


CONTENTS

Part I: Introducing Embedded

Development

Chapter 1: Embedded Development

What Is an Embedded Device?

What Is Embedded Software?

Development Considerations

Summary

Chapter 2: Windows Embedded

Compact 7

What Is Windows Embedded Compact?

Why Windows Embedded Compact?

Summary

Chapter 3: Development Station

Preparation

Development Computer Requirements

Windows Embedded Compact 7 Software

Development Environment Setup

Summary

Chapter 4: Development Process

Planning

Hardware Selection



Software Selection

Typical Development Processes

Summary

Chapter 5: Development Environment

and Tools

Development Environment

Platform Builder for Windows Embedded

Compact 7

Target Device Connectivity

Application for Compact 7

Windows Embedded Compact Test Kit

Summary

Part II: Platform Builder And OS

Design

Chapter 6: BSP Introduction

BSP Provided by Platform Builder

BSP Components, Files, and Folders

Clone an Existing BSP

Customize the Cloned BSP

Summary

Chapter 7: OS Design

What Is an OS Design?

Develop an OS Design

Generate SDK from the OS Design



Summary

Chapter 8: Target Device Connectivity

and Download

Target Device Connectivity

Connecting to the Target Device

Download OS Run-time Image to Target

Device

Target Device Connectivity Setting

Summary

Chapter 9: Debug and Remote Tools

Debugging Environment

Debugging the OS Design

Remote Tools

Target Control

Summary

Chapter 10: The Registry

Windows Embedded Compact Registry

Registry for Windows Embedded Compact

Component

Useful Registry References

Windows Embedded Compact Registry Files

Accessing the Registry

Summary

Chapter 11: The Build System

The OS Design Build Process



Build System Tools

Best Practice to Save Time and Minimize

Problems

Summary

Chapter 12: Remote Display

Application

Access Compact 7 Desktop Remotely

Add Remote Display Application to an OS

Design

How-To: Use Remote Display Application

Using Remote Display Application on

Headless Device

Summary

Chapter 13: Testing With Compact

Test Kit

Compact Test Kit

Establishing Connectivity for CTK

Testing Compact 7 Device with CTK

Summary

Part III: Application

Development

Chapter 14: Application Development

Developing Compact 7 Applications



Connectivity to Deploy and Debug

Application

Summary

Chapter 15: .NET Compact Framework

.NET Compact Framework Application

.NET CF Application Considerations

Summary

Chapter 16: Corecon Connectivity

Implementing CoreCon for Application

Development

Connecting to a Target Device with CoreCon

Summary

Chapter 17: Visual Studio Native

Code Application Example

Prerequisites and Preparation

Develop a Native Code Application for

Compact 7

Summary

Chapter 18: Managed Code

Application Example

Prerequisites and Preparation

Developing a Managed Code Application for

Compact 7

Summary



Chapter 19: Platform Builder Native

Code Application Example

Prerequisites and Preparation

Developing a Virtual PC OS Design

Developing a Platform Builder Native Code

Application for Compact 7

Debugging a Platform Builder Native Code

Application

Summary

Chapter 20: Developing Embedded

Database Applications

Introducing Microsoft SQL Server Compact

Microsoft SQL Server Compact

Compact Database Requirements

Managed Code Requirements

Building a SQL Compact Database

Application Using Visual Data Designers

A Media Playlist List Application

Text File Data and XML Serialization

Building the Managed Code Data

Application (Text and XML)

Building a Managed Code Remote Database

Application

Building a Managed Code Compact

Database Application

Summary



Chapter 21: Silverlight For Windows

Embedded

Silverlight: User Interface Development

Framework

Silverlight for Windows Embedded

Development Environment and Tools

Development Process

Summary

Chapter 22: Silverlight For Windows

Embedded Application Examples

Prerequisites and Preparation

Develop a Compact 7 OS Design with

Silverlight Support

Develop the SWE Application Project Using

Expression Blend 3

Port a XAML Code Project to Native Code

Using Windows Embedded Silverlight Tools

Add the SWE Application as a Subproject,

Compile, and Launch

Add Event Handler to Silverlight XAML Code

Project

Update the SWE Application Subproject

Create a User Control

Update the SWE Application Subproject to

Include Animation

Summary



Chapter 23: Auto Launching

Applications

Configuring the Registry to Auto Launch

Application

Auto Launch Application from Startup

Folder

Using the AutoLaunch Component

AutoLaunch Multiple Applications

Summary

Chapter 24: Application Deployment

Options

Deploying a Compact 7 Applications

Options

Summary

Part IV: Deploy Windows

Embedded Compact 7 Devices

Chapter 25: Deploy OS Run-Time

Images

Considerations

Deploying an OS Run-time Image

Summary

Chapter 26: Bootloaders

Compact 7 Bootloader

Ethernet Bootloader (Eboot)



Serial Bootloader (Sboot)

Loadcepc

BIOSLoader

Compact 7 Bootloader Framework

Summary

Chapter 27: Biosloader

BIOSLoader Startup Parameters

BIOSLoader Files and Utility

Using BIOSLoader

Summary

Chapter 28: The Diskprep Power Toy

Prerequisites and Preparation

Using DiskPrep Power Toy

Summary

Part V: Device Drivers, Boot

Loader, BSP, and OAL

Development

Chapter 29: An Overview of Device

Drivers

What Is a Device Driver?

Operating System Structure

Windows Embedded Compact Drivers

Custom Drivers

Summary



Note

Chapter 30: Device Driver

Architectures

Introducing Device Driver Architectures

Kernel and User Driver Modes

Native and Stream Drivers

Monolithic and Layered Driver Models

Stream, Block, Bus, and USB Drivers

How to Check if the Bluetooth Stack Is

Loaded

Using the Compact 7 Bluetooth Components

Summary

Chapter 31: Interrupts

Polling and Interrupts

Compact 7 Interrupt Architecture

Watchdog Timer

A Watchdog Timer Driver and Application

Using the WDT Test Application

Creating a Console Application with a

Dynamic Link Library

Summary

Chapter 32: Stream Interface Drivers

Loading a Driver

Stream Drivers

Stream Driver Functions

Stream Driver Configuration



Driver Context

Driver Classes

Application Streaming APIs

Power Management

An Application to Test if a Stream is Loaded

Summary

Chapter 33: Developing A Stream

Interface Driver

Stream Interface Driver Development

Overview

The Stream Interface Functions

A Simple Stream Driver Project

A Compact 7 Stream Driver Project

Building a Stream Driver for Testing

CEDriver Wizard

Implementing IOCTLs

Driver Context and Shared Memory

Registry Access from a Driver

Implementing Power Management

Summary

Chapter 34: Stream Driver API and

Device Driver Testing

Debugging Overview

Build Configurations

First Some Simple Checks

Breakpoints

Debug Macros



Using Remote Tools

Stream Driver API and Test Applications

Windows Embedded Test Kit (CTK)

Other Compact 7 Debugging Features

CeDebugX

Summary

Chapter 35: The Target System

BSP Overview

Some Compact 7 Target Boards

BSP Components

Bootloader

OAL

KITL

BSP Configuration Files and Folders

Device Drivers

Developing a BSP

Adding an IOCTL to the OAL

Summary

Part VI: Advanced Application

Development

Chapter 36: Introduction to Real-Time

Applications

Real-Time Application Overview

Windows Embedded Compact 7 and Real

Time



Summary

Chapter 37: A Simple Real-Time

Application

Developing a Simple Real-Time Application

Summary

Chapter 38: Extending Low-Level

Access To Managed Code

The Native Managed Interface

Techniques for Low-Level Access to

Managed Code

Summary

Chapter 39: Extending Low-Level

Access To Managed Code With

Messages

Communicating from Native to Managed

Code

Summary

Chapter 40: A Web Server Application

Embedded Web Server with Compact 7

Summary

Chapter 41: A USB Camera

Application

Using a USB Camera on Compact 7



Summary

Part VII: Sample Projects

Chapter 42: Develop A Windows

Network Projector

Windows Network Projector Application

Developing a Windows Network Projector

Using Windows Network Projector

Summary

Chapter 43: Phidgets Devices

Phidgets Devices

Phidgets Devices Application

Summary

Chapter 44: FTDI Devices

FTDI Devices

FTDI Hardware Interface

FTDI as the USB Interface to a System

FTDI Device Drivers

CEComponentWiz: Adding Content to an

Image

FTDI Drivers as Catalog Items

Third-Party FTDI Application Modules

Serial Port Access from a Compact 7

Application

A Custom FTDI Stream Driver

Summary



Chapter 45: Integrating Managed

Code Projects

Native Code

Managed Code Applications and Windows

Embedded Compact 7

Package a .NET Application for Inclusion in

the OS Image

Deploy a .NET Application Directly over

KITL

Include the Build of a Managed Code

Application in the OS Build

What Now?

Summary

Appendix A: Virtual PC Connectivity

Configure Virtual PC Connectivity

Virtual PC 2007

Virtual PC Information Resources

Appendix B: Microsoft Resources

Evaluation Software

Drivers and Utilities

Windows Embedded Compact Forums

Appendix C: Community Resources

Windows Embedded Community

Community Projects for Compact 7

Other Community Projects

Other Resources



Appendix D: Embedded Hardware

Embedded Hardware Consideration

Summary

Foreword

Introduction

Advertisement



PART I

Introducing Embedded

Development
CHAPTER 1: Embedded Development

CHAPTER 2: Windows Embedded Compact 7

CHAPTER 3: Development Station Preparation

CHAPTER 4: Development Process

CHAPTER 5: Development Environment and Tools



Chapter 1

Embedded Development

WHAT’S IN THIS CHAPTER?

Defining an embedded device

Using software for an embedded device

Establishing key elements for embedded development

Embedded development has been around for decades. The

terms such as embedded system and embedded computer

are widely used by marketing professionals across multiple

industries. However, the actual meaning and representation

for the term embedded is still vague.

Although it’s not within this book’s objective to delve into

the definition for the term embedded, you need to

understand a general boundary for the embedded device,

embedded software, and development environment relevant

to Windows Embedded contents in this book.

WHAT IS AN EMBEDDED

DEVICE?

When referring to an embedded device, some of you may

still think of the small devices, typically built with a

microcontroller with limited processing capability and

memory. Contrary to this thinking, many embedded devices

in today’s market are built with a powerful processor,

abundant memory, and storage.

Some of the current embedded devices are built with

computing technology that can rival an enterprise class



server from just a few years ago. Not too long ago,

enterprise servers were built with processors that operate in

the sub gigahertz (GHz) range, with system memory in the

100 megabyte (MB) range and storage in the gigabyte (GB)

range.

Today, many of you use smartphones built with a GHz

processor, 512MB or more system memory, and 8GB to

32GB of storage.

As technology rapidly advances and enables more

powerful processor modules with more integrated features

to be built in a smaller footprint at a lower cost, it enables a

new generation of consumer, industrial, medical, robotics,

education, and other devices to be built with better and

innovative features that can deliver these devices to the

market with a higher perceived value at a lower cost.

Today, using available technology, embedded devices can

be built with a broad range of capabilities, with processors

ranging from low-power, 8-bit microcontrollers with limited

memory to powerful processors with CPU clocks operating in

the GHz, memory in the GB, and storage in the 100-GB

range. With some imagination and creativity, the

possibilities for embedded devices are endless.

Similarity to Personal Computer

From a general architecture point of view, an embedded

device has many similarities to a typical personal computer

(PC).

It has a processor.

It has system memory.

It has storage to store software.

It requires software applications to be useful.

Difference from Personal Computer



Although a general purpose PC is designed to enable the

user to install different operating systems and software

applications to perform different tasks, an embedded device

is built with preconfigured software, designed to perform a

specific set of tasks and functions.

Table 1-1 shows some of the differences between the PC

and embedded device.

TABLE 1-1: Personal Computer and Embedded Device

Comparison

PERSONAL COMPUTER EMBEDDED DEVICE

Support 1024×768 or better display resolution Headless (does not support displays)

Smaller displays that support limited

resolution

LCD modules that display ASCII text.

Keyboard and mouse to capture user input Handful of hardware buttons and touch

screens to capture user input

Abundant system memory, common for PC to

equip with 2GB or more RAM

Limited system memory

Abundant storage, common for PC to equip with

300GB or larger hard disk for storage

Flash storage with limited storage

capacity

Specialized Purpose Device

An embedded device is a specialized purpose device

designed to serve a specific purpose and built to meet

designated specifications and cost objectives.

For some markets, the same hardware used to build a

general purpose PC can be used to build a specialized

purpose embedded device; therefore, making the distinction

between an embedded device and personal computer

vague.

Following are two separate application scenarios that use

similar hardware. One of them is categorized as a general

purpose computer and the other as a specialized purpose

device:

A small retail store owner uses a computer as a point-of-

sale terminal. In addition, this store owner uses the

same computer to send and receive e-mail using

Outlook, to write business letters using Word, and to



install additional software onto the PC to perform

accounting and record keeping-related tasks.

A major department chain store uses computers as

point-of-sale terminals for each of its branch locations.

To minimize service and support issues and to simplify

management tasks, the computers are configured to

perform only point-of-sale-related tasks. The computers

are also configured to not enable additional software to

be installed and limit access to its system to prevent

existing software accidentally being removed.

In the first preceding scenario, the store owner uses the

computer as a general-purpose PC. In the second scenario,

the department chain store uses the computer as a

specialized-purpose device.

Example of Embedded Devices

Embedded devices are all around you. Think about your

daily living, when you travel, visit a theme park, interact

with a financial institution, use entertainment devices in

your home, drive your automobile, and so on.

Following are examples of some of the embedded devices

in today’s market:

Mobile phone

Set-top-box

Television

Media entertainment system

Printer

Portable media player

GPS navigation device

Credit card processing terminal

Automated ticketing machine

Digital camera

Medical instrument

Engineering instrument



Network router

Information kiosk

Automated teller machine

Video projector

Self-serve checkout station at your local super market

WHAT IS EMBEDDED

SOFTWARE?

While software applications for general purpose PCs are

designed to function on a broad range of computers, built

by different manufacturers that meet general requirements

(such as processor speed, available memory, and storage),

software developed for the embedded device is intended for

one specific model or category of devices.

Comparing to software for general purpose PCs, following

are the main differences for embedded software:

Designed to operate on hardware with limited resources.

Application codes are tightly coupled with hardware.

Errors and exceptions can’t be thrown to the user.

Programming Languages and

Principles

Other than the different development considerations, which

will be explored later in this chapter, similar programming

languages and principles apply to developing Windows

applications for a desktop PC and embedded applications for

a Windows Embedded Compact device.

If you are developing desktop PC applications using Visual

Studio 2005 and 2008, you are already familiar with the

Visual Studio application development environment for

Windows Embedded Compact. With little more effort, you



can easily adapt existing Visual Studio experience to

develop Windows Embedded Compact applications.

Programming Discipline

When developing applications for a general-purpose

desktop PC, you can make the following assumptions about

the PC, without considering the end user’s environment in

detail:

It’s equipped with a 1.0 GHz or faster processor.

It has at least 1GB or more of system memory.

It has a hard disk with abundant storage space, in the

100GB range.

The video output is capable of supporting a 1024×768

or better display resolution.

A keyboard and mouse are used to capture user input.

A network connection is available.

When developing applications for an embedded device,

you cannot make any of the preceding general assumptions

and must have details and accurate information about the

device’s features and capability. You also need to have a

clear understanding about the device’s operating

environment and how the end users interact with the

device. The embedded device may be built with the

following features:

Headless without a user interface

Limited system memory and storage

Battery powered

A few hardware buttons to capture user input

You also may be required to develop applications for an

embedded device to meet one or more of the following

design objectives:

Minimize power consumption to extend operating time

for battery-powered devices.



Minimize memory and resources leakage for devices

that operate 24/7.

Meet the hard real-time characteristic for the timing

critical device that requires the application to perform

required tasks within a specified time slot.

Prevent file corruption resulting from unexpected loss of

power to the device.

Develop applications to directly access and control the

device’s hardware.

Develop applications to access a headless device (built

without a user interface) remotely for service and

maintenance purposes.

Develop applications to perform self-diagnostic

functions and implement automated routines to correct

errors found.

Seasoned embedded developers develop the discipline to

account for additional design considerations from their

experience, which may include technical issues, user

interactions, and an operating environment related to the

final product. Often, these additional design considerations

are not part of the specifications and requirements;

however, in many cases, these additional design

considerations are critical to the project’s success.

Specialized Purpose Application

Although software for the PC is designed to operate on all

desktop and portable notebook computers that meet a

general technical specification, embedded software is a

specialized-purpose application designed to run on one

particular class or category of specialized-purpose device.

Software for the PC is designed to enable the end user to

install and remove the application at will. However,

embedded software is usually shipped as a preinstalled

component on the device and is designed to limit the end



user’s ability to remove the software from the device or to

make changes.

DEVELOPMENT

CONSIDERATIONS

Embedded development skill is a discipline that cumulates

and improves over time, with active engagement and

hands-on involvement in the actual embedded development

projects.

Operating systems, programming languages, and the

hardware platforms are tools used by the developer to

design, compose, and build embedded devices.

Whether working on a PC or an embedded device

development project, you can have similar development

concerns and needs, such as the following:

Firmware

Operating system

Hardware adaptation codes

Device drivers for peripherals

File system

Network protocol stack

Codecs

Support libraries

Application

An embedded device development project can involve any

or all these concerns. To be effective, an embedded

developer needs to have a good understanding about the

device’s operating environment, how the user uses the

device, the hardware platform, and design objectives.

Different categories of embedded device design objectives

are quite different, such as the following:



A consumer-oriented device needs to meet the targeted

performance at the least cost, sufficient for the device

to meet the 1-year to 3-year warranty period.

In addition to meeting the targeted function

requirements, many embedded devices designed for

industrial applications need to meet strict quality

requirements, operate 24/7, and survive a harsh

operating environment that involves a wide operating

temperature range from −40°C to +85°C and exposure

to high humidity and chemical conditions.

In general, when working on an embedded development

project, in addition to the design specification, the

development team needs to consider the following:

Hardware

Operating environment

User environment

Hardware

In addition to the direct impact to the cost of manufacturing,

the selected hardware can affect the development schedule

and engineering cost. When selecting the hardware, you

need to consider the following:

Is the required hardware readily available in the market?

Are there sufficient components available in the market

and engineering resources to develop customized

hardware for the project?

Is the selected hardware’s processor architecture

supported by the selected operating system?

Can the hardware vendor provide support for the

selected operating system?

Does the selected hardware provide the best value from

an overall project perspective? (Lower-cost hardware

may require additional development, have limitations

that create other cost centers, raise the overall project



cost, and significantly impact the project’s time-to-

market schedule.)

Operating Environment

To develop a good product, you need to understand how the

product is used and the environment the product needs to

operate in. You need to take into account the following

considerations, which may impact the hardware

requirements:

How can the embedded device be used?

What temperature range is the device expected to

operate in?

Can the device operate 24/7?

Can the device be deployed on an automobile, a vessel,

or an airplane?

Can the device be subjected to vibration and shock

during operation?

Can the device be subjected to strong electrostatic

shock during operation?

Can the device be placed in an outdoor environment?

User Environment

User expectation is one of the most important factors. If the

embedded device does not meet user expectation, the user

is not likely to purchase or use the device.

Feasibility

From an engineering perspective, with sufficient resources

and time, the development team can engineer a perfect

device. In real life, all development projects are bounded by

the following:

Limited development resources and budget.



Development must be completed within a

predetermined schedule.

After all the technical, environment, and user

requirements are met, the product development team also

needs to consider the required resources and time needed

to successfully complete all required development tasks.

These considerations can have a strong impact on the

business’ cost, profit, and time-to-market and can influence

whether to move the project forward.

SUMMARY

Embedded development is an engineering discipline that

involves multiple technical skills, covering both hardware

and software. As technology rapidly changes and evolves,

the embedded development environment will continue to

change, adopt new technology, and create new ways to do

things.

A career in the embedded development field can be

challenging and rewarding at the same time. It’s a challenge

to learn and adapt rapidly to changing technologies. It’s also

rewarding to work with a broad range of technology to

create cool devices that can help solve challenging

problems.



Chapter 2

Windows Embedded Compact 7

WHAT’S IN THIS CHAPTER?

Introducing Windows Embedded Compact

Exploring new features in Windows Embedded Compact

7

Understanding a little bit of history

Seeing what you do with Windows Embedded Compact

Choosing Windows Embedded Compact

With the first version released in 1996, the Windows

Embedded Compact family of technology has been through

more than 15 years in the making. Evolving through seven

major versions, with countless hours of development, bug

fixes, improvements, and enhancements, this latest version

is solid, packed with features, and optimized to enhance

performance and security.

To help you better understand Windows Embedded

Compact, this chapter provides a brief overview of Windows

Embedded Compact 7, the market it serves, and some of

the key features.

WHAT IS WINDOWS EMBEDDED

COMPACT?

Windows Embedded Compact is not binary-compatible with

any version of the desktop Windows operating system (OS)

and is not a scaled-down version of a desktop Windows OS.


