


Table of Contents

Cover

Title Page

Copyright

Dedication

About the Authors

Acknowledgments

Introduction

Who Should Read This Book

How This Book Is Organized

Setting Up Your Environment

Conventions

On The Book’s DVD

Chapter 1: Anonymizing Your

Activities

The Onion Router (Tor)

Malware Research with Tor

file:///tmp/calibre_5.41.0_tmp_7egihbyo/y3lbqk5w_pdf_out/OEBPS/9781118008294cover.xhtml


Tor Pitfalls

Proxy Servers and Protocols

Web-Based Anonymizers

Alternate Ways to Stay

Anonymous

Cellular Internet Connections

Virtual Private Networks

Being Unique and Not Getting

Busted

Chapter 2: Honeypots

Nepenthes Honeypots

Working with Dionaea Honeypots

Chapter 3: Malware Classification

Classification with ClamAV

Classification with YARA

Putting It All Together

Chapter 4: Sandboxes and Multi-AV

Scanners

Public Antivirus Scanners

Multi-Antivirus Scanner

Comparison

Public Sandbox Analysis



Chapter 5: Researching Domains and

IP Addresses

Researching Suspicious Domains

Researching IP Addresses

Researching with Passive DNS and

Other Tools

Fast Flux Domains

Geo-Mapping IP Addresses

Chapter 6: Documents, Shellcode,

and URLs

Analyzing JavaScript

Analyzing PDF Documents

Analyzing Malicious Office

Documents

Analyzing Network Traffic

Chapter 7: Malware Labs

Networking

Physical Targets

Chapter 8: Automation

The Analysis Cycle

Automation with Python

Adding Analysis Modules



Miscellaneous Systems

Chapter 9: Dynamic Analysis

API Monitoring/Hooking

Data Preservation

Chapter 10: Malware Forensics

The Sleuth Kit (TSK)

Forensic/Incident Response Grab

Bag

Registry Analysis

Chapter 11: Debugging Malware

Working with Debuggers

Immunity Debugger’s Python API

WinAppDbg Python Debugger

Chapter 12: De-obfuscation

Decoding Common Algorithms

Decryption

Unpacking Malware

Unpacking Resources

Debugger Scripting

Chapter 13: Working with DLLs



Chapter 14: Kernel Debugging

Remote Kernel Debugging

Local Kernel Debugging

Software Requirements

Chapter 15: Memory Forensics with

Volatility

Memory Acquisition

Preparing a Volatility Install

Chapter 16: Memory Forensics: Code

Injection and Extraction

Investigating DLLs

Code Injection and the VAD

Reconstructing Binaries

Chapter 17: Memory Forensics:

Rootkits

Chapter 18: Memory Forensics:

Network and Registry

Registry Analysis

Index



Wiley Publishing, Inc. End-User

License Agreement





Malware Analyst’s Cookbook and DVD: Tools and

Techniques for Fighting Malicious Code

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc.,

Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-61303-0

ISBN: 978-1-118-00336-7 (ebk)

ISBN: 978-1-118-00829-4 (ebk)

ISBN: 978-1-118-00830-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored

in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying,

recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States

Copyright Act, without either the prior written

permission of the Publisher, or authorization through

payment of the appropriate per-copy fee to the

Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-

8600. Requests to the Publisher for permission should

be addressed to the Permissions Department, John

http://www.wiley.com/


Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008, or online

at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The

publisher and the author make no representations or

warranties with respect to the accuracy or

completeness of the contents of this work and

specifically disclaim all warranties, including without

limitation warranties of fitness for a particular

purpose. No warranty may be created or extended by

sales or promotional materials. The advice and

strategies contained herein may not be suitable for

every situation. This work is sold with the

understanding that the publisher is not engaged in

rendering legal, accounting, or other professional

services. If professional assistance is required, the

services of a competent professional person should

be sought. Neither the publisher nor the author shall

be liable for damages arising herefrom. The fact that

an organization or website is referred to in this work

as a citation and/or a potential source of further

information does not mean that the author or the

publisher endorses the information the organization

or website may provide or recommendations it may

make. Further, readers should be aware that Internet

websites listed in this work may have changed or

disappeared between when this work was written and

when it is read.

For general information on our other products and

services please contact our Customer Care

Department within the United States at (877) 762-

http://www.wiley.com/go/permissions


2974, outside the United States at (317) 572-3993 or

fax (317) 572-4002.

Wiley also publishes its books in a variety of

electronic formats. Some content that appears in

print may not be available in electronic books.

Library of Congress Control Number: 2010933462

Trademarks: Wiley and the Wiley logo are trademarks

or registered trademarks of John Wiley & Sons, Inc.

and/or its affiliates, in the United States and other

countries, and may not be used without written

permission. All other trademarks are the property of

their respective owners. Wiley Publishing, Inc. is not

associated with any product or vendor mentioned in

this book.



To my family for helping me shape my life and to my

wife Suzanne for always giving me something to look

forward to.

—Michael Hale Ligh

To my new wife and love of my life Irene and my

family. Without your support over the many years, I

would not be where I am or who I am today.

—Steven Adair



About the Authors

Michael Hale Ligh is a Malicious Code Analyst at

Verisign iDefense, where he specializes in developing

tools to detect, decrypt, and investigate malware. In

the past few years, he has taught malware analysis

courses and trained hundreds of students in Rio De

Janeiro, Shanghai, Kuala Lumpur, London, Washington

D.C., and New York City. Before iDefense, Michael

worked as a vulnerability researcher, providing

ethical hacking services to one of the nation’s largest

healthcare providers. Due to this position, he gained

a strong background in reverse-engineering and

operating system internals. Before that, Michael

defended networks and performed forensic

investigations for financial institutions throughout

New England. He is currently Chief of Special Projects

at MNIN Security LLC.

Steven Adair is a security researcher with The

Shadowserver Foundation and a Principal Architect at

eTouch Federal Systems. At Shadowserver, Steven

analyzes malware, tracks botnets, and investigates

cyber-attacks of all kinds with an emphasis on those

linked to cyber-espionage. Steven frequently presents

on these topics at international conferences and co-

authored the paper “Shadows in the Cloud:

Investigating Cyber Espionage 2.0.” In his day job, he

leads the Cyber Threat operations for a Federal

Agency, proactively detecting, mitigating and

preventing cyber-intrusions. He has successfully



implemented enterprise-wide anti-malware solutions

across global networks by marrying best practices

with new and innovative techniques. Steven is knee

deep in malware daily, whether it be supporting his

company’s customer or spending his free time with

Shadowserver.

Blake Hartstein is a Rapid Response Engineer at

Verisign iDefense. He is responsible for analyzing and

reporting on suspicious activity and malware. He is

the author of the Jsunpack tool that aims to

automatically analyze and detect web-based exploits,

which he presented at Shmoocon 2009 and 2010.

Blake has also authored and contributed Snort rules

to the Emerging Threats project.

Matthew Richard is Malicious Code Operations Lead

at Raytheon Corporation, where he is responsible for

analyzing and reporting on malicious code. Matthew

was previously Director of Rapid Response at

iDefense. For 7 years before that, Matthew created

and ran a managed security service used by 130

banks and credit unions. In addition, he has done

independent forensic consulting for a number of

national and global companies. Matthew currently

holds the CISSP, GCIA, GCFA, and GREM certifications.



Acknowledgments

Michael would like to thank his current and past

employers for providing an environment that

encourages and stimulates creativity. He would like to

thank his coworkers and everyone who has shared

knowledge in the past. In particular, AAron Walters

and Ryan Smith for never hesitating to engage and

debate interesting new ideas and techniques. A

special thanks goes out to the guys who took time

out of the busy days to review our book: Lenny

Zeltser, Tyler Hudak, and Ryan Olson.

Steven would like to extend his gratitude to those

who spend countless hours behind the scenes

investigating malware and fighting cyber-crime. He

would also like to thank his fellow members of the

Shadowserver Foundation for their hard work and

dedication towards making the Internet a safer place

for us all.

We would also like to thank the following:

Maureen Spears and Carol A. Long from Wiley

Publishing, for helping us get through our first

book.

Ilfak Guilfanov (and the team at Hex-Rays) and

Halvar Flake (and the team at Zynamics) for

allowing us to use some of their really neat tools.

All the developers of the tools that we referenced

throughout the book. In particular, Frank

Boldewin, Mario Vilas, Harlan Carvey, and Jesse



Kornblum, who also helped review some recipes in

their realm of expertise.

The authors of other books, blogs, and websites

that contribute to the collective knowledge of the

community.

—Michael, Steven, Blake, and Matthew



Introduction

Malware Analyst’s Cookbook is a collection of

solutions and tutorials designed to enhance the skill

set and analytical capabilities of anyone who works

with, or against, malware. Whether you’re performing

a forensic investigation, responding to an incident, or

reverse-engineering malware for fun or as a

profession, this book teaches you creative ways to

accomplish your goals. The material for this book was

designed with several objectives in mind. The first is

that we wanted to convey our many years of

experience in dealing with malicious code in a

manner friendly enough for non-technical readers to

understand, but complex enough so that technical

readers won’t fall asleep. That being said, malware

analysis requires a well-balanced combination of

many different skills. We expect that our readers

have at least a general familiarity with the following

topics:

Networking and TCP/IP

Operating system internals (Windows and Unix)

Computer security

Forensics and incident response

Programming (C, C++, Python, and Perl)

Reverse-engineering

Vulnerability research

Malware basics



Our second objective is to teach you how various

tools work, rather than just how to use the tools. If

you understand what goes on when you click a

button (or type a command) as opposed to just

knowing which button to click, you’ll be better

equipped to perform an analysis on the tool’s output

instead of just collecting the output. We realize that

not everyone can or wants to program, so we’ve

included over 50 tools on the DVD that accompanies

the book; and we discuss hundreds of others

throughout the text. One thing we tried to avoid is

providing links to every tool under the sun. We limit

our discussions to tools that we’re familiar with, and

—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all

tasks you should perform during examination of a

malware sample or during a forensic investigation.

We tried to include solutions to problems that are

common enough to be most beneficial to you, but

rare enough to not be covered in other books or

websites. Furthermore, although malware can target

many platforms such as Windows, Linux, Mac OS X,

mobile devices, and hardware/firmware components,

our book focuses primarily on analyzing Windows

malware.

Who Should Read This Book

If you want to learn about malware, you should read

this book. We expect our readers to be forensic

investigators, incident responders, system



administrators, security engineers, penetration

testers, malware analysts (of course), vulnerability

researchers, and anyone looking to be more involved

in security. If you find yourself in any of the following

situations, then you are within our target audience:

You’re a member of your organization’s incident

handling, incident response, or forensics team

and want to learn some new tools and techniques

for dealing with malware.

You work as a systems, security, or network

administrator and want to understand how you

can protect end users more effectively.

You’re a member of your country’s Computer

Emergency Response Team (CERT) and need to

identify and investigate malware intrusions.

You work at an antivirus or research company and

need practical examples of analyzing and

reporting on modern malware.

You’re an aspiring student hoping to learn

techniques that colleges and universities just

don’t teach.

You work in the IT field and have recently become

bored, so you’re looking for a new specialty to

compliment your technical knowledge.

How This Book Is Organized

This book is organized as a set of recipes that solve

specific problems, present new tools, or discuss how

to detect and analyze malware in interesting ways.

Some of the recipes are standalone, meaning the



problem, discussion, and solution are presented in

the same recipe. Other recipes flow together and

describe a sequence of actions that you can use to

solve a larger problem. The book covers a large array

of topics and becomes continually more advanced

and specialized as it goes on. Here is a preview of

what you can find in each chapter:

Chapter 1, Anonymizing Your Activities: Describes

how you conduct online investigations without

exposing your own identity. You’ll use this

knowledge to stay safe when following along with

exercises in the book and when conducting

research in the future.

Chapter 2, Honeypots: Describes how you can use

honeypots to collect the malware being

distributed by bots and worms. Using these

techniques, you can grab new variants of malware

families from the wild, share them in real time

with other researchers, analyze attack patterns,

or build a workflow to automatically analyze the

samples.

Chapter 3, Malware Classification: Shows you how

to identify, classify, and organize malware. You’ll

learn how to detect malicious files using custom

antivirus signatures, determine the relationship

between samples, and figure out exactly what

functionality attackers may have introduced into a

new variant.

Chapter 4, Sandboxes and Multi-AV Scanners:

Describes how you can leverage online virus

scanners and public sandboxes. You’ll learn how



to use scripts to control the behavior of your

sample in the target sandbox, how to submit

samples on command line with Python scripts,

how to store results to a database, and how to

scan for malicious artifacts based on sandbox

results.

Chapter 5, Researching Domains and IP

Addresses: Shows you how to identify and

correlate information regarding domains,

hostnames, and IP addresses. You’ll learn how to

track fast flux domains, determine the alleged

owner of a domain, locate other systems owned

by the same group of attackers, and create static

or interactive maps based on the geographical

location of IP addresses.

Chapter 6, Documents, Shellcode, and URLs: In

this chapter, you’ll learn to analyze JavaScript,

PDFs, Office documents, and packet captures for

signs of malicious activity. We discuss how to

extract shellcode from exploits and analyze it

within a debugger or in an emulated environment.

Chapter 7, Malware Labs: Shows how to build a

safe, flexible, and inexpensive lab in which to

execute and monitor malicious code. We discuss

solutions involving virtual or physical machines

and using real or simulated Internet.

Chapter 8, Automation: Describes how you can

automate the execution of malware in VMware or

VirtualBox virtual machines. The chapter

introduces several Python scripts to create

custom reports about the malware’s behavior,



including network traffic logs and artifacts created

in physical memory.

Chapter 9, Dynamic Analysis: One of the best

ways to understand malware behavior is to

execute it and watch what it does. In this chapter,

we cover how to build your own API monitor, how

to prevent certain evidence from being destroyed,

how to log file system and Registry activity in real

time without using hooks, how to compare

changes to a process’s handle table, and how to

log commands that attackers send through

backdoors.

Chapter 10, Malware Forensics: Focuses on ways

to detect rootkits and stealth malware using

forensic tools. We show you how to scan the file

system and Registry for hidden data, how to

bypass locked file restrictions and remove

stubborn malware, how to detect HTML injection

and how to investigate a new form of Registry

“slack” space.

Chapter 11, Debugging Malware: Shows how you

can use a debugger to analyze, control, and

manipulate a malware sample’s behaviors. You’ll

learn how to script debugging sessions with

Python and how to create debugger plug-ins that

monitor API calls, output HTML behavior reports,

and automatically highlight suspicious activity.

Chapter 12, De-obfuscation: Describes how you

can decode, decrypt, and unpack data that

attackers intentionally try to hide from you. We

walk you through the process of reverse-



engineering a malware sample that encrypts its

network traffic so you can recover stolen data. In

this chapter, you also learn techniques to crack

domain generation algorithms.

Chapter 13, Working with DLLs: Describes how to

analyze malware distributed as Dynamic Link

Libraries (DLLs). You’ll learn how to enumerate

and examine a DLL’s exported functions, how to

run the DLL in a process of your choice (and

bypass host process restrictions), how to execute

DLLs as a Windows service, and how to convert

DLLs to standalone executables.

Chapter 14, Kernel Debugging: Some of the most

malicious malware operates only in kernel mode.

This chapter covers how to debug the kernel of a

virtual machine infected with malware to

understand its low-level functionality. You learn

how to create scripts for WinDbg, unpack kernel

drivers, and to leverage IDA Pro’s debugger plug-

ins.

Chapter 15, Memory Forensics with Volatility:

Shows how to acquire memory samples from

physical and virtual machines, how to install the

Volatility advanced memory forensics platform

and associated plug-ins, and how to begin your

analysis by detecting process context tricks and

DKOM attacks.

Chapter 16, Memory Forensics: Code Injection and

Extraction: Describes how you can detect and

extract code (unlinked DLLs, shellcode, and so on)

hiding in process memory. You’ll learn to rebuild



binaries, including user mode programs and

kernel drivers, from memory samples and how to

rebuild the import address tables (IAT) of packed

malware based on information in the memory

dump.

Chapter 17, Memory Forensics: Rootkits:

Describes how to detect various forms of rootkit

activity, including the presence of IAT, EAT, Inline,

driver IRP, IDT, and SSDT hooks on a system.

You’ll learn how to identify malware that hides in

kernel memory without a loaded driver, how to

locate system-wide notification routines, and how

to detect attempts to hide running Windows

services.

Chapter 18, Network and Registry: Shows how to

explore the artifacts created on a system due to a

malware sample’s network activity. You’ll learn to

detect active connections, listening sockets, and

the use of raw sockets and promiscuous mode

network cards. This chapter also covers how to

extract volatile Registry keys and values from

memory.

Setting Up Your Environment

We performed most of the development and testing

of Windows tools on 32-bit Windows XP and Windows

7 machines using Microsoft’s Visual Studio and

Windows Driver Kit. If you need to recompile our tools

for any reason (for example to fix a bug), or if you’re

interested in building your own tools based on source



code that we’ve provided, then you can download the

development environments here:

The Windows Driver Kit:

http://www.microsoft.com/whdc/devtools/WDK/def

ault.mspx

Visual Studio C++ Express:

http://www.microsoft.com/express/Downloads/#20

10-Visual-CPP

As for the Python tools, we developed and tested

them on Linux (mainly Ubuntu 9.04, 9.10, or 10.04)

and Mac OS X 10.4 and 10.5. You’ll find that a

majority of the Python tools are multi-platform and

run wherever Python runs. If you need to install

Python, you can get it from the website at

http://python.org/download/. We recommend using

Python version 2.6 or greater (but not 3.x), because it

will be most compatible with the tools on the book’s

DVD.

Throughout the book, when we discuss how to

install various tools on Linux, we assume you’re using

Ubuntu. As long as you know your way around a

Linux system, you’re comfortable compiling packages

from source, and you know how to solve basic

dependency issues, then you shouldn’t have a

problem using any other Linux distribution. We chose

Ubuntu because a majority of the tools (or libraries

on which the tools depend) that we reference in the

book are either preinstalled, available through the

apt-get package manager, or the developers of the

tools specifically say that their tools work on Ubuntu.

http://www.microsoft.com/whdc/devtools/WDK/default.mspx
http://www.microsoft.com/express/Downloads/#2010-Visual-CPP
http://python.org/download/


You have a few options for getting access to an

Ubuntu machine:

Download Ubuntu directly:

http://www.ubuntu.com/desktop/get-

ubuntu/download

Download Lenny Zeltser’s REMnux:

http://REMnux.org. REMnux is an Ubuntu system

preconfigured with various open source malware

analysis tools. REMnux is available as a VMware

appliance or ISO image.

Download Rob Lee’s SANS SIFT Workstation:

https://computer-

forensics2.sans.org/community/siftkit/. SIFT is an

Ubuntu system preconfigured with various

forensic tools. SIFT is available as a VMware

appliance or ISO image.

We always try to provide a URL to the tools we

mention in a recipe. However, we use some tools

significantly more than others, thus they appear in

five to ten recipes. Instead of linking to each tool

each time, here is a list of the tools that you should

have access to throughout all chapters:

Sysinternals Suite:

http://technet.microsoft.com/en-

us/sysinternals/bb842062.aspx

Wireshark: http://www.wireshark.org/

IDA Pro and Hex-Rays: http://www.hex-

rays.com/idapro/

Volatility: http://code.google.com/p/volatility/

WinDbg Debugger:

http://www.microsoft.com/whdc/devtools/debuggi

http://www.ubuntu.com/desktop/get-ubuntu/download
http://remnux.org./
https://computer-forensics2.sans.org/community/siftkit/
http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
http://www.wireshark.org/
http://www.hex-rays.com/idapro/
http://code.google.com/p/volatility/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx


ng/default.mspx

YARA: http://code.google.com/p/yara-project/

Process Hacker:

http://processhacker.sourceforge.net/

You should note a few final things before you begin

working with the material in the book. Many of the

tools require administrative privileges to install and

execute. Typically, mixing malicious code and

administrative privileges isn’t a good idea, so you

must be sure to properly secure your environment

(see Chapter 7 for setting up a virtual machine if you

do not already have one). You must also be aware of

any laws that may prohibit you from collecting,

analyzing, sharing, or reporting on malicious code.

Just because we discuss a technique in the book does

not mean it’s legal in the city or country in which you

reside.

Conventions

To help you get the most from the text and keep track

of what’s happening, we’ve used a number of

conventions throughout the book.

Recipe X-X: Recipe Title

Boxes like this contain recipes, which solve specific

problems, present new tools, or discuss how to detect

and analyze malware in interesting ways. Recipes may

contain helpful steps, supporting figures, and notes

from the authors. They also may have supporting

materials associated with them on the companion

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://code.google.com/p/yara-project/
http://processhacker.sourceforge.net/


DVD. If they do have supporting DVD materials, you

will see a DVD icon and descriptive text, as follows:

You can find supporting material for this recipe on

the companion DVD.

For your further reading and research, recipes may

also have endnotes1that site Internet or other

supporting sources. You will find endnote references at

the end of the recipe. Endnotes are numbered

sequentially throughout a chapter.

1
 This is an endnote. This is the format for a website source

Note Tips, hints, tricks, and asides to the

current discussion look like this.

As for other conventions in the text:

New terms and important words appear in italics

when first introduced.

Keyboard combinations are treated like this:

Ctrl+R.

File names are in parafont, (filename.txt), URLs

and code (API functions and variable names)

within the text are treated like so: www.site.org,

LoadLibrary, var1.

This book uses monofont type with no highlighting

for most code examples. Code fragments may be

broken into multiple lines or truncated to fit on

the page:

     This is an example of monofont type with a long \

            line of code that needed to be broken.

     This truncated line shows how [REMOVED]



This book uses bolding to emphasize code. User

input for commands and code that is of particular

importance appears in bold:

      $ date ; typing into a Unix shell

      Wed Sep  1 14:30:20 EDT 2010 

      C:\> date ; typing into a Windows shell

      Wed 09/01/2010



On The Book’s DVD

The book’s DVD contains evidence files, videos,

source code, and programs that you can use to follow

along with recipes or to conduct your own

investigations and analysis. It also contains the full-

size, original images and figures that you can view,

since they appear in black and white in the book. The

files are organized on the DVD in folders named

according to the chapter and recipe number. Most of

the tools on the DVD are written in C, Python, or Perl

and carry a GPLv2 or GPLv3 license. You can use a

majority of them as-is, but a few may require small

modifications depending on your system’s

configuration. Thus, even if you’re not a programmer,

you should take a look at the top of the source file to

see if there are any notes regarding dependencies,

the platforms on which we tested the tools, and any

variables that you may need to change according to

your environment.

We do not guarantee that all programs are bug free

(who does?), thus, we welcome feature requests and

bug reports addressed to

malwarecookbook@gmail.com. If we do provide

updates for the code in the future, you can always

find the most recent versions at

http://www.malwarecookbook.com.

The following table shows a summary of the tools

that you can find on the DVD, including the

mailto:malwarecookbook@gmail.com
http://www.malwarecookbook.com/

