C# 4, ASP.NET 4, & WPF
with Visual Studio 2010

Jump Start

Christian Nagel, Bill Evjen, Rod Stephens

Table of Contents
Cover

Title Page

Professional C# 4 and .NET 4

Covariance and Contra-variance
Tuples

The Dynamic Type

Code Contracts

Tasks

Parallel Class

Cancellation Framework
Taskbar and Jump List

Professional ASP.NET 4 in C# and VB

Chart Server Control

ASP.NET AJAX Control Toolkit
Extending <outputCache>

.NET 4’s New Object Caching Option
Historical Debugging with IntelliTrace
Debugging Multiple Threads

ASP.NET MVC

Using WCF Data Services

Creating Your First Service

Building an ASP.NET Web Package

file:///tmp/calibre_5.41.0_tmp__ti7u6x_/rfypguhy_pdf_out/OEBPS/9780470632048cover.xhtml

WPF Programmer’s Reference

Code-behind Files

Example Code

Event Name Attributes
Resources

Styles and Property Triggers
Event Triggers and Animation
Templates

Skins

Printing Visual Objects
Printing Code-Generated Output
Data Binding
Transformations

Effects

Documents
Three-Dimensional Drawing

About the Authors

Copyright

Advertisement

Beesasssssstssssssesensnssst
C# 4, ASP.NET 4, & WPF

with Visual Studio 2010
Jump Start

Christian Nagel
Bill Evjen
Jay Glynn

Karli Watson
Morgan Skinner
Scott Hﬂuse]]]]m]

Devin Rader

Rod Stephens

&

WILEY

Wiley Publishing, Inc.

e e ¥ i i "
P IOX I NEETEAMImer 0 OEFRIrm

Professional

C# 4 and .NET 4

Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, Morgan Skinner

Covariance and Contra-
variance

Previous to .NET 4, generic interfaces were invariant.
.NET 4 adds an important extension for generic interfaces
and generic delegates with covariance and contra-
variance. Covariance and contra-variance are about the
conversion of types with argument and return types. For
example, can you pass a Rectangle to a method that
requests a Shape? Let's get into examples to see the
advantages of these extensions.

With .NET, parameter types are covariant. Assume you
have the classes Shape and Rectangle, and Rectangle derives
from the shape base class. The bDisplay() method is
declared to accept an object of the shape type as its

parameter:
public void Display(Shape o) { }

Now you can pass any object that derives from the Shape
base class. Because Rectangle derives from Shape, a
Rectangle fulfills all the requirements of a shape and the

compiler accepts this method call:

Rectangle r = new Rectangle { Width= 5, Height=2.5};

Display(r);

Return types of methods are contra-variant. When a
method returns a shape it is not possible to assign it to a
Rectangle because a Shape iS not necessarily always a
Rectangle. The opposite is possible. If a method returns a

Rectangle as the GetRectangle() method,
public Rectangle GetRectangle();

the result can be assigned to a Shape.

Shape s = GetRectangle();

Before version 4 of the .NET Framework, this behavior
was not possible with generics. With C# 4, the language

is extended to support covariance and contra-variance
with generic interfaces and generic delegates. Let’'s start
by defining a Shape base class and a Rectangle class:

J

Available for
download on
Wrox.com

public class Shape

{
public double Width { get; set; }
public double Height { get; set; }

public override string ToString()

{
return String.Format("Width: {0}, Height: {1}", Width, Height);

}

Pro C# 4 9780470502259 code snippet Variance/Shape.cs

public class Rectangle: Shape
{
}

Pro C# 4 9780470502259 code snippet Variance/Rectangle.cs

Covariance with Generic Interfaces

A generic interface is covariant if the generic type is
annotated with the out keyword. This also means that
type T is allowed only with return types. The interface
IIndex is covariant with type T and returns this type from a
read-only indexer:

J

Available for
download on
Wrox.com

public interface IIndex<out T>

{
T this[int index] { get; }
int Count { get; }

Pro C# 4 9780470502259 code snippet Variance/lIndex.cs

If a read-write indexer is used with the lIndex interface, the
generic type T is passed to the method and also retrieved
from the method. This is not possible with covariance — the
generic type must be defined as invariant. Defining the type
as invariant is done without out and in annotations.

The 1IIndex<T> interface is implemented with the
RectangleCollection class. RectangleCollection defines

Rectangle for generic type T:

J

Available for
download on
Wrox.com
public class RectangleCollection: IIndex<Rectangle>
{
private Rectangle[] data = new Rectangle[3]
{
new Rectangle { Height=2, Width=5},
new Rectangle { Height=3, Width=7},
new Rectangle { Height=4.5, Width=2.9}
b
public static RectangleCollection GetRectangles()
{
return new RectangleCollection();
}
public Rectangle this[int index]
{
get
{
if (index < 0 || index > data.Length)
throw new ArgumentOutOfRangeException("index");
return data[index];
}
}
public int Count
{
get
{
return data.Length;
}
}

Pro C# 4 9780470502259 code snippet
Variance/RectangleCollection.cs

The RectangleCollection.GetRectangles() method returns a
RectangleCollection that implements the IIndex<Rectangle>
interface, so you can assign the return value to a variable
rectangle of the 1IIndex<Rectangle> type. Because the
interface is covariant, it is also possible to assign the
returned value to a variable of IIndex<Shape>. Shape does
not need anything more than a Rectangle has to offer.
Using the shapes variable, the indexer from the interface
and the Count property are used within the for loop:

J

Available for
download on
Wrox.com

static void Main()

{

IIndex<Rectangle> rectangles = RectangleCollection.GetRectangles(
IIndex<Shape> shapes = rectangles;

for (int i = 0; i < shapes.Count; i++)

{

Console.WriteLine(shapes[i]);

}
}

Pro C# 4 9780470502259 code snippet Variance/Program.cs

Contra-Variance with Generic
Interfaces

A generic interface is contra-variant if the generic type is
annotated with the in keyword. This way the interface is
only allowed to use generic type T as input to its
methods:

J

Available for
download on
Wrox.com

public interface IDisplay<in T>

{

void Show(T item);

}
Pro C# 4 9780470502259 code snippet Variance/IDisplay.cs

YOU CAN DOWNLOAD THE CODE FOUND IN THIS SECTION. VISIT WROX.COM
\7 AND SEARCH FOR ISEM 9780470502259

The ShapeDisplay class implements Ibisplay<Shape> and

uses a Shape object as an input parameter:

public class ShapeDisplay: IDisplay<Shape>
{
public void Show(Shape s)

{

{0} width: {1}, Height: {2}", s.GetType().Name,
s.Width, s.Height);

Console.WritelLine("

}
}

Pro C# 4 9780470502259 code snippet Variance/ShapeDisplay.cs

Creating a new instance of ShapeDisplay returns
IDisplay<Shape>, which is assigned to the shapeDisplay
variable. Because 1IDisplay<T> is contra-variant, it is
possible to assign the result to Ibisplay<Rectangle> where
Rectangle derives from shape. This time the methods of the
interface only define the generic type as input, and
Rectangle fulfills all the requirements of a Shape:

J

Available for
download on
Wrox.com

static void Main()

{
/7. ..

IDisplay<Shape> shapeDisplay = new ShapeDisplay();
IDisplay<Rectangle> rectangleDisplay = shapeDisplay;
rectangleDisplay.Show(rectangles[0]);

}

Pro C# 4 9780470502259 code snippet Variance/Program.cs

Tuples

Arrays combine objects of the same type; tuples can
combine objects of different types. Tuples have the origin
in functional programming languages such as F# where
they are used often. With .NET 4, tuples are available
with the .NET Framework for all .NET languages.

.NET 4 defines eight generic Tuple classes and one static
Tuple class that act as a factory of tuples. The different
generic Tuple classes are here for supporting a different
number of elements; e.qg., Tuple<T1> contains one element,
Tuple<T1l, T2> contains two elements, and so on.

The method bpivide() demonstrates returning a tuple
with two members — Tuple<int, int>. The parameters of
the generic class define the types of the members, which
are both integers. The tuple is created with the static
Create() method of the static Tuple class. Again, the
generic parameters of the cCreate() method define the
type of tuple that is instantiated. The newly created tuple
is initialized with the result and reminder variables to
return the result of the division:

J

Available for
download on
Wrox.com

public static Tuple<int, int> Divide(int dividend, int divisor)
{

int result = dividend / divisor;

int reminder = dividend % divisor;

return Tuple.Create<int, int>(result, reminder);

}
Pro C# 4 9780470502259 code snippet TuplesSample/Program.cs

The following code shows invoking the pivide() method.
The items of the tuple can be accessed with the
properties Iteml and Item2:

var result = Divide(5, 2);
Console.WritelLine("result of division: {0}, reminder: {1}",

result.Iteml, result.Item2);

In case you have more than eight items that should be
included in a tuple, you can use the Tuple class definition
with eight parameters. The last template parameter is
named TRest to indicate that you must pass a tuple itself.
That way you can create tuples with any number of
parameters.

To demonstrate this functionality:
public class Tuple<Tl, T2, T3, T4, T5, T6, T7, TRest>

Here, the last template parameter is a tuple type itself,
SO you can create a tuple with any number of items:

var tuple = Tuple.Create<string, string, string, int, int, int, d
ouble,
Tuple<int, int>>(
"Stephanie", "Alina", "Nagel", 2009, 6, 2, 1.37,
Tuple.Create<int, int>(52, 3490));

The Dynamic Type

The dynamic type allows you to write code that will bypass
compile time type checking. The compiler will assume
that whatever operation is defined for an object of type
dynamic is valid. If that operation isn't valid, the error
won’t be detected until runtime. This is shown in the
following example:

class Program

{
static void Main(string[] args)
{
var staticPerson = new Person();
dynamic dynamicPerson = new Person();
staticPerson.GetFullName("John", "Smith");
dynamicPerson.GetFullName("John", "Smith");
}
}

class Person

{
public string FirstName { get; set; }
public string LastName { get; set; }
public string GetFullName()
{

return string.Concat(FirstName, " ", LastName);

}
}

This example will not compile because of the call to
staticPerson.GetFullName(). There isn't a method on the
Person Object that takes two parameters, so the compiler
raises the error. If that line of code were to be
commented out, the example would compile. If executed,
a runtime error would occur. The exception that is raised
IS RuntimeBinderException. The RuntimeBinder is the object in
the runtime that evaluates the call to see if Person really
does support the method that was called.

Unlike the var keyword, an object that is defined as
dynamic can change type during runtime. Remember,
when the var keyword is used, the determination of the
object’s type is delayed. Once the type is defined, it can’t
be changed. Not only can you change the type of a
dynamic object, you can change it many times. This
differs from casting an object from one type to another.
When you cast an object you are creating a new object
with a different but compatible type. For example, you
cannot cast an int to a Person object. In the following
example, you can see that if the object is a dynamic
object, you can change it from int to Person:

J

Available for
download on
Wrox.com

dynamic dyn;

dyn = 100;
Console.WriteLine(dyn.GetType());
Console.WriteLine(dyn);

dyn = "This is a string";
Console.WriteLine(dyn.GetType());
Console.WriteLine(dyn);

dyn = new Person() { FirstName = "Bugs", LastName = "Bunny" };
Console.WriteLine(dyn.GetType());
Console.WriteLine("{0} {1}", dyn.FirstName, dyn.LastName);

Pro C# 4 9780470502259 code snippet Dynamic|\Program.cs

Executing this code would show that the dyn object
actually changes type from System.Int32 to System.String to
Person. If dyn had been declared as an int or string, the
code would not have compiled.

There are a couple of limitations to the dynamic type. A
dynamic object does not support extension methods.
Anonymous functions (Lambda expressions) also cannot
be used as parameters to a dynamic method call, thus
LINQ does not work well with dynamic objects. Most LINQ
calls are extension methods and Lambda expressions are
used as arguments to those extension methods.

Dynamic Behind the Scenes

So what's going on behind the scenes to make this
happen? C# is still a statically typed language. That
hasn't changed. Take a look at the IL (Intermediate
Language) that's generated when the dynamic type is
used.

First, this is the example C# code that you’'re looking at:

using System;

namespace DeCompile
{
class Program
{
static void Main(string[] args)
{
StaticClass staticObject = new StaticClass();
DynamicClass dynamicObject = new DynamicClass();
Console.WritelLine(staticObject.IntValue);
Console.WriteLine(dynamicObject.DynValue);
Console.ReadLine();

}

class StaticClass

{
public int IntValue = 100;

}

class DynamicClass

{
public dynamic DynValue = 100;

}
}

You have two classes, StaticClass and DynamicClass.
StaticClass has a single field that returns an int.
DynamicClass has a single field that returns a dynamic object.
The Main method just creates these objects and prints out
the value that the methods return. Simple enough.

Now comment out the references to the DynamicClass in
Main like this:

static void Main(string[] args)

{
StaticClass staticObject = new StaticClass();
//DynamicClass dynamicObject = new DynamicClass();
Console.WritelLine(staticObject.IntValue);
//Console.WriteLine(dynamicObject.DynValue);
Console.ReadLine();

}

Using the ildasm tool, you can look at the IL that is
generated for the Main method:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

// Code size 26 (0x1la)

.maxstack 1

.locals init ([0] class DeCompile.StaticClass staticObject)

IL 0000: nop

IL 0001: newobj instance void DeCompile.StaticClass::.ctor()

IL 0006: stloc.0O

IL 0007: T1dloc.0

IL 0008: 1dfld int32 DeCompile.StaticClass::IntValue

IL 000d: call void [mscorlib]System.Console: :WriteLine(int32)
IL 0012: nop

IL 0013: call string [mscorlib]System.Console: :ReadLine()

IL 0018: pop
IL 0019: ret
} // end of method Program::Main

Without going into the details of IL but just looking at
this section of code, you can still pretty much tell what’s
going on. Line 0001, the staticClass constructor, is called.
Line 0008 calls the Intvalue field of StaticClass. The next
line writes out the value.

Now comment out the StaticClass references and
uncomment the bynamicClass references:

static void Main(string[] args)

{
//StaticClass staticObject = new StaticClass();
DynamicClass dynamicObject = new DynamicClass();
Console.WriteLine(staticObject.IntValue);
//Console.WriteLine(dynamicObject.DynValue);
Console.ReadLine();

}

Compile the application again and this is what gets

generated:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

// Code size 121 (0x79)

.maxstack 9

.locals init ([0] class DeCompile.DynamicClass dynamicObject,

[1] class [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpA
rgumentInfol]

CS$0$0000)
IL 0000: nop
IL 0001: newobj instance void DeCompile.DynamicClass::.ctor()
IL 0006: stloc.0O
IL 0007: T1ldsfld class [System.Core]System.Runtime.CompilerServices.Cal

1Site'l

<class [mscorlib]
System.Action'3<class
[System.Core]System.Runtime.CompilerServices.CallSite,class [mscorlib]
System.Type,object>> DeCompile.Program/'<Main>0 SiteContainerQ'::'<>p Sitel

IL 000c: brtrue.s IL 004d

IL 000e: 1dc.i4.0

IL 000f: 1ldstr "WriteLine"

IL 0014: T1dtoken DeCompile.Program

IL 0019: call class [mscorlib]System.Type [mscorlib]System.Type::Get
TypeFromHandle
(valuetype [mscorlib]System.RuntimeTypeHandle)

IL 001le: Tldnull

IL 001f: 1dc.i4.2

IL 0020: newarr [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CShar
pArgumentInfo

IL 0025: stloc.1

IL 0026: 1ldloc.1

IL 0027: 1dc.i4.0

IL 0028: 1dc.id4.s 33

IL 002a: T1ldnull

IL 002b: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.Runti
meBinder
.CSharpArgumentInfo::.ctor(valuetype [Microsoft.CSharp]Microsoft.CSharp.Runti
meBinder

.CSharpArgumentInfoFlags,

string)

IL 0030: stelem.ref

IL 0031: 1dloc.1

IL 0032: 1dc.i4.1

IL 0033: 1dc.i4.0

IL 0034: 1dnull

IL 0035: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.Runti
meBinder
.CSharpArgumentInfo::.ctor(valuetype [Microsoft.CSharp]Microsoft.CSharp.Runti
meBinder
.CSharpArgumentInfoFlags,

string)
IL 003a: stelem.ref
IL 003b: 1ldloc.1

IL 003c: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.Runti
meBinder

.CSharpInvokeMemberBinder::.ctor(valuetype Microsoft.CSharp]Microsoft.CSharp
.RuntimeBinder.CSharpCallFlags,

string,
class [mscorlib]System.Type,

class [mscorlib]System.Collections.Generic.IEnumerable'l
<class [mscorlib]System.Type>,

class [mscorlib]System.Collections.Generic.IEnumerable'l
<class [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo>)
IL 0041: call class [System.Core]System.Runtime.CompilerServices.Cal
1Site'l
<!10> class [System.Core]System.Runtime.CompilerServices.CallSite'l
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>::Create(class [System.Core]System.Runtim
e.CompilerServices
.CallSiteBinder)
IL 0046: stsfld class [System.Core]System.Runtime.CompilerServices.Cal
1Site'l
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,

class [mscorlib]System.Type,object>> DeCompile.Program/'<Main>0_ SiteContaine
ro'::'<>p Sitel'

IL 004b: br.s IL 004d
IL 004d: 1dsfld class [System.Core]System.Runtime.CompilerServices.Cal
1Site'l

<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>> DeCompile.Program/'<Main>o0_ SiteContaine
ro'::'<>p Sitel’

IL 0052: 1dfld 10 class [System.Core]System.Runtime.CompilerServices.
CallSite'l
<class [mscorlib]System.Action'3

<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>::Target
IL 0057: T1ldsfld class [System.Core]System.Runtime.CompilerServices.Cal
1Site'l
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>> DeCompile.Program/'<Main>0 SiteContaine
ro'::'<>p Sitel'
IL 005c: T1ldtoken [mscorlib]System.Console

IL 0061: call class [mscorlib]System.Type [mscorlib]System.Type::Get
TypeFromHandle

(valuetype [mscorlib]System.RuntimeTypeHandle)
IL 0066: T1dloc.0
IL 0067: 1dfld object DeCompile.DynamicClass: :DynValue
IL 006c: callvirt instance void class [mscorlib]System.Action'3

<class [System.Core]System.Runtime.CompilerServices.CallSite, cl
ass

[mscorlib]System.Type,object>::Invoke(!0,!1,!2)
IL 0071: nop
IL 0072: call string [mscorlib]System.Console: :ReadlLine()
IL 0077: pop
IL 0078: ret
} // end of method Program::Main

So it's safe to say that the C# compiler is doing a little
extra work to support the dynamic type. Looking at the
generated code, you can see references to
System.Runtime.CompilerServices.CallSite and
System.Runtime.CompilerServices.CallSiteBinder.

The callsite is a type that handles the lookup at
runtime. When a call is made on a dynamic object at
runtime, something has to go and look at that object to
see if the member really exists. The call site caches this
information so the lookup doesn’t have to be performed
repeatedly. Without this process, performance in looping
structures would be questionable.

After the callsite does the member lookup, the
CallSiteBinder is invoked. It takes the information from the
call site and generates an expression tree representing
the operation the binder is bound to.

There is obviously a lot going on here. Great care has
been taken to optimize what would appear to be a very
complex operation. It should be obvious that while using
the dynamic type can be useful, it does come with a price.

Code Contracts

Design-by-contracts is an idea from the Eiffel
programming language. Now .NET 4 includes classes for
static and runtime checks of code within the namespace
System.Diagnostics.Contracts that can be used by all .NET
languages.

With this functionality you can define preconditions,
postconditions, and invariants within a method. The
preconditions lists what requirements the parameters
must fulfill, the postconditions define the requirements on
returned data, and the invariants define the requirements
of variables within the method itself.

Contract information can be compiled both into the
debug and the release code. It is also possible to define a
separate contract assembly, and many checks can also
be made statically without running the application. You
can also define contracts on interfaces that cause the
implementations of the interface to fulfill the contracts.
Contract tools can rewrite the assembly to inject contract
checks within the code for runtime checks, check the
contracts during compile time, and add contract
information to the generated XML documentation.

The following figure shows the project properties for the
code contracts in Visual Studio 2010. Here, you can
define what level of runtime checking should be done,
indicate if assert dialogs should be opened on contract
failures, and configure static checking. Setting the
Perform Runtime Contract Checking to Full defines the
symbol CONTRACTS FULL. Because many of the contract
methods are annotated with the attribute
[Conditional("CONTRACTS FULL")], all runtime checks are only
done with this setting.

