 or under the terms of a licence issued by the

Copyright Licensing Agency Ltd, 90 Tottenham Court Road,

London W1T 4LP, UK, without the permission in writing of

the Publisher, with the exception of any material supplied

specifically for the purpose of being entered and executed

on a computer system for exclusive use by the purchaser of

the publication. Requests to the Publisher should be

addressed to the Permissions Department, John Wiley &

Sons Ltd, The Atrium, Southern Gate, Chichester, West

Sussex PO19 8SQ, England, or emailed to

permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and

authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is

not engaged in rendering professional services. If

professional advice or other expert assistance is required,

the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030,

USA

mailto:cs-books@wiley.co.uk
http://www.wileyeurope.com/
http://www.wiley.com/
mailto:permreq@wiley.co.uk


Jossey-Bass, 989 Market Street, San Francisco, CA 94103-

1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim,

Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton,

Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,

Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road,

Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print may not be

available in electronic books.

Library of Congress Cataloging-in-Publication Data

Völter, Markus.

  Remoting patterns: foundations of enterprise, internet and

realtime distributed object middleware / Markus Völter,

Michael Kircher, Uwe Zdun.

     p. cm.

 Includes bibliographical references and index.

 ISBN 0-470-85662-9 (cloth : alk. paper)

1. Computer software—Development. 2. Software patterns.

3. Electronic data processing— Distributed processing. 4.

Middleware. I. Kircher, Michael. II. Zdun, Uwe. III. Title.

QA76.76.D47V65 2004

005.1—dc22

2004018713

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British

Library

ISBN 0-470-85662-9



Foreword

Many of today’s enterprise computing systems are powered

by distributed object middleware. Such systems, which are

common in industries such as telecommunications, finance,

manufacturing, and government, often support applications

that are critical to particular business operations. Because

of this, distributed object middleware is often held to

stringent performance, reliability, and availability

requirements. Fortunately, modern approaches have no

problem meeting or exceeding these requirements. Today,

successful distributed object systems are essentially taken

for granted.

There was a time, however, when making such claims about

the possibilities of distributed objects would have met with

disbelief and derision. In their early days, distributed object

approaches were often viewed as mere academic fluff with

no practical utility. Fortunately, the creators of visionary

distributed objects systems such as Eden, Argus, Emerald,

COMANDOS, and others were undeterred by such opinion.

Despite the fact that the experimental distributed object

systems of the 1980s were generally impractical – too big,

too slow, or based on features available only from particular

specialized platforms or programming languages – the

exploration and experimentation required to put them

together collectively paved the way for the practical

distributed objects systems that followed.

The 1990s saw the rise of several commercially successful

and popular distributed object approaches, notably the

Common Object Request Broker Architecture (CORBA)

promoted by the Object Management Group (OMG) and

Microsoft’s Common Object Model (COM). CORBA was

specifically designed to address the inherent heterogeneity



of business computing networks, where mixtures of machine

types, operating systems, programming languages, and

application styles are the norm and must co-exist and

cooperate. COM, on the other hand, was built specifically to

support component-oriented applications running on the

Microsoft Windows operating system.

Today, COM has been largely subsumed by its successor,

.NET, while CORBA remains in wide use as a well-proven

architecture for building and deploying significant

enterprise-scale heterogeneous systems, as well as real-

time and embedded systems.

As this book so lucidly explains, despite the fact that CORBA

and COM were designed for fundamentally different

purposes, they share a number of similarities. These

similarities range from basic notions, including remote

objects, client and server applications, proxies, marshalers,

synchronous and asynchronous communications, and

interface descriptions, to more advanced areas, including

object identification and lookup, infrastructure extension,

and lifecycle management. Not surprisingly, though, these

similarities do not end at CORBA and COM. They can also be

found in newer technologies and approaches, including

.NET, the Java 2 Enterprise Edition (J2EE), and even in Web

Services (which, strictly speaking, is not a pure distributed

object technology, but nevertheless has inherited many of

its characteristics).

Such similarities are of course better known as ‘patterns’.

Patterns are generally not so much created as discovered,

much as a miner finds a diamond or a gold nugget buried in

the earth. Successful patterns result from the study of

successful systems, and the remoting patterns presented

here are no exception. Our authors, Markus, Michael, and

Uwe, who are each well versed in both the theory and

practice of distributed objects, have worked extensively with

each of the technologies I’ve mentioned. Applying their



pattern-mining talents and efforts, they have captured for

the rest of us the critical essence of a number of successful

solutions and approaches found in a number of similar

distributed objects technologies.

Given my own long history with CORBA, I am not surprised

to find that several of the patterns that Markus, Michael, and

Uwe document here are among my personal favorites. For

example, topping my list is the Invocation Interceptor

pattern, which I have found to be critical for creating

distributed objects middleware that provides extensibility

and modularity without sacrificing performance. Another

favorite of mine is the Leasing pattern, which can be

extremely effective for managing object lifecycles.

This book does not just describe a few remoting patterns,

however. While many patterns books comprise only a loose

collection of patterns, this book also provides a series of

technology projections that tie the patterns directly back to

the technologies that employ them. These projections

clearly show how the patterns are used within .NET, CORBA,

and Web Services, effectively recreating these architectures

from the patterns mined from within them. With technology

projections like these, it has never been easier to see the

relationships and roles of different patterns with respect to

each other within an entire architecture. These technology

projections clearly link the patterns, which are already

invaluable by themselves, into a comprehensive,

harmonious, and rich distributed objects pattern language.

In doing so, they conspicuously reveal the similarities

among these different distributed object technologies.

Indeed, we might have avoided the overzealous and

tiresome ‘CORBA vs. COM’ arguments of the mid-1990s had

we had these technology projections and patterns at the

time.

Distributed objects technologies continue to evolve and

grow. These patterns have essentially provided the building



blocks for the experimental systems of the 1980s, for the

continued commercial success and wide deployment of

distributed objects that began in the 1990s, and for today’s

Web Services integration approaches. Due to the never-

ending march of technology, you can be sure that before too

long new technologies will appear to displace Web Services.

You can also be sure that the remoting patterns that Markus,

Michael, and Uwe have so expertly provided for us here will

be at the heart of those new technologies as well.

Steve Vinoski

Chief Engineer, Product Innovation

IONA Technologies

March 2004



Series Foreword

At first glance writing and publishing a remoting pattern

language book might appear surprising. Who is its

audience? From a naïve perspective, it could only be

distributed object middleware developers – a rather small

community. Application developers merely use such

middleware – why should they bother with the details of

how it is designed? We see confirmation of this view from

the sales personnel and product ‘blurbs’ of middleware

vendors: remote communication should be transparent to

application developers, and it is the job of the middleware to

deal with it. So why spend so much time on writing – and

reading – a pattern language that only a few software

developers actually need?

From a realistic perspective, however, the world looks rather

different. Despite all advances in distributed object

middleware, building distributed systems and applications is

still a challenging, non-trivial task. This applies not only to

application-specific concerns, such as how to split and

distribute an application’s functionality across a computer

network. Surprisingly, many challenges in building

distributed software relate to an appropriate use of the

underlying middleware. I do not mean issues such as using

APIs correctly, but fundamental concerns. For example, the

type of communication between remote objects has a direct

impact on the performance of the system, its scalability, its

reliability, and so on and so forth. It has an even stronger

impact on how remote objects must be designed, and how

their functionality must be decomposed, to really benefit

from a specific communication style.

It is therefore a myth to believe that remote communication

is transparent to a distributed application. The many failures



and problems of software development projects that did so

speak very clearly! Failures occur due to the misconception

that ‘fire and forget’ invocations are reliable, that remote

objects are always readily available at their clients’

fingertips, or problems due to a lack of awareness that

message-based remote communication decouples operation

invocation from operation execution not only in space, but

also in time, and so on.

But how do I know what is ‘right’ for my distributed system?

How do I know what the critical issues are in remote

communication and what options exist to deal with them?

How do I know what design guidelines I must follow in my

application to be able to use a specific middleware or

remote communication style correctly and effectively? The

answer is simple: understanding both how it works, and why

it works the way it works. Speaking pictorially, we must

open the black box called ‘middleware’, sweeping the

‘shade’ of communication-transparency aside, and take a

look inside. Fundamental concepts of remoting and modern

distributed object middleware must be known to, and

understood by, application developers if they are to build

distributed systems that work! There is no way around this.

But how can we gain this important knowledge and

understanding? Correct: by reading and digesting a pattern

language that describes remoting, and mapping its concepts

onto the middleware used in our own distributed systems!

So in reality the audience for a remoting pattern language is

quite large, as it comprises every developer of distributed

software.

This book contributes to the understanding of distributed

object middleware in two ways. First it presents a

comprehensive pattern language that addresses all the

important aspects in distributed object middleware – from

remoting fundamentals, through object identification and

lifecycle management, to advanced aspects such as



application-specific extensions and asynchronous

communication. Second, and of immense value for practical

work, this book provides three technology projections that

illustrate how the patterns that make up the language are

applied in popular object-oriented middleware technologies:

.NET, Web Services, and CORBA. Together, these two parts

form a powerful package that provides you with all the

conceptual knowledge and various viewpoints necessary to

understand and use modern communication environments

correctly and effectively. This book thus complements and

completes books that describe the ‘nuts and bolts’ – such as

the APIs – of specific distributed object middlewares by

adding the ‘big picture’ and architectural framework in

which they live.

Accept what this book offers and explore the secrets of

distributed object middleware. I am sure you will enjoy the

journey as much as I did.

Frank Buschmann

Siemens AG, Corporate Technology



Preface

Today distributed object middleware belongs among the

basic elements in the toolbox of software developer,

designers, and architects who are developing distributed

systems. Popular examples of such distributed object

middleware systems are CORBA, Web Services, DCOM, Java

RMI, and .NET Remoting. There are many other books that

explain how a particular distributed object middleware

works. If you just want to use one specific distributed object

middleware, many of these books are highly valuable.

However, as a professional software developer, designer, or

architect working with distributed systems, you will also

experience situations in which just understanding how to

use one particular middleware is not enough. You are

required to gain a deeper understanding of the inner

workings of the middleware, so that you can customize or

extend it to meet your needs. Or you might be forced to

migrate your system to a new kind of middleware as a

consequence of business requirements, or to integrate

systems that use different middleware products.

This book is intended to help you in these and similar

situations: it explains the inner workings of successful

approaches and technologies in the field of distributed

object middleware in a practical manner. To achieve this we

use a pattern language that describes the essential building

blocks of distributed object middleware, based on a number

of compact, Alexandrian-style [AIS+77] patterns. We

supplement the pattern language with three technology

projections that explain how the patterns are realized in

different real-world examples of distributed object

middleware systems: .NET Remoting, Web Services, and

CORBA.



How to read this book
This book is aimed primarily at software developers,

designers, and architects who have at least a basic

understanding of software development and design

concepts.

For readers who are new to patterns, we introduce patterns

and pattern languages to some extend in this section.

Readers familiar with patterns might want to skip this. We

also briefly explain the pattern form and the diagrams used

in this book. You might find it useful to scan this information

and use it as a reference when reading the later chapters of

the book.

In the pattern chapters and the technology projections we

assume some knowledge of distributed system

development. In Chapter 1, Introduction To Distributed

Systems, we introduce the basic terminology and concepts

used in this book. Readers who are familiar with the

terminology and concepts may skip that chapter. If you are

completely new to this field, you might want to read a more

detailed introduction such as Tanenbaum and van Steen’s

Distributed Systems: Principles and Paradigms [TS02].

For all readers, we recommend reading the pattern

language chapters as a whole. This should give you a fairly

good picture of how distributed object middleware systems

work. When working with the pattern language, you can

usually go directly to particular patterns of interest, and use

the pattern relationships described in the pattern

descriptions to find related patterns.

Details of the interactions between the patterns can be

found at the end of each pattern chapter, depicted in a

number of sequence diagrams. We have not included these

interactions in the individual pattern descriptions for two

reasons. First, it would make the pattern chapters less

readable. Second, the patterns in each chapter have strong



interactions, so it makes sense to illustrate them with

integrated examples, instead of scattering the examples

across the individual pattern descriptions.

We recommend that you look closely at the sequence

diagram examples, especially if you want to implement your

own distributed object middleware system or extend an

existing one. This will give you further insight into how the

pattern language can be implemented. As the next step,

you might want to read the technology projections to see a

couple of well-established real-world examples of how the

pattern language is implemented by vendors.

If you want to understand the commonalities and

differences between some of the mainstream distributed

object middleware systems, you should read the technology

projections. You can do this in any order you prefer. They are

completely independent of each other.

Goals of the book
Numerous projects use, extend, integrate, customize, and

build distributed object middleware. The major goal of the

pattern language in this book is to provide knowledge about

the general, recurring architecture of successful distributed

object middleware, as well as more concrete design and

implementation strategies. You can benefit from reading and

understanding this pattern language in several ways:

If you want to use distributed object middleware, you

will benefit from better understanding the concepts of

your middleware implementation. This in turn helps you

to make better use of the middleware. If you know how

to use one middleware system and need to switch to

another, understanding the patterns of distributed object

middleware helps you to see the commonalities, in spite



of different remoting abstractions, terminologies,

implementation language concepts, and so forth.

Sometimes you need to extend the middleware with

additional functionality. For example, suppose you are

developing a Web Services application. Because Web

Services are relatively new, your chosen Web Services

framework might not implement specific security or

transaction features that you need for your application.

You must then implement these features on your own.

Our patterns help you to find the best hooks for

extending the Web Services framework. The patterns

show you several alternative successful implementations

of such extensions. The book also helps you to you find

similar solutions in other middleware implementations,

so that you avoid reinventing the wheel.

Another typical extension is the introduction of ‘new’

remoting styles, implemented on top of existing

middleware. Consider server-side component

architectures, such as CORBA Components, COM+, or

Enterprise Java Beans (EJB). These use distributed object

middleware implementations as a foundation for remote

communication [VSW02]. They extend the middleware

with new concepts. Again, as a developer of a

component architecture, you have to understand the

patterns of the distributed object middleware, for

example to integrate the lifecycle models of the

components and remote objects.

While distributed object middleware is used to integrate

heterogeneous systems, you might encounter situations

in which you need to integrate the various middleware

systems themselves. Consider a situation in which your

employer takes over another company that uses a

different middleware product from that used in your

company. You need to integrate the two middleware

solutions to let the information systems of the two



companies work in concert. Our patterns can help you

find integration points and identify promising solutions.

In rarer cases you might need to customize distributed

object middleware, or even build it from scratch.

Consider for example an embedded system with tight

constraints on memory consumption, performance, and

real-time communication [Aut04]. If no suitable

middleware product exists, or all available products turn

out to be inappropriate and/or have a footprint that is to

large, the developers must develop their own solution.

As an alternative, you could look at existing open-source

solutions and try to customize them for your needs. Here

our patterns can help you to identify critical components

of the middleware and assess the effort required in

customizing them. If customizing an existing middleware

does not seem to be feasible, you can use the patterns

to build a new distributed object middleware for your

application.

The list above consists of only a few examples. We hope

they illustrate the broad variety of situations in which you

might want to get a deeper understanding of distributed

object middleware. As these situations occur repeatedly, we

hope these examples illustrate why we think the time is

ready for a book that explains such issues in a way that is

accessible to practitioners.

About the authors

Markus Völter

Markus Völter works as an independent consultant on

software technology and engineering based in Heidenheim,

Germany. His primary focus is software architecture and

patterns, middleware and model-driven software



development. Markus has consulted and coached in many

different domains, such as banking, health care, e-business,

telematics, astronomy, and automotive embedded systems,

in projects ranging from 5 to 150 developers.

Markus is also a regular speaker at international

conferences on software technology and object orientation.

Among others, he has given talks and tutorials at ECOOP,

OOPSLA, OOP, OT, JAOO and GPCE. Markus has published

patterns at various PLoP conferences and writes articles for

various magazines on topics that he finds interesting. He is

also co-author of the book Server Component Patterns,

which is - just like the book you are currently reading - part

of the Wiley series in Software Design Patterns.

When not dealing with software, Markus enjoys cross-

country flying in the skies over southern Germany in his

glider.

Markus can be reached at voelter@acm.org or via

www.voelter.de

Michael Kircher

Michael Kircher is working currently as Senior Software

Engineer at Siemens AG Corporate Technology in Munich,

Germany. His main fields of interest include distributed

object computing, software architecture, patterns, agile

methodologies, and management of knowledge workers in

innovative environments. He has been involved in many

projects as a consultant and developer within various

Siemens business areas, building software for distributed

systems. Among these were the development of software

for UMTS base stations, toll systems, postal automation

systems, and operation and maintenance software for

industry and telecommunication systems.

In recent years Michael has published papers at numerous

conferences on topics such as patterns, software

mailto:voelter@acm.org
http://www.voelter.de/


architecture for distributed systems, and eXtreme

Programming, and has organized several workshops at

conferences such as OOPSLA and EuroPLoP. He is also co-

author of the book Pattern-Oriented Software Architecture,

Volume 3: Patterns for Resource Management.

In his spare time Michael likes to combine family life with

enjoying nature, engaging in sports, or just watching

wildlife.

Michael can be reached at michael@kircher-

schwanninger.de or via www.kircher-schwanninger.de

Uwe Zdun

Uwe Zdun is working currently as an assistant professor in

the Department of Information Systems at the Vienna

University of Economics and Business Administration. He

received his Doctoral degree from the University of Essen in

2002, where he worked from 1999 to 2002 as research

assistant in the software specification group. His research

interests include software patterns, scripting, object-

orientation, software architecture, and Web engineering.

Uwe has been involved as a consultant and developer in

many software projects. He is author of a number of open-

source software systems, including Extended Object Tcl

(XOTcl), ActiWeb, Frag, and Leela, as well as many other

open-source and industrial software systems.

In recent years he has published in numerous conferences

and journals, and co-organized a number of workshops at

conferences such as EuroPLoP, CHI, and OOPSLA.

He enjoys hiking, biking, pool, and guitar playing.

Uwe can be reached at zdun@acm.org or via wi.wu-

wien.ac.at/~uzdun

Acknowledgments

mailto:michael@kircher-schwanninger.de
http://www.kircher-schwanninger.de/
mailto:zdun@acm.org
http://wi.wu-wien.ac.at/~uzdun


A book such as this would be impossible without the support

of many other people. For their support in discussing the

contents of the book and for providing their feedback, we

express our gratitude.

First of all, we want to thank our shepherd, Steve Vinoski,

and the pattern series editor, Frank Buschmann. They have

read the book several times and provided in-depth

comments on technical content, as well as on the structure

and coherence of the pattern language.

We also want to thank the following people who have

provided comments on various versions of the manuscript,

as well as on extracted papers that have been workshopped

at VikingPLoP 2002 and EuroPLoP 2003: Mikio Aoyama,

Steve Berczuk, Valter Cazzalo, Anniruddha Gokhale, Lars

Grunske, Klaus Jank, Kevlin Henney, Wolfgang Herzner, Don

Hinton, Klaus Marquardt, Jan Mendling, Roy Oberhauser, Joe

Oberleitner, Juha Pärsinen, Michael Pont, Alexander Schmid,

Kristijan Elof Sorenson (thanks for playing shepherd and

proxy), Michael Stal, Mark Strembeck, Oliver Vogel, Johnny

Willemsen, and Eberhard Wolff.

Finally we thank those that have been involved with the

production of the book: our copy-editor Steve Rickaby and

editors Gaynor Redvers-Mutton and Juliet Booker. It is a

pleasure working with such proficient people.

Patterns and Pattern

Languages
Over the past couple of years patterns have become part of

the mainstream of software development. They appear in

different types and forms.

The most popular patterns are those for software design,

pioneered by the Gang-of-Four (GoF) book [GHJV95] and



continued by many other pattern authors. Design patterns

can be applied very broadly, because they focus on

everyday design problems. In addition to design patterns,

the patterns community has created patterns for software

architecture [BMR+96, SSRB00], analysis [Fow96], and even

non-IT topics such as organizational or pedagogical patterns

[Ped04, FV00]. There are many other kinds of patterns, and

some are specific for a particular domain.

What is a Pattern?

A pattern, according to the original definition of Alexander1

[AIS+77], is:

… a three-part rule, which expresses a relation between a

certain context, a problem, and a solution.

This is a very general definition of a pattern. It is probably a

bad idea to cite Alexander in this way, because he explains

this definition extensively. In particular, how can we

distinguish a pattern from a simple recipe? Consider the

following example:

Context You are driving a car.

Problem The traffic lights in front of you are red. You must not run over

them. What should you do?

Solution Brake.

Is this a pattern? Certainly not. It is just a simple, plain if-

then rule. So, again, what is a pattern? Jim Coplien, on the

Hillside Web site [Cop04], proposes another, slightly longer

definition that summarizes the discussion in Alexander’s

book:

Each pattern is a three-part rule, which expresses a

relation between a certain context, a certain system of

forces which occurs repeatedly in that context, and a

certain software configuration which allows these forces to

resolve themselves.



Coplien mentions forces. Forces are considerations that

somehow constrain or influence the solution proposed by

the pattern. The set of forces builds up tension, usually

formulated concisely as a problem statement. A solution for

the given problem has to balance the forces somehow,

because the forces cannot usually all be resolved optimally –

a compromise has to be found.

To be understandable by the reader, a pattern should

describe how the forces are balanced in the proposed

solution, and why they have been balanced in the proposed

way. In addition, the advantages and disadvantages of such

a solution should be explained, to allow the reader to

understand the consequences of using the pattern.

Patterns are solutions to recurring problems. They therefore

need to be quite general, so that they can be applied to

more than one concrete problem. However, the solution

should be sufficiently concrete to be practically useful, and

it should include a description of a specific software

configuration. Such a configuration consists of the

participants of the pattern, their responsibilities, and their

interactions. The level of detail of this description can vary,

but after reading the pattern, the reader should know what

he has to do to implement the pattern’s solution. As the

above discussion highlights, a pattern is not merely a set of

UML diagrams or code fragments.

Patterns are never ‘new ideas’. Patterns are proven solutions

to recurring problems. So known uses for a pattern must

always exist. A good rule of thumb is that something that

does not have at least three known uses is not a pattern. In

software patterns, this means that systems must exist that

are implemented according to the pattern. The usual

approach to writing patterns is not to invent them from

scratch – instead they are discovered in, and then extracted

from, real-life systems. These systems then serve as known

uses for the pattern. To find patterns in software systems,



the pattern author has to abstract the problem/solution pair

from the concrete instances found in the systems at hand.

Abstracting the pattern while preserving comprehensibility

and practicality is the major challenge of pattern writing.

There is another aspect to what makes a good pattern, the

quality without a name (QWAN) [AIS+77]. The quality

without a name cannot easily be described: the best

approximation is universally-recognizable aesthetic beauty

and order. So a pattern’s solution must somehow appeal to

the aesthetic sense of the pattern reader – in our case, to

the software developer, designer, or architect. While there is

no universal definition of beauty, there certainly are some

guidelines as to what is a good solution and what is not. For

example, a software system, while addressing a complex

problem, should be efficient, flexible and easily

understandable. The principle of beauty is an important –

and often underestimated – guide for judging whether a

technological design is good or bad. David Gelernter details

this in his book Machine Beauty [Gel99].

Classifications of Patterns in

this book

The patterns in this book are software patterns. They can

further be seen as architectural patterns or design patterns.

It is not easy to draw the line between architecture and

design, and often the distinction depends on your situation

and viewpoint. For a rough distinction, let’s refer to the

definition of software architecture from Bass, Clements, and

Kazman [BCK03]:

The software architecture of a program or computing

system is the structure or structures of the system, which

comprise software components, the externally-visible

properties of those components and the relationships

among them.



What we can see here is that whether a specific pattern is

categorized as an architectural pattern or a design pattern

depends heavily on the viewpoint of the designer or

architect. Consider for example the Interpreter pattern

[GHJV95]. The description in the Gang-of-Four book

describes it as a concrete design guideline. Yet according to

the software architecture definition above, instances of the

pattern are often seen as a central elements in the

architecture of software systems, because an Interpreter is

a central component of the system that is externally visible.

Most of the patterns in this book can be seen as falling into

both categories – design patterns and architectural patterns.

From the viewpoint of the designer, they provide concrete

guidelines for the design of a part of the distributed object

middleware. Yet they also comprise larger, visible structures

of the distributed object middleware and focus on the most

important components and their relationships. Thus,

according to the above definition, they are architectural

foundations of the distributed object middleware as well.

From patterns to pattern

languages

A single pattern describes one solution to a particular,

recurring problem. However, ‘really big problems’ usually

cannot be described in one pattern without compromising

readability.

The pattern community has therefore come up with several

ways to combine patterns to solve a more complex problem

or a set of related problems:

Compound patterns are patterns that are assembled

from other, smaller patterns. These smaller patterns are

usually already well known in the community. Often, for

a number of related smaller patterns, known uses exist

in which these patterns are always used together in the



same software configuration. Such situations are good

candidates for description as a compound pattern. It is

essential that the compound pattern actually solves a

distinct problem, and not just a combination of the

problems of its contained patterns. A compound pattern

also resolves its own set of forces. An example of a

compound pattern is Bureaucracy by Dirk Riehle [Rie97],

which combines Composite, Mediator, Chain of

Responsibility, and Observer (all from the GoF book,

[GHJV95]).

A family of patterns is a collection of patterns that solves

the same general problem. Each pattern either defines

the problem more specifically, or resolves the common

forces in a different way. For example, different solutions

could focus on flexibility, performance or simplicity.

Usually each of the patterns has different consequences.

A family therefore describes a problem and several

proven solutions. It is up to the reader to select the

appropriate solution, taking into account how he wants

to resolve the common forces in his particular context. A

good example is James Noble’s Basic Relationship

Patterns [Nob97], which describes several alternatives

ways in which logical relationships between objects can

be realized in software.

A collection, or system of patterns comprises several

patterns from the same domain or problem area. Each

pattern stands on its own, sometimes referring to other

patterns in the collection in its implementation. The

patterns form a system because they can be used by a

developer working in a specific domain, each pattern

resolving a distinct problem the developer might come

across during his work. A good example is Pattern

Oriented Software Architecture by Buschmann, Meunier,

Rohnert, Sommerlad, and Stal (also known as POSA 1

[BMR+96]).


